1
|
Yang M, Wang J, Liu Z, Li Z. PRR14 mediates mechanotransduction and regulates myofiber identity via MEF2C in skeletal muscle. Metabolism 2025; 164:156109. [PMID: 39706290 DOI: 10.1016/j.metabol.2024.156109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Skeletal muscle is a crucial tissue for physical activity and energy metabolism. Muscle atrophy, characterized by the loss of muscle mass and strength, contributes to adverse outcomes among individuals. This study elucidated the involvement of the nuclear lamina component PRR14 in transmitting mechanical signals and mediating the impact of exercise on skeletal muscle. The expression of PRR14 demonstrated a positive correlation with exercise, while a decline in adult skeletal muscle is evident in disuse muscle conditions. Genetically, multiple single nucleotide polymorphisms (SNPs) within PRR14's genomic locus were linked with muscle mass and function. Specific knockout (KO) of skeletal muscle Prr14 in mice lead to muscle atrophy, validating the genetic association. By employing biochemical analysis and high-throughput sequencing techniques, including transcriptome profile and epigenome investigations such as Cleavage Under Targets and Tagmentation sequencing (CUT&Tag-seq) and Transposase-Accessible Chromatin sequencing (ATAC-seq), we discovered that PRR14's deficiency altered chromatin structure, regulated MEF2C's activity, and disrupted myofiber identity maintenance, ultimately causing muscle atrophy. Our finding highlights the crucial role of PRR14 in mechanotransduction and epigenetic regulation, offering new therapeutic avenues for skeletal muscle pathologies related to these mechanisms.
Collapse
Affiliation(s)
- Mei Yang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| | - Jiajie Wang
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Zhongyue Liu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zhihong Li
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Hunan Engineering Research Center of Artificial Intelligence Based Medical Equipment, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Li XQ, Cheng XJ, Wu J, Wu KF, Liu T. Targeted inhibition of the PI3K/AKT/mTOR pathway by (+)-anthrabenzoxocinone induces cell cycle arrest, apoptosis, and autophagy in non-small cell lung cancer. Cell Mol Biol Lett 2024; 29:58. [PMID: 38649803 PMCID: PMC11036658 DOI: 10.1186/s11658-024-00578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Non-small cell lung cancer (NSCLC), characterized by low survival rates and a high recurrence rate, is a major cause of cancer-related mortality. Aberrant activation of the PI3K/AKT/mTOR signaling pathway is a common driver of NSCLC. Within this study, the inhibitory activity of (+)-anthrabenzoxocinone ((+)-ABX), an oxygenated anthrabenzoxocinone compound derived from Streptomyces, against NSCLC is demonstrated for the first time both in vitro and in vivo. Mechanistically, it is confirmed that the PI3K/AKT/mTOR signaling pathway is targeted and suppressed by (+)-ABX, resulting in the induction of S and G2/M phase arrest, apoptosis, and autophagy in NSCLC cells. Additionally, the augmentation of intracellular ROS levels by (+)-ABX is revealed, further contributing to the inhibition of the signaling pathway and exerting inhibitory effects on tumor growth. The findings presented in this study suggest that (+)-ABX possesses the potential to serve as a lead compound for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xiao-Qian Li
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Xiao-Ju Cheng
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Jie Wu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China
| | - Kai-Feng Wu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China.
| | - Tie Liu
- The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi), Scientific Research Center, Guizhou, 563002, People's Republic of China.
