1
|
Yen CC, Chen PCH, Chen SC, Wu WC, Yen CH, Lin YC, Wu PK, Chen CM, Wang JY, Chao TC, Yang MH, Fletcher JA. Ferroptosis as a therapeutic vulnerability in MDM2 inhibition in dedifferentiated liposarcoma. Oncol Lett 2025; 29:269. [PMID: 40247991 PMCID: PMC12005077 DOI: 10.3892/ol.2025.15015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/07/2025] [Indexed: 04/19/2025] Open
Abstract
Ferroptosis is a form of necrotic cell death characterized by phospholipid oxidation. The cystine-glutamate antiporter (xCT), composed of solute carrier family 7 member 11 (SLC7A11) and SLC3A2, imports cystine for glutathione synthesis. Glutathione peroxidase 4 (GPX4) requires glutathione to counteract lipid peroxidation and prevent ferroptosis. Erastin, an xCT inhibitor, and Ras-selective lethal small molecule 3 (RSL3), a GPX4 inhibitor, suppress GPX4 function and induce ferroptosis. Tumor protein p53 (TP53) has a paradoxical role in ferroptosis regulation. Mouse double minute 2 homolog (MDM2), a negative regulator of TP53, is a key oncogene in well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS). Therefore, the present study explored the role of ferroptosis in DDLPS treatment response and resistance. Publicly available expression profiles of WDLPS, DDLPS and adipose tissue were analyzed, and the differential expression of ferroptosis-related genes regulated by the MDM2-TP53 pathway was identified in WDLPS and DDLPS. In vitro experiments were performed to assess the effects of erastin and RSL3 on the viability, lipid peroxidation and apoptosis of DDLPS cell lines. The results revealed that erastin and RSL3 induced lipid peroxidation and apoptosis, thereby exerting cytotoxic effects. In addition, nutlin-3, an MDM2 inhibitor, was demonstrated to increase lipid peroxidation and cytotoxicity when applied prior to erastin treatment. Notably, nutlin-3 also upregulated SLC3A2 expression in DDLPS cell lines, thereby enhancing cystine uptake. This increase in cystine uptake was suppressed by erastin. In addition, nutlin-3-induced SLC3A2 upregulation was abolished by TP53 knockdown. Nutlin-3 combined with erastin or RSL3 reduced absolute p-4EBP-1 levels in NDDLS-1 cells and p-p70S6 levels in both cell lines, with no significant impact on the p-4EBP-1/4EBP-1 and p-p70S6/p70S6 ratios. These results indicate that ferroptosis is a therapeutic vulnerability in the response to MDM2 inhibition in DDLPS. Furthermore, combining MDM2 inhibitors with ferroptosis-inducing agents may provide a potential therapeutic strategy for DDLPS and the role of mTOR in the pro-apoptotic effect of these combinations deserve further investigation.
Collapse
Affiliation(s)
- Chueh-Chuan Yen
- Department of Medical Research, Division of Clinical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Paul Chih-Hsueh Chen
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Department of Pathology and Laboratory Medicine, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - San-Chi Chen
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Wen-Chi Wu
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Chiao-Han Yen
- Department of Medical Research, Division of Clinical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Yung-Chan Lin
- Department of Medical Research, Division of Clinical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Po-Kuei Wu
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Chao-Ming Chen
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
| | - Jir-You Wang
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Institute of Traditional Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Ta-Chung Chao
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- Department of Orthopedics and Traumatology, Therapeutical and Research Center of Musculoskeletal Tumor, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | - Muh-Hwa Yang
- Department of Oncology, Division of Medical Oncology, Center for Immuno-oncology, Taipei Veterans General Hospital, Taipei 112201, Taiwan, R.O.C
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
- Institute of Clinical Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan, R.O.C
| | | |
Collapse
|
2
|
