1
|
Wu Y, Wang G, Yang R, Zhou D, Chen Q, Wu Q, Chen B, Yuan L, Qu N, Wang H, Hassan M, Zhao Y, Liu M, Shen Z, Zhou W. Activation of PERK/eIF2α/ATF4 signaling inhibits ERα expression in breast cancer. Neoplasia 2025; 65:101165. [PMID: 40252311 PMCID: PMC12023901 DOI: 10.1016/j.neo.2025.101165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/21/2025]
Abstract
Approximately 70-80% of breast cancers rely on estrogen receptor alpha (ERα) for growth. The unfolded protein response (UPR), a cellular response to endoplasmic reticulum stress (ERS), is an important process crucial for oncogenic transformation. The effect of ERS on ERα expression and signaling remains incompletely elucidated. Here, we focused on the regulatory mechanisms of ERS on ERα expression in ER-positive breast cancer (ER+ BC). Our results demonstrate that ERα protein and mRNA levels in ER+ BC cells are considerably reduced by the ERS inducers thapsigargin (TG) and brefeldin A (BFA) via the PERK/eIF2α/ATF4 signaling pathway. ChIP-qPCR and luciferase reporter gene analysis revealed that ERS induction facilitated ATF4 binding to the ESR1 (the gene encoding ERα) promoter region, thereby suppressing ESR1 promoter activity and inhibiting ERα expression. Furthermore, selective activation of PERK signaling or ATF4 overexpression attenuated ERα expression and tumor cell growth both in vitro and in vivo. In conclusion, our results demonstrate that ERS suppresses ERα expression transcriptionally via the PERK/eIF2α/ATF4 signaling. Our study provides insights into the treatment of ER+ BC by targeting ERα signaling through selective activation of the PERK branch of the UPR.
Collapse
Affiliation(s)
- Yuanli Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Gang Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ruixue Yang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Duanfang Zhou
- Department of Pharmacy, Women and Children's Hospital of Chongqing Medical University/Chongqing Health Center for Women and Children, Chongqing, 401147, PR China
| | - Qingjuan Chen
- Department of Oncology, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, PR China
| | - Qiuya Wu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Bo Chen
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Na Qu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Hongmei Wang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China; Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | - Moustapha Hassan
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14186, Sweden
| | - Ying Zhao
- Experimental Cancer Medicine, Division of Biomolecular and Cellular Medicine (BCM), Department of Laboratory Medicine, Karolinska Institutet, Huddinge, 14186, Sweden
| | - Mingpu Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China
| | - Zhengze Shen
- Department of Pharmacy, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China.
| | - Weiying Zhou
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, PR China; Chongqing Key Laboratory of Drug Metabolism, Chongqing Medical University, Chongqing, 400016, PR China; Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|
2
|
Pei S, Zhang D, Li Z, Liu J, Li Z, Chen J, Xie Z. The Role of the Fox Gene in Breast Cancer Progression. Int J Mol Sci 2025; 26:1415. [PMID: 40003882 PMCID: PMC11855465 DOI: 10.3390/ijms26041415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Forkhead box (FOX) genes are a family of transcription factors that participate in many biological activities, from early embryogenesis to the formation of organs, and from regulation of glucose metabolism to regulation of longevity. Given the extensive influence in the multicellular process, FOX family proteins are responsible for the progression of many types of cancers, especially lung cancer, breast cancer, prostate cancer, and other cancers. Breast cancer is the most common cancer among women, and 2.3 million women were diagnosed in 2020. So, various drugs targeting the FOX signaling pathway have been developed to inhibit breast cancer progression. While the role of the FOX family gene in cancer development has not received enough attention, discovering more potential drugs targeting the FOX signaling pathway is urgently demanded. Here, we review the main members in the FOX gene family and summarize their signaling pathway, including the regulation of the FOX genes and their effects on breast cancer progression. We hope this review will emphasize the understanding of the role of the FOX gene in breast cancer and inspire the discovery of effective anti-breast cancer medicines targeting the FOX gene in the future.
Collapse
Affiliation(s)
- Shaoxuan Pei
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Dechun Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhuohan Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jinkai Liu
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Ziyi Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Jianrui Chen
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
- Medical Department, Queen Mary School, Nanchang University, Nanchang 330031, China
| | - Zhenzhen Xie
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; (S.P.); (D.Z.); (Z.L.); (J.L.); (Z.L.); (J.C.)
| |
Collapse
|
3
|
Ramachandran R, Ibragimova S, Woods LM, AlHouqani T, Gomez RL, Simeoni F, Hachim MY, Somervaille TC, Philpott A, Carroll JS, Ali FR. Conserved role of FOXC1 in TNBC is parallel to FOXA1 in ER+ breast cancer. iScience 2024; 27:110500. [PMID: 39171293 PMCID: PMC11338131 DOI: 10.1016/j.isci.2024.110500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/02/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is characterized by lack of the estrogen (ER) receptor, progesterone receptor (PR), and human epidermal growth factor receptor-2 (HER2), and standard receptor-targeted therapies are ineffective. FOXC1, a transcription factor aberrantly overexpressed in many cancers, drives growth, metastasis, and stem-cell-like properties in TNBC. However, the molecular function of FOXC1 is unknown, partly due to heterogeneity of TNBC. Here, we show that although FOXC1 regulates many cancer hallmarks in TNBC, its function is varied in different cell lines, highlighted by the differential response to CDK4/6 inhibitors upon FOXC1 loss. Despite this functional heterogeneity, we show that FOXC1 regulates key oncogenes and tumor suppressors and identify a set of core FOXC1 peaks conserved across TNBC cell lines. We identify the ER-associated and drug-targetable nuclear receptor NR2F2 as a cofactor of FOXC1. Finally, we show that core FOXC1 targets in TNBC are regulated in parallel by the pioneer factor FOXA1 and the nuclear receptor NR2F2 in ER + breast cancer.
Collapse
Affiliation(s)
- Revathy Ramachandran
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Shakhzada Ibragimova
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Laura M. Woods
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
| | - Tamader AlHouqani
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Roshna Lawrence Gomez
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Fabrizio Simeoni
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Mahmood Y. Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Tim C.P. Somervaille
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Anna Philpott
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK
- Department of Oncology, University of Cambridge, Cambridge, UK
| | - Jason S. Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Fahad R. Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
4
|
Li M, Zhou S, Lv H, Cai M, Wan X, Lu H, Shui R, Yang W. FOXC1 and SOX10 in Estrogen Receptor-Low Positive/HER2-Negative Breast Cancer: Potential Biomarkers for the Basal-like Phenotype Prediction. Arch Pathol Lab Med 2024; 148:461-470. [PMID: 37406289 DOI: 10.5858/arpa.2022-0370-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 07/07/2023]
Abstract
CONTEXT.— Breast cancer with low (1%-10%) estrogen receptor (ER) expression (ER-low positive) constitutes a small portion of invasive breast cancers, and the treatment strategy for these tumors remains debatable. OBJECTIVE.— To characterize the features and outcomes of ER-low positive patients, and clarify the clinical significance of FOXC1 and SOX10 expression in ER-low positive/HER2-negative tumors. DESIGN.— Among 9082 patients diagnosed with primary invasive breast cancer, the clinicopathologic features of those with ER-low positive breast cancer were characterized. FOXC1 and SOX10 mRNA levels were analyzed in ER-low positive/HER2-negative cases from public data sets. The expression of FOXC1 and SOX10 in ER-low positive/HER2-negative tumors was evaluated by immunohistochemistry. RESULTS.— The clinicopathologic study of ER-low positive tumors indicated more aggressive characteristics compared with those tumors with ER >10%, while they had more overlapping features with ER-negative tumors irrespective of the HER2 status. The intrinsic molecular subtype of ER-low positive cases with high FOXC1 and SOX10 mRNA expression was more likely to be nonluminal. Among the ER-low positive/HER2-negative tumors, 56.67% (51 of 90) and 36.67% (33 of 90) were positive for FOXC1 and SOX10, respectively, which was significantly positively correlated with CK5/6 expression. In addition, the survival analysis demonstrated no significant difference between patients who received and who did not receive endocrine therapy. CONCLUSIONS.— ER-low positive breast cancers biologically overlap more with ER-negative tumors. ER-low positive/HER2-negative cases demonstrate a high rate of FOXC1 or SOX10 expression, and these cases might be better categorized as a basal-like phenotype/subtype. FOXC1 and SOX10 testing may be used for the intrinsic phenotype prediction for ER-low positive/HER2-negative patients.
