1
|
Ye Y, Li M, Pan Q, Fang X, Yang H, Dong B, Yang J, Zheng Y, Zhang R, Liao Z. Machine learning-based classification of deubiquitinase USP26 and its cell proliferation inhibition through stabilizing KLF6 in cervical cancer. Comput Biol Med 2024; 168:107745. [PMID: 38064851 DOI: 10.1016/j.compbiomed.2023.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 01/10/2024]
Abstract
OBJECTIVE We aim to accurately distinguish ubiquitin-specific proteases (USPs) from other members within the deubiquitinating enzyme families based on protein sequences. Additionally, we seek to elucidate the specific regulatory mechanisms through which USP26 modulates Krüppel-like factor 6 (KLF6) and assess the subsequent effects of this regulation on both the proliferation and migration of cervical cancer cells. METHODS All the deubiquitinase (DUB) sequences were classified into USPs and non-USPs. Feature vectors, including 188D, n-gram, and 400D dimensions, were extracted from these sequences and subjected to binary classification via the Weka software. Next, thirty human USPs were also analyzed to identify conserved motifs and ascertained evolutionary relationships. Experimentally, more than 90 unique DUB-encoding plasmids were transfected into HeLa cell lines to assess alterations in KLF6 protein levels and to isolate a specific DUB involved in KLF6 regulation. Subsequent experiments utilized both wild-type (WT) USP26 overexpression and shRNA-mediated USP26 knockdown to examine changes in KLF6 protein levels. The half-life experiment was performed to assess the influence of USP26 on KLF6 protein stability. Immunoprecipitation was applied to confirm the USP26-KLF6 interaction, and ubiquitination assays to explore the role of USP26 in KLF6 deubiquitination. Additional cellular assays were conducted to evaluate the effects of USP26 on HeLa cell proliferation and migration. RESULTS 1. Among the extracted feature vectors of 188D, 400D, and n-gram, all 12 classifiers demonstrated excellent performance. The RandomForest classifier demonstrated superior performance in this assessment. Phylogenetic analysis of 30 human USPs revealed the presence of nine unique motifs, comprising zinc finger and ubiquitin-specific protease domains. 2. Through a systematic screening of the deubiquitinase library, USP26 was identified as the sole DUB associated with KLF6. 3. USP26 positively regulated the protein level of KLF6, as evidenced by the decrease in KLF6 protein expression upon shUSP26 knockdown in both 293T and Hela cell lines. Additionally, half-life experiments demonstrated that USP26 prolonged the stability of KLF6. 4. Immunoprecipitation experiments revealed a strong interaction between USP26 and KLF6. Notably, the functional interaction domain was mapped to amino acids 285-913 of USP26, as opposed to the 1-295 region. 5. WT USP26 was found to attenuate the ubiquitination levels of KLF6. However, the mutant USP26 abrogated its deubiquitination activity. 6. Functional biological assays demonstrated that overexpression of USP26 inhibited both proliferation and migration of HeLa cells. Conversely, knockdown of USP26 was shown to promote these oncogenic properties. CONCLUSIONS 1. At the protein sequence level, members of the USP family can be effectively differentiated from non-USP proteins. Furthermore, specific functional motifs have been identified within the sequences of human USPs. 2. The deubiquitinating enzyme USP26 has been shown to target KLF6 for deubiquitination, thereby modulating its stability. Importantly, USP26 plays a pivotal role in the modulation of proliferation and migration in cervical cancer cells.