Zhai P, Zhang H, Li Q, Hu Z, Zhang H, Yang M, Xing C, Guo Y. SETBP1 activation upon MDM4-enhanced ubiquitination of NR3C1 triggers dissemination of colorectal cancer cells. Clin Exp Metastasis 2024; 41:747-764. [PMID: 38796806 DOI: 10.1007/s10585-024-10294-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Colorectal cancer (CRC) presents a growing concern globally, marked by its escalating incidence and mortality rates, thus imposing a substantial health burden. This investigation delves into the role of nuclear receptor subfamily 3 group C member 1 (NR3C1) in CRC metastasis and explores the associated mechanism. Through a comprehensive bioinformatics analysis, NR3C1 emerged as a gene with diminished expression levels in CRC. This finding was corroborated by observations of a low-expression pattern of NR3C1 in both CRC tissues and cells. Furthermore, experiments involving NR3C1 knockdown revealed an exacerbation of proliferation, migration, and invasion of CRC cells in vitro. Subsequent assessments in mouse xenograft tumor models, established by injecting human HCT116 cells either through the tail vein or at the cecum termini, demonstrated a reduction in tumor metastasis to the lung and liver, respectively, upon NR3C1 knockdown. Functionally, NR3C1 (glucocorticoid receptor) suppressed SET binding protein 1 (SETBP1) transcription by binding to its promoter region. Notably, mouse double minute 4 (MDM4) was identified as an upstream regulator of NR3C1, orchestrating its downregulation via ubiquitination-dependent proteasomal degradation. Further investigations unveiled that SETBP1 knockdown suppressed migration and invasion, and epithelial to mesenchymal transition of CRC cells, consequently impeding in vivo metastasis in murine models. Conversely, upregulation of MDM4 exacerbated the metastatic phenotype of CRC cells, a propensity mitigated upon additional upregulation of NR3C1. In summary, this study elucidates a cascade wherein MDM4-mediated ubiquitination of NR3C1 enables the transcriptional activation of SETBP1, thereby propelling the dissemination of CRC cells.
Collapse
Affiliation(s)
- Peng Zhai
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, 211200, Jiangsu, People's Republic of China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China
- Department of Gerneral Surgery, The Second Afilliated Hospital of Xuzhou Medical University, Xuzhou, 221000, Jiangsu, People's Republic of China
| | - Zhifeng Hu
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Huaguo Zhang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China
| | - Chungen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, People's Republic of China.
| | - Yunhu Guo
- Department of General Surgery, Fifth People's Hospital of Huai'an City, Huai'an, 223300, Jiangsu, People's Republic of China.
| |
Collapse
|
3
|
Yun Y, Yoon HJ, Jeong Y, Choi Y, Jang S, Chung KY, Lee HH. GPCR targeting of E3 ubiquitin ligase MDM2 by inactive β-arrestin. Proc Natl Acad Sci U S A 2023; 120:e2301934120. [PMID: 37399373 PMCID: PMC10334748 DOI: 10.1073/pnas.2301934120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/18/2023] [Indexed: 07/05/2023] Open
Abstract
E3 ubiquitin ligase Mdm2 facilitates β-arrestin ubiquitination, leading to the internalization of G protein-coupled receptors (GPCRs). In this process, β-arrestins bind to Mdm2 and recruit it to the receptor; however, the molecular architecture of the β-arrestin-Mdm2 complex has not been elucidated yet. Here, we identified the β-arrestin-binding region (ABR) on Mdm2 and solved the crystal structure of β-arrestin1 in complex with Mdm2ABR peptide. The acidic residues of Mdm2ABR bind to the positively charged concave side of the β-arrestin1 N-domain. The C-tail of β-arrestin1 is still bound to the N-domain, indicating that Mdm2 binds to the inactive state of β-arrestin1, whereas the phosphorylated C-terminal tail of GPCRs binds to activate β-arrestins. The overlapped binding site of Mdm2 and GPCR C-tails on β-arrestin1 suggests that the binding of GPCR C-tails might trigger the release of Mdm2. Moreover, hydrogen/deuterium exchange experiments further show that Mdm2ABR binding to β-arrestin1 induces the interdomain interface to be more dynamic and uncouples the IP6-induced oligomer of β-arrestin1. These results show how the E3 ligase, Mdm2, interacts with β-arrestins to promote the internalization of GPCRs.