Collapse
Affiliation(s)
- Ming Li
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| | - Shuling Zhou
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| | - Hong Lv
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| | - Mengyuan Cai
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| | - Xiaochun Wan
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| | - Hongfen Lu
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| | - Ruohong Shui
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| | - Wentao Yang
- From the Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
- the Institute of Pathology, Fudan University, Shanghai, China (Li, Zhou, Lv, Cai, Wan, Lu, Shui, Yang)
| |
Collapse
|
5
|
Zhang F, Xu Y, Lin J, Pan H, Giuliano AE, Cui X, Cui Y. Reciprocal regulation of forkhead box C1 and L1 cell adhesion molecule contributes to triple-negative breast cancer progression. Breast Cancer Res Treat 2024; 204:465-474. [PMID: 38183514 PMCID: PMC10959774 DOI: 10.1007/s10549-023-07177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/04/2023] [Indexed: 01/08/2024]
Abstract
PURPOSE The potential of targeting forkhead box C1 (FOXC1) as a therapeutic approach for triple-negative breast cancer (TNBC) is promising. However, a comprehensive understanding of FOXC1 regulation, particularly upstream factors, remains elusive. Expression of the L1 cell adhesion molecule (L1CAM), a transmembrane glycoprotein associated with brain metastasis, was observed to be positively associated with FOXC1 transcripts. Thus, this study aims to investigate their relationship in TNBC progression. METHODS Publicly available FOXC1 and L1CAM transcriptomic data were obtained, and their corresponding proteins were analyzed in four TNBC cell lines. In BT549 cells, FOXC1 and L1CAM were individually silenced, while L1CAM was overexpressed in BT549-shFOXC1, MDA-MB-231, and HCC1937 cells. CCK-8, transwell, and wound healing assays were performed in these cell lines, and immunohistochemical staining was conducted in tumor samples. RESULTS A positive correlation between L1CAM and FOXC1 transcripts was observed in publicly available datasets. In BT549 cells, knockdown of FOXC1 led to reduced L1CAM expression at both the transcriptional and protein levels, and conversely, silencing of L1CAM decreased FOXC1 protein levels, but interestingly, FOXC1 transcripts remained largely unaffected. Overexpressing L1CAM resulted in increased FOXC1 protein expression without significant changes in FOXC1 mRNA levels. This trend was also observed in BT549-shFOXC1, MDA-MB-231-L1CAM, and HCC1937-L1CAM cells. Notably, alterations in FOXC1 or L1CAM levels corresponded to changes in cell proliferation, migration, and invasion capacities. Furthermore, a positive correlation between L1CAM and FOXC1 protein expression was detected in human TNBC tumors. CONCLUSION FOXC1 and L1CAM exhibit co-regulation at the protein level, with FOXC1 regulating at the transcriptional level and L1CAM regulating at the post-transcriptional level, and together they positively influence cell proliferation, migration, and invasion in TNBC.
Collapse
Affiliation(s)
- Fan Zhang
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Yue Xu
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jiediao Lin
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hongchao Pan
- Oncology Research Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Armando E Giuliano
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Xiaojiang Cui
- Department of Surgery, Cedars-Sinai Medical Center, Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
| | - Yukun Cui
- Guangdong Provincial Key Laboratory for Breast Cancer Diagnosis and Treatment, Cancer Hospital of Shantou University Medical College, Shantou, Guangdong, China.
| |
Collapse
|
6
|
Yang Y, Li W, Yang H, Zhang Y, Zhang S, Xu F, Hao Y, Cao W, Du G, Wang J. Research progress on the regulatory mechanisms of FOXC1 expression in cancers and its role in drug resistance. Gene 2024; 897:148079. [PMID: 38101711 DOI: 10.1016/j.gene.2023.148079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is an important member of the FOX family. After initially being identified in triple-negative breast cancer (TNBC) with significant oncogenic function, FOXC1 was subsequently demonstrated to be involved in the development of more than 16 types of cancers. In recent years, increasing studies have focused on the deregulatory mechanisms of FOXC1 expression and revealed that FOXC1 expression was regulated at multiple levels including transcriptional regulation, post-transcription regulation and post-translational modification. Moreover, dysregulation of FOXC1 is also implicated in drug resistance in various types of cancer, especially in breast cancer, which further emphasizes the translational and clinical significance of FOXC1 as a therapeutic target in cancer treatment. This review summarizes recent findings on mechanisms of FOXC1 dysregulation in cancers and its role in chemoresistance, which will help to better understand the oncogenic role of FOXC1, overcome FOXC1-mediated drug resistance and develop targeted therapy for FOXC1 in cancers.
Collapse
Affiliation(s)
- Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Yue Hao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing 100050, China; Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
7
|
Tian J, Jin L, Liu H, Hua Z. Stilbenes: a promising small molecule modulator for epigenetic regulation in human diseases. Front Pharmacol 2023; 14:1326682. [PMID: 38155902 PMCID: PMC10754530 DOI: 10.3389/fphar.2023.1326682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/24/2023] [Indexed: 12/30/2023] Open
Abstract
Stilbenes are characterized by a vinyl group connecting two benzene rings to form the basic parent nucleus. Hydrogen atoms on different positions of the benzene rings can be substituted with hydroQxyl groups. These unique structural features confer anti-inflammatory, antibacterial, antiviral, antioxidant, anticancer, cardiovascular protective, and neuroprotective pharmacological effects upon these compounds. Numerous small molecule compounds have demonstrated these pharmacological activities in recent years, including Resveratrol, and Pterostilbene, etc. Tamoxifen and Raloxifene are FDA-approved commonly prescribed synthetic stilbene derivatives. The emphasis is on the potential of these small molecules and their structural derivatives as epigenetic regulators in various diseases. Stilbenes have been shown to modulate epigenetic marks, such as DNA methylation and histone modification, which can alter gene expression patterns and contribute to disease development. This review will discuss the mechanisms by which stilbenes regulate epigenetic marks in various diseases, as well as clinical trials, with a focus on the potential of small molecule and their derivatives such as Resveratrol, Pterostilbene, and Tamoxifen.