Collapse
Affiliation(s)
- Ying Ye
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Meng Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Qilong Pan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Xin Fang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China; Laboratory of Non-communicable Chronic Disease Control, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350012, China
| | - Hong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Bingying Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jiaying Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Yuan Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Renxiang Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Zhijun Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
2
|
Lu H, Ma J, Li Y, Zhang J, An Y, Du W, Cai X. Bioinformatic and systems biology approach revealing the shared genes and molecular mechanisms between COVID-19 and non-alcoholic hepatitis. Front Mol Biosci 2023; 10:1164220. [PMID: 37405258 PMCID: PMC10315682 DOI: 10.3389/fmolb.2023.1164220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction: Coronavirus disease 2019 (COVID-19) has become a global pandemic and poses a serious threat to human health. Many studies have shown that pre-existing nonalcoholic steatohepatitis (NASH) can worsen the clinical symptoms in patients suffering from COVID-19. However, the potential molecular mechanisms between NASH and COVID-19 remain unclear. To this end, key molecules and pathways between COVID-19 and NASH were herein explored by bioinformatic analysis. Methods: The common differentially expressed genes (DEGs) between NASH and COVID-19 were obtained by differential gene analysis. Enrichment analysis and protein-protein interaction (PPI) network analysis were carried out using the obtained common DEGs. The key modules and hub genes in PPI network were obtained by using the plug-in of Cytoscape software. Subsequently, the hub genes were verified using datasets of NASH (GSE180882) and COVID-19 (GSE150316), and further evaluated by principal component analysis (PCA) and receiver operating characteristic (ROC). Finally, the verified hub genes were analyzed by single-sample gene set enrichment analysis (ssGSEA) and NetworkAnalyst was used for the analysis of transcription factor (TF)-gene interactions, TF-microRNAs (miRNA) coregulatory network, and Protein-chemical Interactions. Results: A total of 120 DEGs between NASH and COVID-19 datasets were obtained, and the PPI network was constructed. Two key modules were obtained via the PPI network, and enrichment analysis of the key modules revealed the common association between NASH and COVID-19. In total, 16 hub genes were obtained by five algorithms, and six of them, namely, Kruppel-like factor 6 (KLF6), early growth response 1 (EGR1), growth arrest and DNA-damage-inducible 45 beta (GADD45B), JUNB, FOS, and FOS-like antigen 1 (FOSL1) were confirmed to be closely related to NASH and COVID-19. Finally, the relationship between hub genes and related pathways was analyzed, and the interaction network of six hub genes was constructed with TFs, miRNAs, and compounds. Conclusion: This study identified six hub genes related to COVID-19 and NASH, providing a new perspective for disease diagnosis and drug development.
Collapse
|
3
|
Hu K, Ma C, Ma R, Zheng Q, Wang Y, Zhang N, Sun Z. Roles of Krüppel-like factor 6 splice variant 1 in the development, diagnosis, and possible treatment strategies for non-small cell lung cancer. Am J Cancer Res 2022; 12:4468-4482. [PMID: 36381325 PMCID: PMC9641401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023] Open
Abstract
Krüppel-like factor 6 (KLF6) is a nuclear transcriptional regulator found in mammalian tissue that has been identified as a tumor suppressor gene in several malignancies. As a result of loss of heterozygosity, DNA methylation, and alternative splicing, it is frequently inactivated in various malignancies. Krüppel-like factor 6 splice variant 1 (KLF6-SV1), Krüppel-like factor 6 splice variant 2, and Krüppel-like factor 6 splice variant 3 alternatively spliced isoforms that emerge from a single nucleotide polymorphism in the KLF6 gene. KLF6-SV1 is generally upregulated in multiple cancers, and its biological function is well understood. Overexpression of KLF6-SV1 inhibits the KLF6 gene function while promoting tumor progression, which is associated with a poor prognosis in patients with various malignancies. We reviewed the progress of KLF6-SV1 research in NSCLC over the last several years to understand the molecular mechanisms of tumorigenesis, tumor development, and therapy resistance. Finally, this review emphasizes the therapeutic potential of small interfering RNA targeted silencing of KLF6-SV1 as a novel strategy for managing chemotherapy resistance in NSCLC patients.