- Yunnan Characteristic Plant Extraction Laboratory, Key Laboratory of Medicinal Chemistry for Natural Resource, Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
3
|
Wang D, Liu G, Meng Y, Chen H, Ye Z, Jing J. The Configuration of GRB2 in Protein Interaction and Signal Transduction. Biomolecules 2024; 14:259. [PMID: 38540680 PMCID: PMC10968029 DOI: 10.3390/biom14030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 07/02/2024] Open
Abstract
Growth-factor-receptor-binding protein 2 (GRB2) is a non-enzymatic adaptor protein that plays a pivotal role in precisely regulated signaling cascades from cell surface receptors to cellular responses, including signaling transduction and gene expression. GRB2 binds to numerous target molecules, thereby modulating a complex cell signaling network with diverse functions. The structural characteristics of GRB2 are essential for its functionality, as its multiple domains and interaction mechanisms underpin its role in cellular biology. The typical signaling pathway involving GRB2 is initiated by the ligand stimulation to its receptor tyrosine kinases (RTKs). The activation of RTKs leads to the recruitment of GRB2 through its SH2 domain to the phosphorylated tyrosine residues on the receptor. GRB2, in turn, binds to the Son of Sevenless (SOS) protein through its SH3 domain. This binding facilitates the activation of Ras, a small GTPase, which triggers a cascade of downstream signaling events, ultimately leading to cell proliferation, survival, and differentiation. Further research and exploration into the structure and function of GRB2 hold great potential for providing novel insights and strategies to enhance medical approaches for related diseases. In this review, we provide an outline of the proteins that engage with domains of GRB2, along with the function of different GRB2 domains in governing cellular signaling pathways. This furnishes essential points of current studies for the forthcoming advancement of therapeutic medications aimed at GRB2.
Collapse
Affiliation(s)
- Dingyi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Guoxia Liu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- School of Life Science, Tianjin University, Tianjin 200072, China
| | - Yuxin Meng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Hongjie Chen
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zu Ye
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| | - Ji Jing
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou 310022, China
- Zhejiang Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer, Hangzhou 310022, China
| |
Collapse
|
4
|
Zhang L, Yang J, Ji Z, Zhang J, Yang S. PRR14 acts a novel oncogene activating the PI3K signal pathway in human cutaneous squamous cell carcinoma. J Cancer 2023; 14:1531-1540. [PMID: 37325059 PMCID: PMC10266252 DOI: 10.7150/jca.83695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Proline rich protein 14 (PRR14) is considered as a new component of the nuclear fiber layer, it may be a key molecule in mediating nuclear morphological changes and functional changes in tumorigenesis. But, it's still unclear in human cutaneous squamous cell carcinoma (cSCC). In the study, the expression profiles of PRR14 in patients with cSCC were investigated by immunohistochemistry (IHC), also the PRR14 expression in cSCC tissues were detected using the methods of real-time quantitative PCR (RT-qPCR) and Western blot; cell counting kit-8 (CCK-8) assay, wound healing assay, matrigel-based transwell assay and Annexin V-FITC and PI double-staining with flow cytometry assay were used to investigate the biological functions of PRR14 in A431 and HSC-1 cSCC cells. Overexpression of PRR14 in cSCC patients was reported firstly in this study and its high expression was related to differentiation, thickness and tumor node metastasis (TNM) stage of cSCC. PRR14 inhibition with RNA interfering (RNAi) method resulted in the suppression of cell proliferation, migration and invasion but promotion the apoptosis of cSCC cells, and upregulation of the protein phosphorylation levels of mammalian target of rapamycin (mTOR), phosphoinositide 3-kinase (PI3K) and Akt. The study shows PRR14 maybe an activator of cSCC carcinogenesis through PI3K/Akt/mTOR signal pathway, and it also maybe a prognostic factor and new therapeutical target for cSCC treatment.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Yang
- Department of Dermatology, Tongzhou District Home Textile City Hospital, Nantong, Jiangsu, China
| | - Zhoujing Ji
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jie Zhang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
5
|
Zheng H, Wang T, Shi C, Fan L, Su Y, Fan Y, Li X, Yang J, Mao C, Xu Y. Increased PRR14 and VCAM-1 level in serum of patients with Parkinson's disease. Front Neurol 2022; 13:993940. [PMID: 36247752 PMCID: PMC9561935 DOI: 10.3389/fneur.2022.993940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 09/07/2022] [Indexed: 11/24/2022] Open
Abstract
Background Regarding the complexity of Parkinson's disease (PD), the identification of reliable biomarkers is of great significance for improving the accuracy of diagnosis and monitoring disease progression. Recently, some studies suggested that serum proline-rich protein 14 (PRR14), vascular cell adhesion molecule-1 (VCAM-1), and soluble CD163 (sCD163) factors may be associated with PD, even as potential biomarkers. However, the role of these serum factors is still unclear. Objectives This study aimed to explore the alterations of serum PRR14, VCAM-1, and sCD163 levels during PD progression, and their association with disease-related variables of PD. Methods We performed the assessment of scale tests and the detection of serum samples in patients with PD (n = 100) and healthy controls (HCs, n = 100). Furthermore, we investigated the association between serum factors and sex, cognitive impairments, H&Y (Hohn and Yahr), age at onset (AAO), and other variables in patients with PD. Results Patients with PD exhibited increased PRR14 and VCAM-1 serum levels compared with HCs. No significant differences were found in serum levels of sCD163. Subgroup analysis uncovered increased VCAM-1 in the female and male subgroups (PD and HCs). Among patients with PD, decreased PRR14 and increased VCAM-1 were associated with severer cognitive impairments and severer PD (H&Y), respectively. Bivariate correlation analysis revealed that there was a positive correlation between VCAM-1 and AAO. Conclusions Increased serum levels of PRR14 and VCAM-1 suggest that inflammation and defective autophagy may play vital roles in the pathogenesis of PD. However, the potential mechanisms remain to be elucidated.