Collapse
Affiliation(s)
- Jing Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Li Jin
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Hongquan Liu
- Jiangsu Province Hospital on Integration of Chinese and Western Medicine, Nanjing, China
| | - Zichun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, China
- Nanjing Generecom Biotechnology Co., Ltd., Nanjing, China
| |
Collapse
|
8
|
Ensenyat-Mendez M, Solivellas-Pieras M, Llinàs-Arias P, Íñiguez-Muñoz S, Baker JL, Marzese DM, DiNome ML. Epigenetic Profiles of Triple-Negative Breast Cancers of African American and White Females. JAMA Netw Open 2023; 6:e2335821. [PMID: 37796506 PMCID: PMC10556970 DOI: 10.1001/jamanetworkopen.2023.35821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
Importance Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype and appears to have disproportionately higher incidence and worse outcomes among younger African American females. Objective To investigate whether epigenetic differences exist in TNBCs of younger African American females that may explain clinical disparities seen in this patient group. Design, Setting, and Participants This cross-sectional study used clinical, demographic, DNA methylation (HumanMethylation450; Illumina), and gene expression (RNA sequencing) data for US patient populations from publicly available data repositories (The Cancer Genome Atlas [TCGA], 2006-2012, and Gene Expression Omnibus [GEO], 2004-2013) accessed on April 13, 2021. White and African American females with TNBC identified in TCGA (69 patients) and a validation cohort of 210 African American patients from GEO (GSE142102) were included. Patients without available race or age data were excluded. Data were analyzed from September 2022 through April 2023. Main Outcomes and Measures DNA methylation and gene expression profiles of TNBC tumors by race (self-reported) and age were assessed. Age was considered a dichotomous variable using age 50 years as the cutoff (younger [<50 years] vs older [≥50 years]). Results A total of 69 female patients (34 African American [49.3%] and 35 White [50.7%]; mean [SD; range] age, 55.7 [11.6; 29-82] years) with TNBC were included in the DNA methylation analysis; these patients and 210 patients in the validation cohort were included in the gene expression analysis (279 patients). There were 1115 differentially methylated sites among younger African American females. The DNA methylation landscape on TNBC tumors in this population had increased odds of enrichment of hormone (odds ratio [OR], 1.82; 95% CI, 1.21 to 2.67; P = .003), muscle (OR, 1.85; 95% CI, 1.44 to 2.36; P < .001), and proliferation (OR, 3.14; 95% CI, 2.71 to 3.64; P < .001) pathways vs other groups (older African American females and all White females). Alterations in regulators of these molecular features in TNBCs of younger African American females were identified involving hormone modulation (downregulation of androgen receptor: fold change [FC] = -2.93; 95% CI, -4.76 to -2.11; P < .001) and upregulation of estrogen-related receptor α (FC = 0.86; 95% CI, 0.34 to 1.38; P = .002), muscle metabolism (upregulation of FOXC1: FC = 1.33; 95% CI, 0.62 to 2.03; P < .001), and proliferation mediators (upregulation of NOTCH1: FC = 0.71; 95% CI, 0.23 to 1.19; P = .004 and MYC (FC = 0.81; 95% CI, 0.18 to 1.45; P = .01). Conclusions and Relevance These findings suggest that TNBC of younger African American females may represent a distinct epigenetic entity and offer novel insight into molecular alterations associated with TNBCs of this population. Understanding these epigenetic differences may lead to the development of more effective therapies for younger African American females, who have the highest incidence and worst outcomes from TNBC of any patient group.
Collapse
Affiliation(s)
- Miquel Ensenyat-Mendez
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Maria Solivellas-Pieras
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Pere Llinàs-Arias
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Sandra Íñiguez-Muñoz
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
| | - Jennifer L. Baker
- Department of Surgery, David Geffen School of Medicine, University California, Los Angeles
| | - Diego M. Marzese
- Cancer Epigenetics Laboratory at the Cancer Cell Biology Group, Health Research Institute of the Balearic Islands, Palma, Spain
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| | - Maggie L. DiNome
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
9
|
Sadaf, Hazazi A, Alkhalil SS, Alsaiari AA, Gharib AF, Alhuthali HM, Rana S, Aloliqi AA, Eisa AA, Hasan MR, Dev K. Role of Fork-Head Box Genes in Breast Cancer: From Drug Resistance to Therapeutic Targets. Biomedicines 2023; 11:2159. [PMID: 37626655 PMCID: PMC10452497 DOI: 10.3390/biomedicines11082159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Breast cancer has been acknowledged as one of the most notorious cancers, responsible for millions of deaths around the globe. Understanding the various factors, genetic mutations, comprehensive pathways, etc., that are involved in the development of breast cancer and how these affect the development of the disease is very important for improving and revitalizing the treatment of this global health issue. The forkhead-box gene family, comprising 19 subfamilies, is known to have a significant impact on the growth and progression of this cancer. The article looks into the various forkhead genes and how they play a role in different types of cancer. It also covers their impact on cancer drug resistance, interaction with microRNAs, explores their potential as targets for drug therapies, and their association with stem cells.
Collapse
Affiliation(s)
- Sadaf
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh 11481, Saudi Arabia;
| | - Samia S. Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Amal F. Gharib
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Hayaa M. Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia; (A.A.A.); (A.F.G.); (H.M.A.)
| | - Shanika Rana
- School of Biosciences, Apeejay Stya University, Gurugram 122003, India;
| | - Abdulaziz A. Aloliqi
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Alaa Abdulaziz Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 30002, Saudi Arabia;
| | - Mohammad Raghibul Hasan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Alquwayiyah 11961, Saudi Arabia;
| | - Kapil Dev
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
10
|
Wang B, Zhou M, Shi YY, Chen XL, Ren YX, Yang YZ, Tang LY, Ren ZF. Survival is associated with repressive histone trimethylation markers in both HR-positive HER2-negative and triple-negative breast cancer patients. Virchows Arch 2023:10.1007/s00428-023-03534-5. [PMID: 37059917 DOI: 10.1007/s00428-023-03534-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/28/2023] [Accepted: 03/23/2023] [Indexed: 04/16/2023]
Abstract
About 30% of patients with hormone receptor (HR)-positive breast cancers and up to 50% of human epidermal growth factor receptor 2 (HER2)-positive patients develop progression due to treatment resistance, highlighting the need for more differentiated tumor classifications within the breast cancer molecular subtype to optimize the therapies. We aim to examine the roles of histone modification markers. The levels of common repressive histone markers, histone H3 lysine 9 trimethylation (H3K9me3), histone H3 lysine 27 trimethylation (H3K27me3), and histone H4 lysine 20 trimethylation (H4K20me3), in tumors were evaluated by immunohistochemistry for 914 breast cancer patients. The subjects were followed up until December 2021. Hazard ratios (HRs) for overall survival (OS) and progression-free survival (PFS) were estimated using Cox regression models. For H3K27me3, patients with the high level had a longer PFS rate (81.3%) than that with the low level (73.9%) within HR-positive/HER2-negative subtype during a follow-up of 85 months only in univariate analysis (P < 0.05). For H3K9me3, the significant association between the high level of it and the longer OS [HR = 0.57, P < 0.05] was found within HR-positive/HER2-negative subtype in multivariate analysis. For H4K20me3, patients with the high level had a longer both OS [HR = 0.38] and PFS [HR = 0.46] within HR-positive/HER2-negative subtype, while had a shorter OS [HR = 3.28] in triple-negative breast cancer (TNBC) in multivariate analysis (all P < 0.05). H3K9me3 and H3K27me3 were the potential prognostic markers for breast cancer patients with HR-positive/HER2-negative subtype. Importantly, H4K20me3 was a robust prognostic marker for both HR-positive/HER2-negative and TNBC patients.
Collapse
Affiliation(s)
- Bo Wang
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meng Zhou
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yue-Yu Shi
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xing-Lei Chen
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yue-Xiang Ren
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuan-Zhong Yang
- The Sun Yat-Sen University Cancer Center, Guangzhou, 510080, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| | - Ze-Fang Ren
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
12
|
Abstract
CONTEXT.— Few studies have investigated the features of FOXC1 protein expression in invasive breast cancer subtypes as defined by immunohistochemistry (IHC)-based surrogate molecular classification. OBJECTIVE.— To investigate the diagnostic utility of the IHC-based FOXC1 test in breast cancer subtyping and to evaluate the correlation between FOXC1 expression and clinicopathologic parameters in triple-negative breast cancer (TNBC). DESIGN.— FOXC1 expression was evaluated with IHC in a large cohort of 2443 patients with breast cancer. Receiver operating characteristic (ROC) curves were used to assess the diagnostic ability of FOXC1 expression to predict the triple-negative phenotype and to identify the best cutoff value. FOXC1 expression was correlated with the clinicopathologic parameters of TNBC. RESULTS.— The expression rate of FOXC1 in TNBC was significantly higher than in other subtypes. The area under the ROC curve confirmed the high diagnostic value of FOXC1 for the prediction of the triple-negative phenotype. The cutoff value of 1% showed a maximized sum of sensitivity and specificity. In TNBC, FOXC1 expression was significantly associated with aggressive tumor phenotypes. Furthermore, FOXC1 expression was primarily observed in invasive breast carcinoma of no special type and metaplastic carcinoma but rarely in invasive carcinoma with apocrine differentiation. Correspondingly, FOXC1 expression was significantly associated with the expression of basal markers but was negatively correlated with apocrine-related markers in TNBC. CONCLUSIONS.— In conclusion, FOXC1 is a highly specific marker for the triple-negative phenotype. Moreover, immunohistochemical detection of FOXC1 expression can be used as an additional diagnostic tool for the triple-negative phenotype and subclassification in TNBC.