Collapse
Affiliation(s)
- Kang Hu
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
- School of Clinical Medicine, Weifang Medical UniversityWeifang 261053, Shandong, China
| | - Chao Ma
- School of Clinical Medicine, Weifang Medical UniversityWeifang 261053, Shandong, China
| | - Ruijie Ma
- Cheeloo College of Medicine, Shandong UniversityJinan 250013, Shandong, China
| | - Qiming Zheng
- Cheeloo College of Medicine, Shandong UniversityJinan 250013, Shandong, China
| | - Yepeng Wang
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| | - Nan Zhang
- Department of Breast Disease Center, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| | - Zhigang Sun
- Department of Thoracic Surgery, Central Hospital Affiliated to Shandong First Medical UniversityJinan 250013, Shandong, China
| |
Collapse
|
4
|
Miranda AL, Kourdova LT, Racca AC, Cruz Del Puerto M, Rojas ML, Marques ALX, Silva ECO, Fonseca EJS, Gazzoni Y, Gruppi A, Borbely AU, Genti‐Raimondi S, Panzetta‐Dutari GM. Krüppel‐like factor 6 participates in extravillous trophoblast cell differentiation and its expression is reduced in abnormally invasive placenta. FEBS Lett 2022; 596:1700-1719. [DOI: 10.1002/1873-3468.14367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/22/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Andrea L. Miranda
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Lucille T. Kourdova
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Ana C. Racca
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Mariano Cruz Del Puerto
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Maria L. Rojas
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Aldilane L. X. Marques
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Elaine C. O. Silva
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Eduardo J. S. Fonseca
- Optics and Nanoscopy Group Physics Institute Federal University of Alagoas Maceio Brazil
| | - Yamila Gazzoni
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Adriana Gruppi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Alexandre U. Borbely
- Cell Biology Laboratory Institute of Health and Biological Sciences Federal University of Alagoas Maceio Brazil
| | - Susana Genti‐Raimondi
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| | - Graciela M. Panzetta‐Dutari
- Universidad Nacional de Córdoba Facultad de Ciencias Químicas Departamento de Bioquímica Clínica Ciudad Universitaria X5000HUA Córdoba Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI) Ciudad Universitaria X5000HUA Córdoba Argentina
| |
Collapse
|
5
|
Li J, Li MH, Wang TT, Liu XN, Zhu XT, Dai YZ, Zhai KC, Liu YD, Lin JL, Ge RL, Sun SH, Wang F, Yuan JH. SLC38A4 functions as a tumour suppressor in hepatocellular carcinoma through modulating Wnt/β-catenin/MYC/HMGCS2 axis. Br J Cancer 2021; 125:865-876. [PMID: 34274945 DOI: 10.1038/s41416-021-01490-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/11/2021] [Accepted: 07/08/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many molecular alterations are shared by embryonic liver development and hepatocellular carcinoma (HCC). Identifying the common molecular events would provide a novel prognostic biomarker and therapeutic target for HCC. METHODS Expression levels and clinical relevancies of SLC38A4 and HMGCS2 were investigated by qRT-PCR, western blot, TCGA and GEO datasets. The biological roles of SLC38A4 were investigated by functional assays. The downstream signalling pathway of SLC38A4 was investigated by qRT-PCR, western blot, immunofluorescence, luciferase reporter assay, TCGA and GEO datasets. RESULTS SLC38A4 silencing was identified as an oncofetal molecular event. DNA hypermethylation contributed to the downregulations of Slc38a4/SLC38A4 in the foetal liver and HCC. Low expression of SLC38A4 was associated with poor prognosis of HCC patients. Functional assays demonstrated that SLC38A4 depletion promoted HCC cellular proliferation, stemness and migration, and inhibited HCC cellular apoptosis in vitro, and further repressed HCC tumorigenesis in vivo. HMGCS2 was identified as a critical downstream target of SLC38A4. SLC38A4 increased HMGCS2 expression via upregulating AXIN1 and repressing Wnt/β-catenin/MYC axis. Functional rescue assays showed that HMGCS2 overexpression reversed the oncogenic roles of SLC38A4 depletion in HCC. CONCLUSIONS SLC38A4 downregulation was identified as a novel oncofetal event, and SLC38A4 was identified as a novel tumour suppressor in HCC.
Collapse
Affiliation(s)
- Jie Li
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Ming-Han Li
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Tian-Tian Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Xiao-Ning Liu
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ting Zhu
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yun-Zhang Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Ke-Chao Zhai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yong-da Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jia-Li Lin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Rui-Liang Ge
- The Second Department of Liver Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Shu-Han Sun
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, China.