Collapse
Affiliation(s)
- Huimin Zheng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Tai Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Department of Neurology, Nanyang Central Hospital, Nanyang, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Liyuan Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yun Su
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xinwei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Chengyuan Mao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- The Academy of Medical Sciences of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- *Correspondence: Chengyuan Mao
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
- Yuming Xu
| |
Collapse
|
6
|
Ran Y, He J, Chen R, Qin Y, Liu Z, Zhou Y, Yin N, Qi H, Zhou W. Investigation and Validation of Molecular Characteristics of Endometrium in Recurrent Miscarriage and Unexplained Infertility from a Transcriptomic Perspective. Int J Med Sci 2022; 19:546-562. [PMID: 35370464 PMCID: PMC8964333 DOI: 10.7150/ijms.69648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/16/2022] [Indexed: 11/20/2022] Open
Abstract
Recurrent miscarriage (RM) and unexplained infertility (UI) are gordian knots in reproductive medicine, which are troubling many patients, doctors, and researchers. Although these two diseases of early pregnancy have a significant impact on human reproductive health, little is known about the specific mechanisms, which caused treatment difficulties. This study focused on the molecular signatures underlying the pathological phenotypes of two diseases, with the hope of using statistical methods to identify the significant core genes. An unbiased Weighted Correlation Network Analysis (WGCNA) algorithm was used for endometrial transcriptome data analysis and the disease-related gene modules were screened out. Through enrichment analysis of the candidate genes, we found similarities between both diseases and shared enrichment of immune-related pathways. Therefore, we used immune algorithms to assess the infiltration of immune cells and found abnormal increases of CD8+T cells and neutrophils. In order to explore the molecular profile behind the immunophenotypic changes, we used the SVM algorithm and LASSO regression to identify the core genes with diagnostic capacity in both diseases and discussed their significance of immune disorders in the endometrium. In the end, the satisfactory diagnostic ability of these core genes was verified in the broader group. Our results demonstrated the presence of immune disorders in non-pregnancy tissues of RM and UI, and identified the core molecules of this phenotype, and discuss mechanisms. This provides exploratory evidence for the in-depth understanding of the mechanism of RM and UI and may provide potential targets for their future treatment.