Collapse
Affiliation(s)
- Ming Li
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Li and Lv contributed equally to this work
| | - Hong Lv
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China.,Li and Lv contributed equally to this work
| | - Siyuan Zhong
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Shuling Zhou
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Hongfen Lu
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| | - Wentao Yang
- From the Department of Pathology, Fudan University Shanghai Cancer Center.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Institute of Pathology, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Porras L, Ismail H, Mader S. Positive Regulation of Estrogen Receptor Alpha in Breast Tumorigenesis. Cells 2021; 10:cells10112966. [PMID: 34831189 PMCID: PMC8616513 DOI: 10.3390/cells10112966] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogen receptor alpha (ERα, NR3A1) contributes through its expression in different tissues to a spectrum of physiological processes, including reproductive system development and physiology, bone mass maintenance, as well as cardiovascular and central nervous system functions. It is also one of the main drivers of tumorigenesis in breast and uterine cancer and can be targeted by several types of hormonal therapies. ERα is expressed in a subset of luminal cells corresponding to less than 10% of normal mammary epithelial cells and in over 70% of breast tumors (ER+ tumors), but the basis for its selective expression in normal or cancer tissues remains incompletely understood. The mapping of alternative promoters and regulatory elements has delineated the complex genomic structure of the ESR1 gene and shed light on the mechanistic basis for the tissue-specific regulation of ESR1 expression. However, much remains to be uncovered to better understand how ESR1 expression is regulated in breast cancer. This review recapitulates the current body of knowledge on the structure of the ESR1 gene and the complex mechanisms controlling its expression in breast tumors. In particular, we discuss the impact of genetic alterations, chromatin modifications, and enhanced expression of other luminal transcription regulators on ESR1 expression in tumor cells.
Collapse
|
14
|
Ray T, Ryusaki T, Ray PS. Therapeutically Targeting Cancers That Overexpress FOXC1: A Transcriptional Driver of Cell Plasticity, Partial EMT, and Cancer Metastasis. Front Oncol 2021; 11:721959. [PMID: 34540690 PMCID: PMC8446626 DOI: 10.3389/fonc.2021.721959] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 12/28/2022] Open
Abstract
Metastasis accounts for more than 90% of cancer related mortality, thus the most pressing need in the field of oncology today is the ability to accurately predict future onset of metastatic disease, ideally at the time of initial diagnosis. As opposed to current practice, what would be desirable is that prognostic, biomarker-based detection of metastatic propensity and heightened risk of cancer recurrence be performed long before overt metastasis has set in. Without such timely information it will be impossible to formulate a rational therapeutic treatment plan to favorably alter the trajectory of disease progression. In order to help inform rational selection of targeted therapeutics, any recurrence/metastasis risk prediction strategy must occur with the paired identification of novel prognostic biomarkers and their underlying molecular regulatory mechanisms that help drive cancer recurrence/metastasis (i.e. recurrence biomarkers). Traditional clinical factors alone (such as TNM staging criteria) are no longer adequately prognostic for this purpose in the current molecular era. FOXC1 is a pivotal transcription factor that has been functionally implicated to drive cancer metastasis and has been demonstrated to be an independent predictor of heightened metastatic risk, at the time of initial diagnosis. In this review, we present our viewpoints on the master regulatory role that FOXC1 plays in mediating cancer stem cell traits that include cellular plasticity, partial EMT, treatment resistance, cancer invasion and cancer migration during cancer progression and metastasis. We also highlight potential therapeutic strategies to target cancers that are, or have evolved to become, “transcriptionally addicted” to FOXC1. The potential role of FOXC1 expression status in predicting the efficacy of these identified therapeutic approaches merits evaluation in clinical trials.
Collapse
Affiliation(s)
- Tania Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| | | | - Partha S Ray
- R&D Division, Onconostic Technologies (OT), Inc., Champaign, IL, United States
| |
Collapse
|
15
|
Biradar VS, Rajpathak SN, Joshi SR, Deobagkar DD. Functional and regulatory aspects of oxidative stress response in X monosomy. In Vitro Cell Dev Biol Anim 2021; 57:661-675. [PMID: 34505228 DOI: 10.1007/s11626-021-00604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
The partial/complete loss of one X chromosome in a human female leads to Turner syndrome (TS). TS individuals display a range of phenotypes including short stature, osteoporosis, ovarian malfunction, diabetes, and thyroid dysfunction. Epigenetic factors and regulatory networks are distinctly different in X monosomy (45, X). In a lifetime, an individual is exposed to a variety of stress conditions. To study whether X monosomy cells display a differential response upon exposure to mild stress as compared to normal 46, XX cells and whether this may contribute to various co-morbidities in aneuploid individuals, we have carried out a transcriptomic analysis of human fibroblasts 45, X and 46, XX after exposure to mild oxidative stress. Under these conditions, over 350 transcripts were seen to be differentially expressed in 45, X and 46, XX cells. Pathways associated with oxidative stress were differentially expressed highlighting the differential regulation of genes and associated phenotypes. It could be seen that X monosomy cells are more susceptible to oxidative stress as compared to normal cells and have altered molecular pathways both in normal conditions and also upon exposure to mild oxidative stress. To explore this aspect in detail, we have mapped the expressions of transcription factors (TFs) in 45, X and 46, XX cells. The network of transcription activating factors is differentially regulated in 45, X and 46, XX cells under stress exposure. It is tempting to speculate that the altered ability of 45, X (Turner) cells to respond to stress may play a significant role in the physiological function and altered phenotypes in Turner syndrome.
Collapse
Affiliation(s)
- Vinayak S Biradar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Shriram N Rajpathak
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
- Recombinant Department, Serum Institute of India Pvt. Ltd., Pune, 411 028, India
| | - Suraj R Joshi
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, Savitribai Phule Pune University, Pune, India.
- School of Physical Sciences, ISRO Space Technology Cell, Savitribai Phule Pune University, Pune, 411 007, India.
| |
Collapse
|
16
|
Dimitrakopoulos FI, Kottorou A, Tzezou A. Endocrine resistance and epigenetic reprogramming in estrogen receptor positive breast cancer. Cancer Lett 2021; 517:55-65. [PMID: 34077785 DOI: 10.1016/j.canlet.2021.05.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
Despite the enormous advances during the last three decades, breast cancer continues to be the most frequent type of cancer as well as one of the most frequent cancer-related causes of death in women. Therapeutic management of patients with hormone receptor-positive breast cancer becomes very often a challenge, since de novo or acquired resistance deprives a significant percentage of the patients from the clinical benefit of the well-tolerated hormone therapy. Several molecular mechanisms are implicated in resistance to endocrine therapy, including changes in hormone receptor signaling, activation of parallel signaling pathways, modifications of cell cycle regulators, activation of different transcription factors as well as changes in stem cells activity. In addition, a growing number of studies supports the pivotal role of epigenetic changes not only in the initiation and progression of breast cancer, but also in resistance to endocrine therapy. These changes refer to DNA methylation, histone post-translational modifications as well as to ncRNAs alterations. In this review, we provide an overview of epigenetic mechanisms underlying the endocrine resistance focusing exclusively on breast cancer patients.