| |
Collapse
|
6
|
Bayo J, Fiore EJ, Dominguez LM, Cantero MJ, Ciarlantini MS, Malvicini M, Atorrasagasti C, Garcia MG, Rossi M, Cavasotto C, Martinez E, Comin J, Mazzolini GD. Bioinformatic analysis of RHO family of GTPases identifies RAC1 pharmacological inhibition as a new therapeutic strategy for hepatocellular carcinoma. Gut 2021; 70:1362-1374. [PMID: 33106353 DOI: 10.1136/gutjnl-2020-321454] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/15/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The RHO family of GTPases, particularly RAC1, has been linked with hepatocarcinogenesis, suggesting that their inhibition might be a rational therapeutic approach. We aimed to identify and target deregulated RHO family members in human hepatocellular carcinoma (HCC). DESIGN We studied expression deregulation, clinical prognosis and transcription programmes relevant to HCC using public datasets. The therapeutic potential of RAC1 inhibitors in HCC was study in vitro and in vivo. RNA-Seq analysis and their correlation with the three different HCC datasets were used to characterise the underlying mechanism on RAC1 inhibition. The therapeutic effect of RAC1 inhibition on liver fibrosis was evaluated. RESULTS Among the RHO family of GTPases we observed that RAC1 is upregulated, correlates with poor patient survival, and is strongly linked with a prooncogenic transcriptional programme. From a panel of novel RAC1 inhibitors studied, 1D-142 was able to induce apoptosis and cell cycle arrest in HCC cells, displaying a stronger effect in highly proliferative cells. Partial rescue of the RAC1-related oncogenic transcriptional programme was obtained on RAC1 inhibition by 1D-142 in HCC. Most importantly, the RAC1 inhibitor 1D-142 strongly reduce tumour growth and intrahepatic metastasis in HCC mice models. Additionally, 1D-142 decreases hepatic stellate cell activation and exerts an anti-fibrotic effect in vivo. CONCLUSIONS The bioinformatics analysis of the HCC datasets, allows identifying RAC1 as a new therapeutic target for HCC. The targeted inhibition of RAC1 by 1D-142 resulted in a potent antitumoural effect in highly proliferative HCC established in fibrotic livers.
Collapse
Affiliation(s)
- Juan Bayo
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Esteban J Fiore
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Luciana María Dominguez
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - María Jose Cantero
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Matias S Ciarlantini
- Departamento de Ingredientes Activos y Biorrefinerías, INTI, San Martin, Buenos Aires, Argentina
| | - Mariana Malvicini
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina.,Cancer Immunobiology Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina
| | - Catalina Atorrasagasti
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Mariana Gabriela Garcia
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina.,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Mario Rossi
- Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina.,Laboratorio de Genómica Funcional y Ciencia de Datos, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina
| | - Claudio Cavasotto
- Facultad de Ciencias Biomédicas, Facultad de Ingeniería, and Austral Institute for Applied Artificial Intelligence, Universidad Austral, Derqui, Buenos Aires, Argentina.,Computational Drug Design and Biomedical Informatics Laboratory, Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| | - Elisabeth Martinez
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Julieta Comin
- Departamento de Ingredientes Activos y Biorrefinerías, INTI, San Martin, Buenos Aires, Argentina.,Departamento de Ingredientes Activos y Biorrefinerías, Consejo Nacional de Investigaciones Cientificas y Tecnicas, San Martin, Buenos Aires, Argentina
| | - Guillermo D Mazzolini
- Gene Therapy Laboratory, Instituto de Investigaciones en Medicina Traslacional, Facultad de Ciencias Biomédicas, Universidad Austral, Derqui, Buenos Aires, Argentina .,Instituto de Investigaciones en Medicina Traslacional, Consejo Nacional de Investigaciones Cientificas y Tecnicas, Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Zhang Q, Shi R, Bai Y, Meng L, Hu J, Zhu H, Liu T, De X, Wang S, Wang J, Xu L, Zhou G, Yin R. Meiotic nuclear divisions 1 (MND1) fuels cell cycle progression by activating a KLF6/E2F1 positive feedback loop in lung adenocarcinoma. Cancer Commun (Lond) 2021; 41:492-510. [PMID: 33734616 PMCID: PMC8211349 DOI: 10.1002/cac2.12155] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/19/2020] [Accepted: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
Background Considering the increase in the proportion of lung adenocarcinoma (LUAD) cases among all lung cancers and its considerable contribution to cancer‐related deaths worldwide, we sought to identify novel oncogenes to provide potential targets and facilitate a better understanding of the malignant progression of LUAD. Methods The results from the screening of transcriptome and survival analyses according to the integrated Gene Expression Omnibus (GEO) datasets and The Cancer Genome Atlas (TCGA) data were combined, and a promising risk biomarker called meiotic nuclear divisions 1 (MND1) was selectively acquired. Cell viability assays and subcutaneous xenograft models were used to validate the oncogenic role of MND1 in LUAD cell proliferation and tumor growth. A series of assays, including mass spectrometry, co‐immunoprecipitation (Co‐IP), and chromatin immunoprecipitation (ChIP), were performed to explore the underlying mechanism. Results MND1 up‐regulation was identified to be an independent risk factor for overall survival in LUAD patients evaluated by both tissue microarray staining and third party data analysis. In vivo and in vitro assays showed that MND1 promoted LUAD cell proliferation by regulating cell cycle. The results of the Co‐IP, ChIP and dual‐luciferase reporter assays validated that MND1 competitively bound to tumor suppressor Kruppel‐like factor 6 (KLF6), and thereby protecting E2F transcription factor 1 (E2F1) from KLF6‐induced transcriptional repression. Luciferase reporter and ChIP assays found that E2F1 activated MND1 transcription by binding to its promoter in a feedback manner. Conclusions MND1, KLF6, and E2F1 form a positive feedback loop to regulate cell cycle and confer DDP resistance in LUAD. MND1 is crucial for malignant progression and may be a potential therapeutic target in LUAD patients.