Collapse
Affiliation(s)
- Yuxin Ran
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jie He
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Ruixin Chen
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu 610041, China
| | - Yan Qin
- Department of Gynecology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Zheng Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Yunqian Zhou
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Nanlin Yin
- Chongqing Key Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing 400016, China.,Joint International Research Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, Chongqing 400016, China.,Center for Reproductive Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.,Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 401147, China
| | - Wei Zhou
- Department of Obstetrics, Chongqing Health Center for Women and Children, Chongqing 401147, China
| |
Collapse
|
7
|
Jin T, Tan X, Shi X, Lv L, Peng X, Zhang H, Tang B, Wang C, Yang M. Preliminary Findings on Proline-Rich Protein 14 as a Diagnostic Biomarker for Parkinson's Disease. Neuromolecular Med 2021; 23:285-291. [PMID: 33001354 PMCID: PMC8128746 DOI: 10.1007/s12017-020-08617-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
Abstract
The nuclear envelope component proline-rich protein 14 (PRR14) is involved in the nuclear morphological alteration and activation of the mTOR (mammalian target of rapamycin) signaling pathway, and has been repeatedly shown to be upregulated in patients with Parkinson's disease (PD). The aim of this study was to explore whether PRR14 can be used as a potential biomarker for the diagnosis of PD. We compared PRR14 expression in PD patients and normal controls in gene expression omnibus (GEO) data. Quantitative enzyme-linked immunosorbent assay (ELISA) was used to detect PRR14 expression in PD patients and age- and sex-matched controls. The relationship between serum PRR14 and clinical phenotype was evaluated using correlation analysis and logistic regression. The expression of PRR14 in whole blood, substantia nigra, and medial substantia nigra was significantly higher in PD patients than in the healthy control group. Compared to plasma, serum was more suitable for the detection of PRR14. Furthermore, serum PRR14 level in PD patients was significantly higher than that in age- and sex-matched controls. The area under the curve for serum PRR14 level in the ability to identify PD versus age- and sex-matched controls was 0.786. In addition, serum PRR14 level was found to correlate with constipation in PD patients. Our findings demonstrate for the first time that serum PRR14 is a potential biomarker for PD.
Collapse
Affiliation(s)
- Tao Jin
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, Hunan, China
| | - Xuling Tan
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xiaoliu Shi
- Department of Medical Genetics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Lingling Lv
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Xinke Peng
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Hainan Zhang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Chunyu Wang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
| | - Mei Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, 139 Middle Renmin Road, Changsha, 410011, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
8
|
Ernest James Phillips T, Maguire E. Phosphoinositides: Roles in the Development of Microglial-Mediated Neuroinflammation and Neurodegeneration. Front Cell Neurosci 2021; 15:652593. [PMID: 33841102 PMCID: PMC8032904 DOI: 10.3389/fncel.2021.652593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/08/2021] [Indexed: 12/11/2022] Open
Abstract
Microglia are increasingly recognized as vital players in the pathology of a variety of neurodegenerative conditions including Alzheimer’s (AD) and Parkinson’s (PD) disease. While microglia have a protective role in the brain, their dysfunction can lead to neuroinflammation and contributes to disease progression. Also, a growing body of literature highlights the seven phosphoinositides, or PIPs, as key players in the regulation of microglial-mediated neuroinflammation. These small signaling lipids are phosphorylated derivates of phosphatidylinositol, are enriched in the brain, and have well-established roles in both homeostasis and disease.Disrupted PIP levels and signaling has been detected in a variety of dementias. Moreover, many known AD disease modifiers identified via genetic studies are expressed in microglia and are involved in phospholipid metabolism. One of these, the enzyme PLCγ2 that hydrolyzes the PIP species PI(4,5)P2, displays altered expression in AD and PD and is currently being investigated as a potential therapeutic target.Perhaps unsurprisingly, neurodegenerative conditions exhibiting PIP dyshomeostasis also tend to show alterations in aspects of microglial function regulated by these lipids. In particular, phosphoinositides regulate the activities of proteins and enzymes required for endocytosis, toll-like receptor signaling, purinergic signaling, chemotaxis, and migration, all of which are affected in a variety of neurodegenerative conditions. These functions are crucial to allow microglia to adequately survey the brain and respond appropriately to invading pathogens and other abnormalities, including misfolded proteins. AD and PD therapies are being developed to target many of the above pathways, and although not yet investigated, simultaneous PIP manipulation might enhance the beneficial effects observed. Currently, only limited therapeutics are available for dementia, and although these show some benefits for symptom severity and progression, they are far from curative. Given the importance of microglia and PIPs in dementia development, this review summarizes current research and asks whether we can exploit this information to design more targeted, or perhaps combined, dementia therapeutics. More work is needed to fully characterize the pathways discussed in this review, but given the strength of the current literature, insights in this area could be invaluable for the future of neurodegenerative disease research.