Collapse
Affiliation(s)
- Foteinos-Ioannis Dimitrakopoulos
- Molecular Oncology Laboratory, Medical School of Patras, University of Patras, 26500, Patras, Greece; Division of Oncology, University Hospital of Patras, 26500, Patras, Greece
| | - Anastasia Kottorou
- Molecular Oncology Laboratory, Medical School of Patras, University of Patras, 26500, Patras, Greece; Division of Oncology, University Hospital of Patras, 26500, Patras, Greece
| | - Aspasia Tzezou
- Laboratory of Biology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece; Laboratory of Cytogenetics and Molecular Genetics, Faculty of Medicine, School of Health Sciences, University of Thessaly, Biopolis, 41500, Larissa, Greece.
| |
Collapse
|
17
|
Huang W, Zhang J, Huo M, Gao J, Yang T, Yin X, Wang P, Leng S, Feng D, Chen Y, Yang Y, Wang Y. CUL4B Promotes Breast Carcinogenesis by Coordinating with Transcriptional Repressor Complexes in Response to Hypoxia Signaling Pathway. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2001515. [PMID: 34026424 PMCID: PMC8132058 DOI: 10.1002/advs.202001515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 01/22/2021] [Indexed: 05/09/2023]
Abstract
Cullin4B (CUL4B) is a scaffold protein of the CUL4B-Ring E3 ligase (CRL4B) complex. However, the role of CUL4B in the development of breast cancer remains poorly understood. Here it is shown that CRL4B interacts with multiple histone deacetylase (HDAC)-containing corepressor complexes, including MTA1/NuRD, SIN3A, CoREST, and NcoR/SMRT complexes. It is demonstrated that CRL4B/NuRD(MTA1) complexes cooccupy the E-cadherin and AXIN2 promoters, and could be recruited by transcription factors including Snail and ZEB2 to promote cell invasion and tumorigenesis both in vitro and in vivo. Remarkably, CUL4B responded to transformation and migration/invasion stimuli and is essential for multiple epithelial-mesenchymal transition (EMT) signaling pathways such as hypoxia. Furthermore, the transcription of CUL4B is directedly activated by hypoxia-inducible factor 1α (HIF1α) and repressed by the ERα-GATA3 axis. Overexpressing of CUL4B successfully induced CSC-like properties. Strikingly, CUL4B expression is markedly upregulated during breast cancer progression and correlated with poor prognosis. The results suggest that CUL4B lies at a critical crossroads between EMT and stem cell properties, supporting CUL4B as a potential novel target for the development of anti-breast cancer therapy.
Collapse
Affiliation(s)
- Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jingyao Zhang
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Miaomiao Huo
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jie Gao
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Tianshu Yang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Xin Yin
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Pei Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
| | - Shuai Leng
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Dandan Feng
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Yang Chen
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Yang Yang
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Yan Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis ResearchAdvanced Innovation Center for Human Brain ProtectionDepartment of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCapital Medical UniversityBeijing100069China
- State Key Laboratory of Molecular OncologyNational Cancer CenterNational Clinical Research Center for CancerCancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Collaborative Innovation Center of Tianjin for Medical EpigeneticsTianjin Key Laboratory of Medical EpigeneticsKey Laboratory of Immune Microenvironment and Disease (Ministry of Education)Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| |
Collapse
|
18
|
Jehanno C, Fernandez-Calero T, Habauzit D, Avner S, Percevault F, Jullion E, Le Goff P, Coissieux MM, Muenst S, Marin M, Michel D, Métivier R, Flouriot G. Nuclear accumulation of MKL1 in luminal breast cancer cells impairs genomic activity of ERα and is associated with endocrine resistance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194507. [PMID: 32113984 DOI: 10.1016/j.bbagrm.2020.194507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/31/2020] [Accepted: 02/13/2020] [Indexed: 12/30/2022]
Abstract
Estrogen receptor (ERα) is central in driving the development of hormone-dependent breast cancers. A major challenge in treating these cancers is to understand and overcome endocrine resistance. The Megakaryoblastic Leukemia 1 (MKL1, MRTFA) protein is a master regulator of actin dynamic and cellular motile functions, whose nuclear translocation favors epithelial-mesenchymal transition. We previously demonstrated that nuclear accumulation of MKL1 in estrogen-responsive breast cancer cell lines promotes hormonal escape. In the present study, we confirm through tissue microarray analysis that nuclear immunostaining of MKL1 is associated with endocrine resistance in a cohort of breast cancers and we decipher the underlining mechanisms using cell line models. We show through gene expression microarray analysis that the nuclear accumulation of MKL1 induces dedifferentiation leading to a mixed luminal/basal phenotype and suppresses estrogen-mediated control of gene expression. Chromatin immunoprecipitation of DNA coupled to high-throughput sequencing (ChIP-Seq) shows a profound reprogramming in ERα cistrome associated with a massive loss of ERα binding sites (ERBSs) generally associated with lower ERα-binding levels. Novel ERBSs appear to be associated with EGF and RAS signaling pathways. Collectively, these results highlight a major role of MKL1 in the loss of ERα transcriptional activity observed in certain cases of endocrine resistances, thereby contributing to breast tumor cells malignancy.
Collapse
Affiliation(s)
- Charly Jehanno
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France; University Hospital Basel, University of Basel, Basel, Switzerland
| | - Tamara Fernandez-Calero
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay; Bioinformatics Unit, Institut Pasteur Montevideo, Mataojo 2020, 11400 Montevideo, Uruguay; Departamento de Ciencias Exactas y Naturales, Universidad Católica del Uruguay, Montevideo, Uruguay
| | - Denis Habauzit
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Stephane Avner
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Frederic Percevault
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Emmanuelle Jullion
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Pascale Le Goff
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | | | - Simone Muenst
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Monica Marin
- Biochemistry-Molecular Biology, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400 Montevideo, Uruguay
| | - Denis Michel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France
| | - Raphaël Métivier
- Univ Rennes, Institut de Génétique et Développement de Rennes, UMR 6290 CNRS, Rennes, France
| | - Gilles Flouriot
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35000 Rennes, France.
| |
Collapse
|
19
|
Zhang Y, Liao Y, Chen C, Sun W, Sun X, Liu Y, Xu E, Lai M, Zhang H. p38-regulated FOXC1 stability is required for colorectal cancer metastasis. J Pathol 2019; 250:217-230. [PMID: 31650548 DOI: 10.1002/path.5362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
Aberrant expression of forkhead box C1 (FOXC1) promotes tumor metastasis in multiple human malignant tumors. However, the upstream modulating mode and downstream molecular mechanism of FOXC1 in metastasis of colorectal cancer (CRC) remain unclear. Herein we describe a systematic analysis of FOXC1 expression and prognosis in CRC performed on our clinical data and public databases, which indicated that FOXC1 upregulation in CRC samples was significantly associated with poor prognosis. FOXC1 knockdown inhibited migration and invasion, whereas FOXC1 overexpression caused the opposite phenotype in vitro and in vivo. Furthermore, MMP10, SOX4 and SOX13 were verified as the target genes of FOXC1 for promoting CRC metastasis. MMP10 was demonstrated as the direct target and mediator of FOXC1. Interestingly, Ser241 and Ser272 of FOXC1 were identified as the key sites to interact with p38 and phosphorylation, which were critically required for maintaining the stability of FOXC1 protein. Moreover, FOXC1 was dephosphorylated by protein phosphatase 2A and phosphorylated by p38, which maintained FOXC1 protein stability through inhibiting ubiquitination. Expression of p38 was correlated with FOXC1 and MMP10 expression, indirectly indicating that FOXC1 was regulated by p38 MAPK. Therefore, FOXC1 is strongly suggested as a pro-metastatic gene in CRC by transcriptionally activating MMP10, SOX4 and SOX13; p38 interacts with and phosphorylates the Ser241 and ser272 sites of FOXC1 to maintain its stability by inhibiting ubiquitination and degradation. In conclusion, the protein stability of FOXC1 mediated by p38 contributes to the metastatic effect in CRC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Yan Liao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Chaoyi Chen
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Wenjie Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Zhejiang, PR China
| | - Yuan Liu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| |
Collapse
|
20
|
Gong R, Lin W, Gao A, Liu Y, Li J, Sun M, Chen X, Han S, Men C, Sun Y, Liu J. Forkhead box C1 promotes metastasis and invasion of non-small cell lung cancer by binding directly to the lysyl oxidase promoter. Cancer Sci 2019; 110:3663-3676. [PMID: 31597217 PMCID: PMC6890438 DOI: 10.1111/cas.14213] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence indicates that human forkhead box C1 (FOXC1) plays important roles in tumor development and metastasis. However, the underlying molecular mechanism of FOXC1 in non–small cell lung cancer (NSCLC) metastasis remains unclear. Here, we identified FOXC1 as an independent prognostic factor in NSCLC and showed clear biological implications in invasion and metastasis. FOXC1 overexpression enhanced the proliferation, migration and invasion of NSCLC cells, whereas FOXC1 silencing impaired the effects both in vitro and in vivo. Importantly, we found a positive correlation between FOXC1 expression and lysyl oxidase (LOX) expression in NSCLC cells and patient samples. Downregulation of LOX or LOX activity inhibition in NSCLC cells inhibited the FOXC1‐driven effects on cellular migration and invasion. Xenograft models showed that inhibition of LOX activity by β‐aminopropionitrile monofumarate decreased the number of lung metastases. Mechanistically, we demonstrated a novel FOXC1‐LOX mechanism that was involved in the invasion and metastasis of NSCLC. Dual‐luciferase assay and ChIP identified that FOXC1 bound directly in the LOX promoter region and activated its transcription. Collectively, the present study offered new insight into FOXC1 in the mediation of NSCLC metastasis through interaction with the LOX promoter and further revealed that targeted inhibition of LOX protein activity could prevent lung metastasis in murine xenograft models. These data implicated FOXC1 as a potential therapeutic strategy for the treatment of NSCLC metastasis.