Collapse
Affiliation(s)
- Yaejin Yun
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Hye-Jin Yoon
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Yejin Jeong
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Yuri Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| | - Soonmin Jang
- Department of Chemistry, Sejong University, Seoul05006, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, Suwon16419, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul08826, Republic of Korea
| |
Collapse
|
4
|
Menon AA, Deshpande V, Suster D. MDM2 for the practicing pathologist: a primer. J Clin Pathol 2023; 76:285-290. [PMID: 36898827 DOI: 10.1136/jcp-2022-208687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
The mouse double minute 2 (MDM2) gene is located on the long arm of chromosome 12 and is the primary negative regulator of p53. The MDM2 gene encodes an E3 ubiquitin-protein ligase that mediates the ubiquitination of p53, leading to its degradation. MDM2 enhances tumour formation by inactivating the p53 tumour suppressor protein. The MDM2 gene also has many p53-independent functions. Alterations of MDM2 may occur through various mechanisms and contribute to the pathogenesis of many human tumours and some non-neoplastic diseases. Detection of MDM2 amplification is used in the clinical practice setting to help diagnose multiple tumour types, including lipomatous neoplasms, low-grade osteosarcomas and intimal sarcoma, among others. It is generally a marker of adverse prognosis, and MDM2-targeted therapies are currently in clinical trials. This article provides a concise overview of the MDM2 gene and discusses practical diagnostic applications pertaining to human tumour biology.
Collapse
Affiliation(s)
- Aswathy Ashok Menon
- Department of Pathology, Neuberg Anand Reference Laboratory, Bengaluru, Karnataka, India
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David Suster
- Department of Pathology, Rutgers University New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
5
|
MDM2-Driven Ubiquitination Rapidly Removes p53 from Its Cognate Promoters. Biomolecules 2021; 12:biom12010022. [PMID: 35053170 PMCID: PMC8773640 DOI: 10.3390/biom12010022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 12/19/2022] Open
Abstract
MDM2 is the principal antagonist of the tumor suppressor p53. p53 binds to its cognate DNA element within promoters and activates the transcription of adjacent genes. These target genes include MDM2. Upon induction by p53, the MDM2 protein binds and ubiquitinates p53, triggering its proteasomal degradation and providing negative feedback. This raises the question whether MDM2 can also remove p53 from its target promoters, and whether this also involves ubiquitination. In the present paper, we employ the MDM2-targeted small molecule Nutlin-3a (Nutlin) to disrupt the interaction of MDM2 and p53 in three different cancer cell lines: SJSA-1 (osteosarcoma), 93T449 (liposarcoma; both carrying amplified MDM2), and MCF7 (breast adenocarcinoma). Remarkably, removing Nutlin from the culture medium for less than five minutes not only triggered p53 ubiquitination, but also dissociated most p53 from its chromatin binding sites, as revealed by chromatin immunoprecipitation. This also resulted in reduced p53-responsive transcription, and it occurred much earlier than the degradation of p53 by the proteasome, arguing that MDM2 removes p53 from promoters prior to and thus independent of degradation. Accordingly, the short-term pharmacological inhibition of the proteasome did not alter the removal of p53 from promoters by Nutlin washout. However, when the proteasome inhibitor was applied for several hours, depleting non-conjugated ubiquitin prior to eliminating Nutlin, this compromised the removal of DNA-bound p53, as did an E1 ubiquitin ligase inhibitor. This suggests that the ubiquitination of p53 by MDM2 is necessary for its clearance from promoters. Depleting the MDM2 cofactor MDM4 in SJSA cells did not alter the velocity by that p53 was removed from promoters upon Nutlin washout. We conclude that MDM2 antagonizes p53 not only by covering its transactivation domain and by destabilization, but also by the rapid, ubiquitin-dependent termination of p53–chromatin interactions.
Collapse
|
6
|
MDM2, MDMX, and p73 regulate cell-cycle progression in the absence of wild-type p53. Proc Natl Acad Sci U S A 2021; 118:2102420118. [PMID: 34716260 DOI: 10.1073/pnas.2102420118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The p53 tumor suppressor protein, known to be critically important in several processes including cell-cycle arrest and apoptosis, is highly regulated by multiple mechanisms, most certifiably the Murine Double Minute 2-Murine Double Minute X (MDM2-MDMX) heterodimer. The role of MDM2-MDMX in cell-cycle regulation through inhibition of p53 has been well established. Here we report that in cells either lacking p53 or expressing certain tumor-derived mutant forms of p53, loss of endogenous MDM2 or MDMX, or inhibition of E3 ligase activity of the heterocomplex, causes cell-cycle arrest. This arrest is correlated with a reduction in E2F1, E2F3, and p73 levels. Remarkably, direct ablation of endogenous p73 produces a similar effect on the cell cycle and the expression of certain E2F family members at both protein and messenger RNA levels. These data suggest that MDM2 and MDMX, working at least in part as a heterocomplex, may play a p53-independent role in maintaining cell-cycle progression by promoting the activity of E2F family members as well as p73, making them a potential target of interest in cancers lacking wild-type p53.