Collapse
Affiliation(s)
- Quanli Zhang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Run Shi
- Faculty of Medicine, Ludwig-Maximilians-Universität (LMU) München, München, Bayern, D-80539, Germany
| | - Yongkang Bai
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China
| | - Lijuan Meng
- Department of Geriatric Oncology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Jingwen Hu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Hongyu Zhu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China
| | - Tongyan Liu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Xiaomeng De
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Siwei Wang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,The Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210009, P. R. China
| | - Jie Wang
- Department of Scientific Research, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, Jiangsu, 210009, P. R. China.,Jiangsu Biobank of Clinical Resources, Nanjing, Jiangsu, 210009, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China
| | - Guoren Zhou
- Department of Oncology, Jiangsu Cancer Hospital & the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, 210009, P. R. China
| | - Rong Yin
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, Jiangsu, 210009, P. R. China.,Jiangsu Biobank of Clinical Resources, Nanjing, Jiangsu, 210009, P. R. China
| |
Collapse
|
8
|
Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY. Two Sides of the Same Coin: The Roles of KLF6 in Physiology and Pathophysiology. Biomolecules 2020; 10:biom10101378. [PMID: 32998281 PMCID: PMC7601070 DOI: 10.3390/biom10101378] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Saiful E. Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
- Correspondence: ; Tel.: +60-3-9145-9040
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| | - Wan Fahmi Wan Mohamad Nazarie
- Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia;
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (M.A.M.); (T.Y.L.)
| |
Collapse
|
9
|
Sun S, Chen H, Sun L, Wang M, Wu X, Xiao ZXJ. Hotspot mutant p53-R273H inhibits KLF6 expression to promote cell migration and tumor metastasis. Cell Death Dis 2020; 11:595. [PMID: 32733026 PMCID: PMC7393383 DOI: 10.1038/s41419-020-02814-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
Hotspot p53 mutant proteins often gain novel functions in promoting tumor metastases. However, the molecular mechanisms by which mutant p53 exerts gain-of-function in cancer are not totally understood. In this study, we demonstrate that hotspot mutant p53, p53-R273H, promotes cell scattering growth and migration via inhibiting the expression of Krupple-like factor 6 (KLF6), a Zinc finger transcription factor and a documented tumor suppressor. Restoration of KLF6 increases the expression of E-cadherin downregulated by p53-R273H and inhibits p53-R273H-induced cell migration and tumor metastasis. Further, p53-R273H reduces KLF6 transcription by upregulating EGFR expression which in turn activates AKT–FOXO1 axis. Pharmacological inhibitor of AKT, MK2206, rescues KLF6 expression and suppresses p53-R273H-induced cell migration. Clinical analyses reveal that KLF6 expression is decreased in human breast cancer specimens harboring p53 mutations, and negatively correlated with EGFR expression in human breast cancer. In addition, low expression of KLF6 is associated with poor overall survival (OS) and relapse-free survival (RFS) in p53 mutated human breast cancer patients. Together, these results reveal an important role for EGFR–AKT–FOXO1–KLF6–E-cadherin axis in mutant p53-induced cell migration and tumor metastasis.