Collapse
Affiliation(s)
- Rumei Gong
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Wenli Lin
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Aiqin Gao
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yanli Liu
- Provincial Key Laboratory of Radio-Oncology, Shandong Cancer Hospital and Institute, Jinan, China
| | - Juan Li
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaozheng Chen
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Shuyi Han
- Genetic and Molecular Diagnostic Center, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Chengsong Men
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Yuping Sun
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| | - Jie Liu
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
21
|
Hata T, Rajabi H, Takahashi H, Yasumizu Y, Li W, Jin C, Long MD, Hu Q, Liu S, Fushimi A, Yamashita N, Kui L, Hong D, Yamamoto M, Miyo M, Hiraki M, Maeda T, Suzuki Y, Samur MK, Kufe D. MUC1-C Activates the NuRD Complex to Drive Dedifferentiation of Triple-Negative Breast Cancer Cells. Cancer Res 2019; 79:5711-5722. [PMID: 31519689 DOI: 10.1158/0008-5472.can-19-1034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/25/2019] [Accepted: 09/09/2019] [Indexed: 01/04/2023]
Abstract
The NuRD chromatin remodeling and deacetylation complex, which includes MTA1, MBD3, CHD4, and HDAC1 among other components, is of importance for development and cancer progression. The oncogenic mucin 1 (MUC1) C-terminal subunit (MUC1-C) protein activates EZH2 and BMI1 in the epigenetic reprogramming of triple-negative breast cancer (TNBC). However, there is no known link between MUC1-C and chromatin remodeling complexes. Here, we showed that MUC1-C binds directly to the MYC HLH-LZ domain and identified a previously unrecognized MUC1-C→MYC pathway that regulates the NuRD complex. MUC1-C/MYC complexes selectively activated the MTA1 and MBD3 genes and posttranscriptionally induced CHD4 expression in basal- but not luminal-type BC cells. In turn, MUC1-C formed complexes with these NuRD components on the ESR1 promoter. Downregulating MUC1-C decreased MTA1/MBD3/CHD4/HDAC1 occupancy and increased H3K27 acetylation on the ESR1 promoter, with induction of ESR1 expression and downstream estrogen response pathways. Targeting MUC1-C and these NuRD components also induced expression of FOXA1, GATA3, and other markers associated with the luminal phenotype. These findings support a model in which MUC1-C activates the NuRD complex to drive dedifferentiation and reprogramming of TNBC cells. SIGNIFICANCE: MUC1-C directly interacts with MYC to activate the NuRD complex, mediating regulation of the estrogen receptor in triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Tsuyoshi Hata
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hidekazu Takahashi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yota Yasumizu
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Caining Jin
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ling Kui
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Deli Hong
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masaaki Yamamoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masaaki Miyo
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Hiraki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Takahiro Maeda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yozo Suzuki
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mehmet K Samur
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
22
|
Darbeheshti F, Rezaei N, Amoli MM, Mansoori Y, Tavakkoly Bazzaz J. Integrative analyses of triple negative dysregulated transcripts compared with non-triple negative tumors and their functional and molecular interactions. J Cell Physiol 2019; 234:22386-22399. [PMID: 31081218 DOI: 10.1002/jcp.28804] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Triple-negative (TN) tumors are a subtype of breast cancer with aggressive behaviors and limited targeted therapies. Microarray studies were not concerned with interactions and functional relations of dysregulated transcripts. Here, we aimed to conduct integrative strategy to analyze gene and miRNA available microarray data as well as bioinformatic analyses to catch a more inclusive picture of pivotal dysregulated transcripts and their interactions in TN tumors. Several online datasets and offline bioinformatic tools were used to detect differentially expressed (DE) transcripts, both protein and nonprotein coding, in TN compared with non-TN tumors and their functional and molecular interactions. Sixteen upregulated and 58 downregulated genes with a log fold change higher or equal to | 2 | were identified, including nine transcription factors. Coexpression network revealed EN1 as a hub gene, moreover Kaplan-Meier plotter survival analysis indicated that it was an appropriate prognostic marker for TN patients with breast cancer. Functional annotation analysis of protein-protein interaction network showed FOXM1 as an upexpressed and ESR1 as a downexpressed hub genes are suitable targets as far as antitumor protein therapy is concerned in TN breast cancers. The consensus analysis of two microRNA datasets revealed seven DE miRNAs. The gene-transcriptional factor (TF)-miRNA network revealed mir-135b and mir-29b are the hub nodes and involved in feedback loops with GATA3. This study suggests that dysregulated TFs and miRNAs have pivotal roles in regulation of TN oncotranscriptomic profile and might become both biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Breast Cancer Association (BrCA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa M Amoli
- Metabolic Disorders Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
23
|
Gilding LN, Somervaille TCP. The Diverse Consequences of FOXC1 Deregulation in Cancer. Cancers (Basel) 2019; 11:E184. [PMID: 30764547 PMCID: PMC6406774 DOI: 10.3390/cancers11020184] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box C1 (FOXC1) is a transcription factor with essential roles in mesenchymal lineage specification and organ development during normal embryogenesis. In keeping with these developmental properties, mutations that impair the activity of FOXC1 result in the heritable Axenfeld-Rieger Syndrome and other congenital disorders. Crucially, gain of FOXC1 function is emerging as a recurrent feature of malignancy; FOXC1 overexpression is now documented in more than 16 cancer types, often in association with an unfavorable prognosis. This review explores current evidence for FOXC1 deregulation in cancer and the putative mechanisms by which FOXC1 confers its oncogenic effects.