Collapse
|
7
|
Klein AM, de Queiroz RM, Venkatesh D, Prives C. The roles and regulation of MDM2 and MDMX: it is not just about p53. Genes Dev 2021; 35:575-601. [PMID: 33888565 PMCID: PMC8091979 DOI: 10.1101/gad.347872.120] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this review, Klein et al. discuss the p53-independent roles of MDM2 and MDMX. First, they review the structural and functional features of MDM2 and MDMX proteins separately and together that could be relevant to their p53-independent activities. Following this, they summarize how these two proteins are regulated and how they can function in cells that lack p53. Most well studied as proteins that restrain the p53 tumor suppressor protein, MDM2 and MDMX have rich lives outside of their relationship to p53. There is much to learn about how these two proteins are regulated and how they can function in cells that lack p53. Regulation of MDM2 and MDMX, which takes place at the level of transcription, post-transcription, and protein modification, can be very intricate and is context-dependent. Equally complex are the myriad roles that these two proteins play in cells that lack wild-type p53; while many of these independent outcomes are consistent with oncogenic transformation, in some settings their functions could also be tumor suppressive. Since numerous small molecules that affect MDM2 and MDMX have been developed for therapeutic outcomes, most if not all designed to prevent their restraint of p53, it will be essential to understand how these diverse molecules might affect the p53-independent activities of MDM2 and MDMX.
Collapse
Affiliation(s)
- Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | | | - Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
8
|
Venkatesh D, O'Brien NA, Zandkarimi F, Tong DR, Stokes ME, Dunn DE, Kengmana ES, Aron AT, Klein AM, Csuka JM, Moon SH, Conrad M, Chang CJ, Lo DC, D'Alessandro A, Prives C, Stockwell BR. MDM2 and MDMX promote ferroptosis by PPARα-mediated lipid remodeling. Genes Dev 2020; 34:526-543. [PMID: 32079652 PMCID: PMC7111265 DOI: 10.1101/gad.334219.119] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 12/21/2022]
Abstract
Here, Venkatesh et al. investigated the p53-independent roles of MDMX and the MDM2–MDMX complex. They found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53, and that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2–MDMX complex regulates lipids through altering PPARα activity. MDM2 and MDMX, negative regulators of the tumor suppressor p53, can work separately and as a heteromeric complex to restrain p53's functions. MDM2 also has pro-oncogenic roles in cells, tissues, and animals that are independent of p53. There is less information available about p53-independent roles of MDMX or the MDM2–MDMX complex. We found that MDM2 and MDMX facilitate ferroptosis in cells with or without p53. Using small molecules, RNA interference reagents, and mutant forms of MDMX, we found that MDM2 and MDMX, likely working in part as a complex, normally facilitate ferroptotic death. We observed that MDM2 and MDMX alter the lipid profile of cells to favor ferroptosis. Inhibition of MDM2 or MDMX leads to increased levels of FSP1 protein and a consequent increase in the levels of coenzyme Q10, an endogenous lipophilic antioxidant. This suggests that MDM2 and MDMX normally prevent cells from mounting an adequate defense against lipid peroxidation and thereby promote ferroptosis. Moreover, we found that PPARα activity is essential for MDM2 and MDMX to promote ferroptosis, suggesting that the MDM2–MDMX complex regulates lipids through altering PPARα activity. These findings reveal the complexity of cellular responses to MDM2 and MDMX and suggest that MDM2–MDMX inhibition might be useful for preventing degenerative diseases involving ferroptosis. Furthermore, they suggest that MDM2/MDMX amplification may predict sensitivity of some cancers to ferroptosis inducers.