Collapse
Affiliation(s)
- Shengnan Sun
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Hu Chen
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| | - Lijuan Sun
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Miao Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Xianqiang Wu
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China
| | - Zhi-Xiong Jim Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
10
|
Li G, Ma X, Xu L. The roles of zinc finger proteins in non-alcoholic fatty liver disease. LIVER RESEARCH 2020. [DOI: 10.1016/j.livres.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Krivtsova O, Makarova A, Lazarevich N. Aberrant expression of alternative isoforms of transcription factors in hepatocellular carcinoma. World J Hepatol 2018; 10:645-661. [PMID: 30386458 PMCID: PMC6206146 DOI: 10.4254/wjh.v10.i10.645] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 06/08/2018] [Accepted: 06/28/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent malignancies worldwide and the second leading cause of death among all cancer types. Deregulation of the networks of tissue-specific transcription factors (TFs) observed in HCC leads to profound changes in the hepatic transcriptional program that facilitates tumor progression. In addition, recent reports suggest that substantial aberrations in the production of TF isoforms occur in HCC. In vitro experiments have identified distinct isoform-specific regulatory functions and related biological effects of liver-specific TFs that are implicated in carcinogenesis, which may be relevant for tumor progression and clinical outcome. This study reviews available data on the expression of isoforms of liver-specific and ubiquitous TFs in the liver and HCC and their effects, including HNF4α, C/EBPs, p73 and TCF7L2, and indicates that assessment of the ratio of isoforms and targeting specific TF variants may be beneficial for the prognosis and treatment of HCC.
Collapse
Affiliation(s)
- Olga Krivtsova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| | - Anna Makarova
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
| | - Natalia Lazarevich
- Federal State Budgetary Institution, “N. N. Blokhin Medical Research Center of Oncology” of the Ministry of Health of the Russian Federation, Moscow 115478, Russian
- M. V. Lomonosov Moscow State University, Moscow 119991, Russian
| |
Collapse
|
12
|
Novel natural killer cell-mediated cancer immunotherapeutic activity of anisomycin against hepatocellular carcinoma cells. Sci Rep 2018; 8:10668. [PMID: 30006566 PMCID: PMC6045618 DOI: 10.1038/s41598-018-29048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
Despite advances in the clinical management of hepatocellular carcinoma (HCC), this form of cancer remains the second leading cause of cancer-related death worldwide. Currently, there are few treatment options for advanced HCC. Therefore, novel treatment strategies for HCC are required. Here, we described the promising antitumour effects of anisomycin, which exerts both direct killing effects and natural killer cell (NK)-mediated immunotherapeutic effects in HCC. To better elucidate the mechanisms through which anisomycin mediates its antitumour effects, we performed a genome-scale transcriptional analysis. We found that anisomycin treatment of HCC differentially modulated a broad range of immune regulation-associated genes. Among these immune regulation-associated genes, we found that lymphocyte function-associated antigen-3 (LFA-3, also called CD58), whose expression was significantly increased in anisomycin-treated HCC cells, was a critical player in NK-mediated immunotherapeutic effects. Furthermore major histocompatibility complex molecules class I (MHC-I) on HCC cells were also significantly regulated by treatment of anisomycin. Those adhesion molecules like CD58, MHC-I, and ICAM4 should be important for immune synapse formation between NK cells and HCC cells to boost NK-mediated immunotherapeutic effects. Notably, this is the first report of NK-dependent immunomodulatory effects of anisomycin suggesting anisomycin as a novel therapeutic drug for treatment of HCC.