Collapse
Affiliation(s)
- L Niall Gilding
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| |
Collapse
|
24
|
Bach DH, Long NP, Luu TTT, Anh NH, Kwon SW, Lee SK. The Dominant Role of Forkhead Box Proteins in Cancer. Int J Mol Sci 2018; 19:E3279. [PMID: 30360388 PMCID: PMC6213973 DOI: 10.3390/ijms19103279] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022] Open
Abstract
Forkhead box (FOX) proteins are multifaceted transcription factors that are significantly implicated in cancer, with various critical roles in biological processes. Herein, we provide an overview of several key members of the FOXA, FOXC, FOXM1, FOXO and FOXP subfamilies. Important pathophysiological processes of FOX transcription factors at multiple levels in a context-dependent manner are discussed. We also specifically summarize some major aspects of FOX transcription factors in association with cancer research such as drug resistance, tumor growth, genomic alterations or drivers of initiation. Finally, we suggest that targeting FOX proteins may be a potential therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Duc-Hiep Bach
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | | | | | - Nguyen Hoang Anh
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sung Won Kwon
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
25
|
Cao S, Wang Z, Gao X, He W, Cai Y, Chen H, Xu R. FOXC1 induces cancer stem cell-like properties through upregulation of beta-catenin in NSCLC. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:220. [PMID: 30189871 PMCID: PMC6127900 DOI: 10.1186/s13046-018-0894-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/25/2018] [Indexed: 01/19/2023]
Abstract
Background Accumulating evidence suggests that cancer stem cells (CSCs) play a critical role in tumor initiation, progression and therapy, and recent studies have indicated that Forkhead box C1 (FOXC1) is strongly associated with CSCs. This study investigates the regulatory effects of FOXC1 on CSC-like properties in non-small cell lung cancer (NSCLC). Methods We analyzed FOXC1 expression in NSCLC using the Cancer Genome Atlas (TCGA) database on UALCANC and performed survival analyses of NSCLC patients on Human Protein Atlas. CSC-like properties were analyzed based on CSC marker-positive cell population, self-renewal ability, stemness-related gene expression, tumorigenicity and drug resistance. The percentage of CD133+ cells was analyzed by flow cytometric analysis. Self-renewal ability was detected by sphere-formation analysis. Real-time PCR, western blotting and immunohistochemical staining were employed to detect mRNA and protein levels. Tumorigenicity was determined based on a xenograft formation assay, and effects of FOXC1 on drug resistance were assessed by cell viability and apoptosis assays. Luciferase reporter and chromatin immunoprecipitation (ChIP) assays were used to investigate the binding of FOXC1 to beta-catenin promoter. Results FOXC1 expression was found to be elevated in NSCLC tissues and negatively correlated with patient survival. FOXC1 knockdown reduced CD133+ cell percentage, suppressed self-renewal ability, decreased expression of stemness-related genes (Oct4, NANOG, SOX2 and ABCG2) and inhibited NSCLC cell tumorigenicity in vivo. Moreover, FOXC1 knockdown increased cisplatin and docetaxel sensitivity and reduced gefitinib resistance, whereas FOXC1 overexpression enhanced CSC-like properties. Luciferase reporter and ChIP assays showed beta-catenin to be a direct transcriptional target of FOXC1. Furthermore, overexpression of beta-catenin reversed the CSC-like property inhibition induced by FOXC1 knockdown, and knockdown of beta-catenin attenuated the CSC-like properties induced by FOXC1 overexpression. Conclusions This study demonstrates that FOXC1 induces CSC-like properties in NSCLC by promoting beta-catenin expression. The findings indicate that FOXC1 is a potential molecular target for anti-CSC-based therapies in NSCLC.
Collapse
Affiliation(s)
- Sisi Cao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Zhuo Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Xiujuan Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Wenjuan He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yue Cai
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Hui Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Rong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, 430030, Hubei, China.
| |
Collapse
|
26
|
Targeting EZH2 reactivates a breast cancer subtype-specific anti-metastatic transcriptional program. Nat Commun 2018; 9:2547. [PMID: 29959321 PMCID: PMC6026192 DOI: 10.1038/s41467-018-04864-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/21/2018] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence has illustrated the importance of epigenomic reprogramming in cancer, with altered post-translational modifications of histones contributing to pathogenesis. However, the contributions of histone modifiers to breast cancer progression are unclear, and how these processes vary between molecular subtypes has yet to be adequately addressed. Here we report that genetic or pharmacological targeting of the epigenetic modifier Ezh2 dramatically hinders metastatic behaviour in both a mouse model of breast cancer and patient-derived xenografts reflective of the Luminal B subtype. We further define a subtype-specific molecular mechanism whereby EZH2 maintains H3K27me3-mediated repression of the FOXC1 gene, thereby inactivating a FOXC1-driven, anti-invasive transcriptional program. We demonstrate that higher FOXC1 is predictive of favourable outcome specifically in Luminal B breast cancer patients and establish the use of EZH2 methyltransferase inhibitors as a viable strategy to block metastasis in Luminal B breast cancer, where options for targeted therapy are limited. Histone modifications in cancer can contribute to pathogenesis. Here, the authors demonstrate that targeting epigenetic modifier Ezh2 hinders metastatic behaviour in Luminal B breast cancer models, and highlight a mechanism where Ezh2 contributes to metastatic behaviour by repression of FOXC1.
Collapse
|
27
|
Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data. Nat Commun 2018; 9:2442. [PMID: 29934517 PMCID: PMC6015076 DOI: 10.1038/s41467-018-04696-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 05/17/2018] [Indexed: 12/29/2022] Open
Abstract
Pseudotime algorithms can be employed to extract latent temporal information from cross-sectional data sets allowing dynamic biological processes to be studied in situations where the collection of time series data is challenging or prohibitive. Computational techniques have arisen from single-cell ‘omics and cancer modelling where pseudotime can be used to learn about cellular differentiation or tumour progression. However, methods to date typically implicitly assume homogeneous genetic, phenotypic or environmental backgrounds, which becomes limiting as data sets grow in size and complexity. We describe a novel statistical framework that learns how pseudotime trajectories can be modulated through covariates that encode such factors. We apply this model to both single-cell and bulk gene expression data sets and show that the approach can recover known and novel covariate-pseudotime interaction effects. This hybrid regression-latent variable model framework extends pseudotemporal modelling from its most prevalent area of single cell genomics to wider applications. Cross-sectional omic data often have non-homogeneous genetic, phenotypic, or environmental backgrounds. Here, the authors develop a statistical framework to infer pseudotime trajectories in the presence of such factors as well as their interactions in both single-cell and bulk gene expression analysis
Collapse
|
28
|
Yang Z, Jiang S, Cheng Y, Li T, Hu W, Ma Z, Chen F, Yang Y. FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Ther Adv Med Oncol 2017; 9:797-816. [PMID: 29449899 PMCID: PMC5808840 DOI: 10.1177/1758834017742576] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/24/2017] [Indexed: 12/12/2022] Open
Abstract
Forkhead box C1 (FOXC1) is an essential member of the forkhead box transcription factors and has been highlighted as an important transcriptional regulator of crucial proteins associated with a wide variety of carcinomas. FOXC1 regulates tumor-associated genes and is regulated by multiple pathways that control its mRNA expression and protein activity. Aberrant FOXC1 expression is involved in diverse tumorigenic processes, such as abnormal cell proliferation, cancer stem cell maintenance, cancer migration, and angiogenesis. Herein, we review the correlation between the expression of FOXC1 and tumor behaviors. We also summarize the mechanisms of the regulation of FOXC1 expression and activity in physiological and pathological conditions. In particular, we focus on the pathological processes of cancer targeted by FOXC1 and discuss whether FOXC1 is good or detrimental during tumor progression. Moreover, FOXC1 is highlighted as a clinical biomarker for diagnosis or prognosis in various human cancers. The information reviewed here should assist in experimental designs and emphasize the potential of FOXC1 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Zhi Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, Xi’an, China Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi’an, China
| | - Yicheng Cheng
- Department of Stomatology, Bayi Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Wei Hu
- Department of Biomedical Engineering, The Fourth Military Medical University, Xi’an, China
| | - Zhiqiang Ma
- Department of Thoracic Surgery, Tangdu Hospital, The Fourth Military Medical University, Xi’an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi’an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi’an 710069, China
| |
Collapse
|
29
|
Lemieux S, Sargeant T, Laperrière D, Ismail H, Boucher G, Rozendaal M, Lavallée VP, Ashton-Beaucage D, Wilhelm B, Hébert J, Hilton DJ, Mader S, Sauvageau G. MiSTIC, an integrated platform for the analysis of heterogeneity in large tumour transcriptome datasets. Nucleic Acids Res 2017; 45:e122. [PMID: 28472340 PMCID: PMC5570030 DOI: 10.1093/nar/gkx338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/21/2017] [Indexed: 01/22/2023] Open
Abstract
Genome-wide transcriptome profiling has enabled non-supervised classification of tumours, revealing different sub-groups characterized by specific gene expression features. However, the biological significance of these subtypes remains for the most part unclear. We describe herein an interactive platform, Minimum Spanning Trees Inferred Clustering (MiSTIC), that integrates the direct visualization and comparison of the gene correlation structure between datasets, the analysis of the molecular causes underlying co-variations in gene expression in cancer samples, and the clinical annotation of tumour sets defined by the combined expression of selected biomarkers. We have used MiSTIC to highlight the roles of specific transcription factors in breast cancer subtype specification, to compare the aspects of tumour heterogeneity targeted by different prognostic signatures, and to highlight biomarker interactions in AML. A version of MiSTIC preloaded with datasets described herein can be accessed through a public web server (http://mistic.iric.ca); in addition, the MiSTIC software package can be obtained (github.com/iric-soft/MiSTIC) for local use with personalized datasets.