Collapse
Affiliation(s)
- Divya Venkatesh
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Nicholas A O'Brien
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - David R Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Michael E Stokes
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Denise E Dunn
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Everett S Kengmana
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Allegra T Aron
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | - Alyssa M Klein
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10032, USA
| | - Joleen M Csuka
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Sung-Hwan Moon
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Metabolism and Cell Death, Neuherberg 85764, Germany
| | - Christopher J Chang
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Donald C Lo
- Center for Drug Discovery, Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, Colorado 80045, USA
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.,Department of Chemistry, Columbia University, New York, New York 10027, USA
| |
Collapse
|
9
|
Promising Terpenes as Natural Antagonists of Cancer: An In-Silico Approach. Molecules 2019; 25:molecules25010155. [PMID: 31906032 PMCID: PMC6983034 DOI: 10.3390/molecules25010155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/13/2019] [Accepted: 12/19/2019] [Indexed: 01/10/2023] Open
Abstract
Overexpression of murine double minute 2 (MDM2) results in the inactivation of p53 and causes cancer which is a leading cause of death in recent era. In recent decades, much attention has been paid to discover potential inhibitors against MDM2 in order to cure cancer. Outcomes from studies proposes that the MDM2 is a hot target to screen potent antagonists. Thus, this study aims at discovering natural compounds using several computational approaches to inhibit the MDM2 and to eliminate p53-MDM2 interaction, which would result in the reactivation of p53 activity. A library of 500 terpenes was prepared and several virtual screening approaches were employed to find out the best hits which could serve as p53-MDM2 antagonists. On the basis of the designed protocol, three terpenes were selected. In the present study, for the stability and validation of selected three protein-ligand complexes 20 ns molecular dynamics simulations and principal component analyses (PCA) were performed. Results found that the selected terpenes hits (3-trans-p-coumaroyl maslinic acid, Silvestrol and Betulonic acid) are potential inhibitors of p53–MDM2 interaction and could serve as potent antagonists.
Collapse
|
10
|
Leslie PL, Franklin DA, Liu Y, Zhang Y. p53 Regulates the Expression of LRP1 and Apoptosis through a Stress Intensity-Dependent MicroRNA Feedback Loop. Cell Rep 2018; 24:1484-1495. [PMID: 30089260 PMCID: PMC6289054 DOI: 10.1016/j.celrep.2018.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/03/2018] [Accepted: 07/01/2018] [Indexed: 01/01/2023] Open
Abstract
Understanding how p53 activates certain gene programs and not others is critical. Here, we identify low-density lipoprotein receptor-related protein 1 (LRP1), a transmembrane endocytic receptor, as a p53 target gene. We show that, although LRP1 transcript expression is upregulated in response to both sub-lethal and lethal doses of p53-activating stress, LRP1 protein is only upregulated in response to sub-lethal stress. Interestingly, lethal doses of p53-activating stress inhibit LRP1 de novo translation through an miRNA-based translational repression mechanism. We show that the p53-regulated miRNAs miR-103 and miR-107 are significantly upregulated by lethal doses of stress, resulting in suppression of LRP1 translation and cell death. Our results define a negative feedback loop involving the p53-regulated coding gene LRP1 and p53-regulated miRNA genes. These findings provide mechanistic insight into the selective expression of p53 target genes in response to different stress intensities to elicit either cell survival or cell death.
Collapse
Affiliation(s)
- Patrick L Leslie
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Derek A Franklin
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA
| | - Yong Liu
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461, USA; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, Jiangsu 221002, China.
| |
Collapse
|
11
|
Zeng K, Chen X, Hu X, Liu X, Xu T, Sun H, Pan Y, He B, Wang S. LACTB, a novel epigenetic silenced tumor suppressor, inhibits colorectal cancer progression by attenuating MDM2-mediated p53 ubiquitination and degradation. Oncogene 2018; 37:5534-5551. [PMID: 29899406 DOI: 10.1038/s41388-018-0352-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 12/23/2022]
Abstract
Colorectal cancer (CRC) is one of the most common aggressive malignancies. Like other solid tumors, inactivation of tumor suppressor genes and activation of oncogenes occur during CRC development and progression. Recently, a novel tumor suppressor, LACTB, was proposed to inhibit tumor progression, but the functional and clinical significance of this tumor suppressor in CRC remains unexplored. Herein, we found LACTB was significantly downregulated in CRC due to promoter methylation and histone deacetylation, which was associated with metastasis and advanced clinical stage. CRC patients with low LACTB expression had poorer overall survival and LACTB also determined to be an independent prognostic factor for poorer outcome. Ectopic expression of LACTB suppressed CRC cells proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) in vitro and inhibited CRC growth and metastasis in vivo, while knockout of LACTB by CRISPR/Cas9 gene editing technique resulted in an opposite phenotype. Interestingly, LACTB could exert antitumorigenic effect only in HCT116 and HCT8 cells harboring wild-type TP53, but not in HT29 and SW480 cells harboring mutant TP53 or HCT116 p53-/- cells. Mechanistic studies demonstrated that LACTB could directly bind to the C terminus of p53 to inhibit p53 degradation by preventing MDM2 from interacting with p53. Moreover, ablation of p53 attenuated the antitumorigenic effects of LACTB overexpression in CRC. Collectively, our findings successfully demonstrate for the first time that LACTB is a novel epigenetic silenced tumor suppressor through modulating the stability of p53, supporting the pursuit of LACTB as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Kaixuan Zeng
- School of Medicine, Southeast University, Nanjing, 210009, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiaoxiang Chen
- School of Medicine, Southeast University, Nanjing, 210009, China.,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiuxiu Hu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Xiangxiang Liu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Bangshun He
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China
| | - Shukui Wang
- School of Medicine, Southeast University, Nanjing, 210009, China. .,General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, China.