Collapse
|
13
|
Sugihara T, Tanaka S, Braga-Tanaka I, Murano H, Nakamura-Murano M, Komura JI. Screening of biomarkers for liver adenoma in low-dose-rate γ-ray-irradiated mice. Int J Radiat Biol 2018; 94:315-326. [PMID: 29424599 DOI: 10.1080/09553002.2018.1439193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Chronic low-dose-rate (20 mGy/day) γ-irradiation increases the incidence of hepatocellular adenomas (HCA) in female B6C3F1 mice. The purpose of this study is to identify potential serum biomarkers for these HCAs by a new approach. MATERIAL AND METHODS Microarray analysis were performed to compare the gene expression profiles of HCAs from mice exposed to low-dose-rate γ-rays with those of normal livers from non-irradiated mice. From the differentially expressed genes, those for possibly secretory proteins were selected. Then, the levels of the proteins in sera were analysed by ELISA. RESULTS Microarray analysis identified 4181 genes differentially expressed in HCAs (>2.0-fold). From these genes, those for α-fetoprotein (Afp), α-1B-glycoprotein (A1bg) and serine peptidase inhibitor Kazal type-3 (Spink3) were selected as the genes for candidate proteins. ELISA revealed that the levels of Afp and A1bg proteins in sera significantly increased and decreased, respectively, in low-dose-rate irradiated mice with HCAs and also same tendency was observed in human patients with hepatocellular carcinomas. CONCLUSION These results indicate that A1bg could be a new serum biomarker for liver tumor. This new approach of using microarray to select genes for secretory proteins is useful for prediction of novel tumor markers in sera.
Collapse
Affiliation(s)
- Takashi Sugihara
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Satoshi Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Ignacia Braga-Tanaka
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| | - Hayato Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Masako Nakamura-Murano
- b Tohoku Environmental Sciences Services Corporation , Rokkasho Kamikita , Aomori , Japan
| | - Jun-Ichiro Komura
- a Department of Radiobiology , Institute for Environmental Sciences , Rokkasho Kamikita , Aomori , Japan
| |
Collapse
|
14
|
Wang J, Wang Q, Lu D, Zhou F, Wang D, Feng R, Wang K, Molday R, Xie J, Wen T. A biosystems approach to identify the molecular signaling mechanisms of TMEM30A during tumor migration. PLoS One 2017. [PMID: 28640862 PMCID: PMC5481017 DOI: 10.1371/journal.pone.0179900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the molecular mechanisms underlying cell migration, which plays an important role in tumor growth and progression, is critical for the development of novel tumor therapeutics. Overexpression of transmembrane protein 30A (TMEM30A) has been shown to initiate tumor cell migration, however, the molecular mechanisms through which this takes place have not yet been reported. Thus, we propose the integration of computational and experimental approaches by first predicting potential signaling networks regulated by TMEM30A using a) computational biology methods, b) our previous mass spectrometry results of the TMEM30A complex in mouse tissue, and c) a number of migration-related genes manually collected from the literature, and subsequently performing molecular biology experiments including the in vitro scratch assay and real-time quantitative polymerase chain reaction (qPCR) to validate the reliability of the predicted network. The results verify that the genes identified in the computational signaling network are indeed regulated by TMEM30A during cell migration, indicating the effectiveness of our proposed method and shedding light on the regulatory mechanisms underlying tumor migration, which facilitates the understanding of the molecular basis of tumor invasion.
Collapse
Affiliation(s)
- Jiao Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qian Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Dongfang Lu
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
| | - Fangfang Zhou
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Dong Wang
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ruili Feng
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
| | - Kai Wang
- Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institute of Biological Science, Chinese Academy of Sciences, Shanghai, China
| | - Robert Molday
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Jiang Xie
- School of Computer Engineering and Science, Shanghai University, Shanghai, China
- * E-mail: (JX); (TQW)
| | - Tieqiao Wen
- Laboratory of Molecular Neural Biology, School of Life Sciences, Shanghai University, Shanghai, China
- * E-mail: (JX); (TQW)
| |
Collapse
|
15
|
Tan B, Li Y, Wang C, Tan M, Fan L, Zhao Q, Wang D, Jia N. The clinical value of Vav3 in peripheral blood for predicting lymphatic metastasis of gastric cancer. Br J Biomed Sci 2017; 74:133-137. [PMID: 28513273 DOI: 10.1080/09674845.2017.1278889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- B. Tan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Y. Li
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - C. Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, China
| | - M. Tan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - L. Fan