Collapse
Affiliation(s)
- Sebastien Lemieux
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada.,Computer science and operation research, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Tobias Sargeant
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - David Laperrière
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Houssam Ismail
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Geneviève Boucher
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Marieke Rozendaal
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Vincent-Philippe Lavallée
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Dariel Ashton-Beaucage
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Brian Wilhelm
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Josée Hébert
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Douglas J Hilton
- Division of Molecular Medicine, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria 3050, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Sylvie Mader
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada.,Department of Biochemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada, and Centre de Recherche du Centre Hospitalier Universitaire de l'Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Guy Sauvageau
- The Leucegene project, Université de Montréal, Montréal, QC H3C 3J7, Canada.,Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada.,Division of Hematology, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Leukemia Cell Bank of Quebec, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada.,Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
30
|
Priedigkeit N, Watters RJ, Lucas PC, Basudan A, Bhargava R, Horne W, Kolls JK, Fang Z, Rosenzweig MQ, Brufsky AM, Weiss KR, Oesterreich S, Lee AV. Exome-capture RNA sequencing of decade-old breast cancers and matched decalcified bone metastases. JCI Insight 2017; 2:95703. [PMID: 28878133 DOI: 10.1172/jci.insight.95703] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/03/2017] [Indexed: 12/16/2022] Open
Abstract
Bone metastases (BoM) are a significant cause of morbidity in patients with estrogen receptor-positive (ER-positive) breast cancer; yet, characterizations of human specimens are limited. In this study, exome-capture RNA sequencing (ecRNA-seq) on aged (8-12 years), formalin-fixed, paraffin-embedded (FFPE), and decalcified cancer specimens was evaluated. Gene expression values and ecRNA-seq quality metrics from FFPE or decalcified tumor RNA showed minimal differences when compared with matched flash-frozen or nondecalcified tumors. ecRNA-seq was then applied on a longitudinal collection of 11 primary breast cancers and patient-matched synchronous or recurrent BoMs. Overtime, BoMs exhibited gene expression shifts to more Her2 and LumB PAM50 subtype profiles, temporally influenced expression evolution, recurrently dysregulated prognostic gene sets, and longitudinal expression alterations of clinically actionable genes, particularly in the CDK/Rb/E2F and FGFR signaling pathways. Taken together, this study demonstrates the use of ecRNA-seq on decade-old and decalcified specimens and defines recurrent longitudinal transcriptional remodeling events in estrogen-deprived breast cancers.
Collapse
Affiliation(s)
- Nolan Priedigkeit
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Rebecca J Watters
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Orthopedic Surgery
| | - Peter C Lucas
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Pathology, and
| | - Ahmed Basudan
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - William Horne
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Jay K Kolls
- Richard King Mellon Foundation Institute for Pediatric Research, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Zhou Fang
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Margaret Q Rosenzweig
- Acute and Tertiary Care Department, University of Pittsburgh School of Nursing, Pittsburgh, Pennsylvania, USA
| | - Adam M Brufsky
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Steffi Oesterreich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA
| | - Adrian V Lee
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Women's Cancer Research Center, UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Magee-Womens Research Institute, Magee-Womens Hospital of University of Pittsburgh Medical Center (UPMC), Pittsburgh, Pennsylvania, USA.,Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
31
|
Han B, Bhowmick N, Qu Y, Chung S, Giuliano AE, Cui X. FOXC1: an emerging marker and therapeutic target for cancer. Oncogene 2017; 36:3957-3963. [PMID: 28288141 PMCID: PMC5652000 DOI: 10.1038/onc.2017.48] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/03/2017] [Accepted: 02/04/2017] [Indexed: 02/07/2023]
Abstract
The Forkhead box C1 (FOXC1) transcription factor is involved in normal embryonic development and regulates the development and function of many organs. Most recently, a large body of literature has shown that FOXC1 plays a critical role in tumor development and metastasis. Clinical studies have demonstrated that elevated FOXC1 expression is associated with poor prognosis in many cancer subtypes, such as basal-like breast cancer (BLBC). FOXC1 is highly and specifically expressed in BLBC as opposed to other breast cancer subtypes. Its functions in breast cancer have been extensively explored. This review will summarize current knowledge on the function and regulation of FOXC1 in tumor development and progression with a focus on BLBC as well as the implications of these new findings in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- B Han
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - N Bhowmick
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Y Qu
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - S Chung
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - A E Giuliano
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - X Cui
- Department of Surgery, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
32
|
Wang J, Xu Y, Li L, Wang L, Yao R, Sun Q, Du G. FOXC1 is associated with estrogen receptor alpha and affects sensitivity of tamoxifen treatment in breast cancer. Cancer Med 2016; 6:275-287. [PMID: 28028927 PMCID: PMC5269562 DOI: 10.1002/cam4.990] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/03/2016] [Accepted: 10/24/2016] [Indexed: 12/20/2022] Open
Abstract
FOXC1 is a member of Forkhead box transcription factors that participates in embryonic development and tumorigenesis. Our previous study demonstrated that FOXC1 was highly expressed in triple‐negative breast cancer. However, it remains unclear what is the relation between FOXC1 and ERα and if FOXC1 regulates expression of ERα. To explore relation between FOXC1 and ERα and discover regulation of ERα expression by FOXC1 in breast cancer, we analyzed data assembled in the Oncomine and TCGA, and found that there was significantly higher FOXC1 expression in estrogen receptor‐negative breast cancer than that in estrogen receptor‐positive breast cancer. Overexpression of FOXC1 reduced expression of ERα and cellular responses to estradiol (E2) and tamoxifen in the MCF‐7 FOXC1 and T47D FOXC1 cells, while knockdown of FOXC1 induced expression of ERα and improved responses to estradiol (E2) and tamoxifen in BT549 FOXC1 shRNA and HCC1806 FOXC1 shRNA cells. In addition, overexpression of FOXC1 reduced expression of progesterone receptor (PR), Insulin receptor substrate 1 (IRS1), and XBP1 (X‐Box Binding Protein 1) and significantly reduced luciferase activity caused by E2 using ERE luciferase reporter assay. These results suggested that FOXC1 regulated expression of ERα and affected sensitivity of tamoxifen treatment in breast cancer, and that FOXC1 may be used as a potential therapeutic target in ERα‐negative breast cancer.
Collapse
Affiliation(s)
- Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.,Department of Molecular Oncology, John Wayne Cancer Institute (JWCI) at Providence Saint John's Health Center, Santa Monica, California, 90404
| | - Yali Xu
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Li Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Lin Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ru Yao
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Qiang Sun
- Department of Breast Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100032, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|