| |
Collapse
|
12
|
Screening of medicinal plant phytochemicals as natural antagonists of p53-MDM2 interaction to reactivate p53 functioning. Anticancer Drugs 2017; 28:1032-1038. [PMID: 28723868 DOI: 10.1097/cad.0000000000000548] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In most types of cancer, overexpression of murine double minute 2 (MDM2) often leads to inactivation of p53. The crystal structure of MDM2, with a 109-residue amino-terminal domain, reveals that MDM2 has a core hydrophobic region to which p53 binds as an amphipathic α helix. The interface depends on the steric complementarity between MDM2 and the hydrophobic region of p53. Especially, on p53's triad, amino acids Phe19, Trp23 and Leu26 bind to the MDM2 core. Results from studies suggest that the structural motif of both p53 and MDM2 can be attributed to similarities in the amphipathic α helix. Thus, in the current investigation it is hypothesized that the similarity in the structural motif might be the cause of p53 inactivation by MDM2. Hence, molecular docking and phytochemical screening approaches are appraised to inhibit the hydrophobic cleft of MDM2 and to stop p53-MDM2 interaction, resulting in reactivation of p53 activity. For this purpose, a library of 2295 phytochemicals were screened against p53-MDM2 to find potential candidates. Of these, four phytochemicals including epigallocatechin gallate, alvaradoin M, alvaradoin E and nordihydroguaiaretic acid were found to be potential inhibitors of p53-MDM2 interaction. The screened phytochemicals, derived from natural extracts, may have negligible side effects and can be explored as potent antagonists of p53-MDM2 interactions, resulting in reactivation of the normal transcription of p53.
Collapse
|
13
|
Castanea sativa Mill. bark extract exhibits chemopreventive properties triggering extrinsic apoptotic pathway in Jurkat cells. Altern Ther Health Med 2017; 17:251. [PMID: 28476162 PMCID: PMC5420104 DOI: 10.1186/s12906-017-1756-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/26/2017] [Indexed: 01/28/2023]
Abstract
Background Chemoprevention represents the possibility to prevent, stop or reverse the cancerogenetic process. In this context the interest towards natural extracts and botanical drugs has constantly grown due to their phytochemical content. Castanea sativa Mill. (CSM) extracts showed to exert positive effect in the prevention/counteraction of chronic/degenerative diseases, therefore, we evaluated the potential chemopreventive effect of CSM bark extract. Methods Flow cytometry (FCM) analyses of Jurkat cells treated with CSM bark extract (0–500 μg·mL−1) for 24–72 h allowed evaluating its cytotoxicity and ability to induce apoptosis through the intrinsic or extrinsic pathways. Moreover, to evaluate CSM bark extract selectivity towards cancer cells, its cytotoxic and pro-apoptotic effect was also evaluated in human peripheral blood lymphocytes (PBL). Results CSM bark extract induced apoptosis in Jurkat cells in a dose- and time- dependent manner activating the extrinsic pathways as evidenced by the increase of activated caspase-8 positive cells. Moreover, IC50 calculated after 24 h treatment resulted 304 and 128 μg·mL−1 in PBL and Jurkat cells respectively. Conclusions Our data suggest that CSM bark extract might be considered an interesting potential anti-cancer agent, since it induces apoptosis in cancer cells without appreciable cytotoxic effects on non-transformed cells. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-1756-6) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Pecháčková S, Burdová K, Macurek L. WIP1 phosphatase as pharmacological target in cancer therapy. J Mol Med (Berl) 2017; 95:589-599. [PMID: 28439615 PMCID: PMC5442293 DOI: 10.1007/s00109-017-1536-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/13/2017] [Accepted: 04/19/2017] [Indexed: 12/31/2022]
Abstract
DNA damage response (DDR) pathway protects cells from genome instability and prevents cancer development. Tumor suppressor p53 is a key molecule that interconnects DDR, cell cycle checkpoints, and cell fate decisions in the presence of genotoxic stress. Inactivating mutations in TP53 and other genes implicated in DDR potentiate cancer development and also influence the sensitivity of cancer cells to treatment. Protein phosphatase 2C delta (referred to as WIP1) is a negative regulator of DDR and has been proposed as potential pharmaceutical target. Until recently, exploitation of WIP1 inhibition for suppression of cancer cell growth was compromised by the lack of selective small-molecule inhibitors effective at cellular and organismal levels. Here, we review recent advances in development of WIP1 inhibitors and discuss their potential use in cancer treatment.