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Q. Zhao
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - D. Wang
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - N. Jia
- Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
16
|
Hsu LS, Huang RH, Lai HW, Hsu HT, Sung WW, Hsieh MJ, Wu CY, Lin YM, Chen MK, Lo YS, Chen CJ. KLF6 inhibited oral cancer migration and invasion via downregulation of mesenchymal markers and inhibition of MMP-9 activities. Int J Med Sci 2017; 14:530-535. [PMID: 28638268 PMCID: PMC5479121 DOI: 10.7150/ijms.19024] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
Krüppel-like factors can bind to specific DNA motifs and regulate various cellular functions, such as metabolism, cell proliferation, and differentiation. Krüppel-like factor 6 (KLF6), a member of this family, is downregulated in human cancers. Oral cancer is a highly prevalent type in Taiwan. Although KLF6 overexpression in human cancer cells inhibits cell proliferation, induces apoptosis, and attenuates cell migration, the effects of KLF6 on oral cancer remains poorly elucidated. This study investigated the role of KLF6 in oral cancer tumorigenesis. Immunohistochemical staining revealed that nuclear KLF6 level was significantly and inversely associated with tumor size and stages. KLF6 overexpression attenuated the migration and invasion of oral cancer SAS cells. Zymography assay demonstrated that KLF6 inhibited the activities of matrix metalloproteinase 9 (MMP-9) and weakened the expression of mesenchymal markers, such as snail, slug, and vimentin. Our study is the first to provide demonstrate that KLF6 functions as a tumor suppressor gene and prevents the metastasis of oral cancer cells.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
- Clinical Laboratory, Chung Shan Medical University Hospital Taichung, Taiwan
| | - Ren-Hung Huang
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
| | - Hung-Wen Lai
- Department of Surgery, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Hui-Ting Hsu
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Wen-Wei Sung
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ming-Ju Hsieh
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chong-Yu Wu
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Mu-Kuan Chen
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Otorhinolaryngology, Head and Neck Surgery, Changhua Christian Hospital, Changhua, Taiwan
| | - Yu-Sheng Lo
- Cancer Research Center, Changhua Christian Hospital, Changhua, Taiwan
| | - Chih-Jung Chen
- Department of Surgical Pathology, Changhua Christian Hospital, Changhua, Taiwan
- School of Medicine, Chung Shan Medical University, Taichuang, Taiwan
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| |
Collapse
|
17
|
ATF3 reduces migration capacity by regulation of matrix metalloproteinases via NF κB and STAT3 inhibition in glioblastoma. Cell Death Discov 2017; 3:17006. [PMID: 28250971 PMCID: PMC5327503 DOI: 10.1038/cddiscovery.2017.6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/08/2016] [Accepted: 12/29/2016] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is associated with poor survival and a high recurrence rate in patients due to inevitable uncontrolled infiltrative tumor growth. The elucidation of the molecular mechanisms may offer opportunities to prevent relapses. In this study we investigated the role of the activating transcription factor 3 (ATF3) in migration of GBM cells in vitro. RNA microarray revealed that gene expression of ATF3 is induced by a variety of chemotherapeutics and experimental agents such as the nitric oxide donor JS-K (O2-(2,4-dinitrophenyl) 1-[(4-ethoxycarbonyl)piperazin-1-yl]diazen-1-ium-1,2-diolate). We found NFκB and STAT3 to be downstream targets inhibited by overexpression of ATF3. We demonstrate that ATF3 is directly involved in the regulation of matrix metalloproteinase expression and activation. Overexpression of ATF3 therefore leads to a significantly reduced migration capacity and induction of tissue inhibitors of matrix metalloproteinases. Our study for the first time identifies ATF3 as a potential novel therapeutic target in glioblastoma.
Collapse
|
18
|
Gao Y, Li H, Ma X, Fan Y, Ni D, Zhang Y, Huang Q, Liu K, Li X, Wang L, Gu L, Yao Y, Ai Q, Du Q, Song E, Zhang X. KLF6 Suppresses Metastasis of Clear Cell Renal Cell Carcinoma via Transcriptional Repression of E2F1. Cancer Res 2016; 77:330-342. [PMID: 27780824 DOI: 10.1158/0008-5472.can-16-0348] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 10/07/2016] [Accepted: 10/19/2016] [Indexed: 11/16/2022]
Affiliation(s)
- Yu Gao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Hongzhao Li
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Dong Ni
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Qingbo Huang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Kan Liu
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Xintao Li
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Lei Wang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Qing Ai
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Qingshan Du
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| | - Erlin Song
- Department of Urology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, PR China
| |
Collapse
|