Collapse
Affiliation(s)
- Soňa Pecháčková
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Kamila Burdová
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic
| | - Libor Macurek
- Department of Cancer Cell Biology, Institute of Molecular Genetics of the ASCR, CZ-14220, Prague, Czech Republic.
| |
Collapse
|
15
|
Sarkar A, Iwasa H, Hossain S, Xu X, Sawada T, Shimizu T, Maruyama J, Arimoto-Matsuzaki K, Hata Y. Domain analysis of Ras-association domain family member 6 upon interaction with MDM2. FEBS Lett 2017; 591:260-272. [DOI: 10.1002/1873-3468.12551] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 12/08/2016] [Accepted: 12/28/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Aradhan Sarkar
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Shakhawoat Hossain
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
- Department of Biochemistry and Molecular Biology; University of Rajshahi; Bangladesh
| | - Xiaoyin Xu
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
- Department of Breast Oncology Surgery; The Second Affiliated Hospital of Wenzhou Medical University; China
| | - Takeru Sawada
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Takanobu Shimizu
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Kyoko Arimoto-Matsuzaki
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
| | - Yutaka Hata
- Department of Medical Biochemistry; Graduate School of Medical and Dental Sciences; Tokyo Medical and Dental University; Japan
- Center for Brain Integration Research; Tokyo Medical and Dental University; Japan
| |
Collapse
|
16
|
Ciemny MP, Debinski A, Paczkowska M, Kolinski A, Kurcinski M, Kmiecik S. Protein-peptide molecular docking with large-scale conformational changes: the p53-MDM2 interaction. Sci Rep 2016; 6:37532. [PMID: 27905468 PMCID: PMC5131342 DOI: 10.1038/srep37532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Protein-peptide interactions are often associated with large-scale conformational changes that are difficult to study either by classical molecular modeling or by experiment. Recently, we have developed the CABS-dock method for flexible protein-peptide docking that enables large-scale rearrangements of the protein chain. In this study, we use CABS-dock to investigate the binding of the p53-MDM2 complex, an element of the cell cycle regulation system crucial for anti-cancer drug design. Experimental data suggest that p53-MDM2 binding is affected by significant rearrangements of a lid region - the N-terminal highly flexible MDM2 fragment; however, the details are not clear. The large size of the highly flexible MDM2 fragments makes p53-MDM2 intractable for exhaustive binding dynamics studies using atomistic models. We performed extensive dynamics simulations using the CABS-dock method, including large-scale structural rearrangements of MDM2 flexible regions. Without a priori knowledge of the p53 peptide structure or its binding site, we obtained near-native models of the p53-MDM2 complex. The simulation results match well the experimental data and provide new insights into the possible role of the lid fragment in p53 binding. The presented case study demonstrates that CABS-dock methodology opens up new opportunities for protein-peptide docking with large-scale changes of the protein receptor structure.
Collapse
Affiliation(s)
- Maciej Pawel Ciemny
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
- University of Warsaw, Faculty of Physics, Warsaw, 02-093, Poland
| | | | - Marta Paczkowska
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
| | - Andrzej Kolinski
- University of Warsaw, Faculty of Chemistry, Warsaw 02-093, Poland
| | | | | |
Collapse
|