Collapse
Affiliation(s)
| | - Emily Maguire
- UK Dementia Research Institute at Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
9
|
Sun Y, Deng M, Ke X, Lei X, Ju H, Liu Z, Bai X. Epidermal Growth Factor Protects Against High Glucose-Induced Podocyte Injury Possibly via Modulation of Autophagy and PI3K/AKT/mTOR Signaling Pathway Through DNA Methylation. Diabetes Metab Syndr Obes 2021; 14:2255-2268. [PMID: 34045875 PMCID: PMC8149214 DOI: 10.2147/dmso.s299562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/23/2021] [Indexed: 01/03/2023] Open
Abstract
AIM Diabetic nephropathy (DN) is a serious health problem worldwide. Epidermal growth factor (EGF) has suggested as a potential biomarker for the progression of chronic kidney disease. In this study, we examined the effects of EGF on the high glucose (HG)-induced podocyte injury and explored the underlying molecular mechanisms. METHODS The cell proliferation, toxicity, and cell apoptosis of podocytes were determined by CCK-8 assay, lactate dehydrogenase release assay, and flow cytometry, respectively, and protein levels in the podocytes were determined by Western blot assay. Mechanistically, DNA methylation analysis, bioinformatic analysis, methylation‑specific PCR and quantitative real-time PCR were used to analyze functional pathways in differentially methylated genes and the expression of the key methylated genes in the podocytes after different interventions. RESULTS EGF treatment significantly increased the protein expression level of LC3 and decreased the protein level of P62 in HG-stimulated podocytes, which was attenuated by autophagy inhibitor, 3-methyladenine. EGF increased the cell proliferation and the protein expression levels of nephrin and synaptopodin, but reduced cell toxicity and cell apoptosis and protein expression level of cleaved caspase-3, which was partially antagonized by 3-methyladenine. DNA methylation expression profiles revealed the differential hypermethylation sites and hypomethylation sites among podocytes treated with normal glucose, HG and HG+EGF. GO enrichment analysis showed that DNA methylation was significantly enriched in negative regulation of phosphorylation, cell-cell junction and GTPase binding. KEGG pathway analysis showed that these genes were mainly enriched in PI3K-Akt, Hippo and autophagy pathways. Further validation studies revealed that six hub genes (ITGB1, GRB2, FN1, ITGB3, FZD10 and FGFR1) may be associated with the protective effects of EGF on the HG-induced podocyte injury. CONCLUSION In summary, our results demonstrated that EGF exerted protective effects on HG-induced podocytes injury via enhancing cell proliferation and inhibiting cell apoptosis. Further mechanistic studies implied that EGF-mediated protective effects in HG-stimulated podocytes may be associated with modulation of autophagy and PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Yan Sun
- Department of Endocrinology, Southern University of Science and Technology Hospital, Shenzhen, People’s Republic of China
| | - Ming Deng
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiao Ke
- Department of Cardiology, Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen Sun Yat-Sen Cardiovascular Hospital, Shenzhen, 518057, People’s Republic of China
| | - Xiangyang Lei
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Hao Ju
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Zhiming Liu
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
| | - Xiaosu Bai
- Department of Endocrinology, Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Department of General Practice; Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, Shenzhen, People’s Republic of China
- Correspondence: Xiaosu Bai Affiliated Longhua People’s Hospital, Southern Medical University, Longhua People’s Hospital, No. 2, Jianshe East Road, Bao’an District, Shenzhen, 518109, People’s Republic of ChinaTel +86-755-27741585 Email
| |
Collapse
|
10
|
Oncogene PRR14 promotes breast cancer through activation of PI3K signal pathway and inhibition of CHEK2 pathway. Cell Death Dis 2020; 11:464. [PMID: 32541902 PMCID: PMC7296039 DOI: 10.1038/s41419-020-2640-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/28/2022]
Abstract
Nuclear envelope component PRR14 has been detected to be upregulated in varieties of cancers, especially in breast cancer. But its role in breast carcinogenesis is poorly understood. In this study, we show PRR14 contributes to breast carcinogenesis mainly through overexpression, which derives from elevated transcription and gene amplification. Increased PRR14 expression promotes breast cancer cell proliferation and tumor formation. Biochemical analysis reveals, in addition to previously reported activation of PI3-kinase/Akt/mTOR pathway, PRR14 overexpression regulates cell cycle in breast cancer by inhibiting CHEK2’s activation, followed with the deregulation of DNA damage pathway. In correspondence, CHEK2 and PRR14 show opposite impact on breast cancer patients receiving chemotherapy. Collectively, our study is the first to document the oncogenetic role of PRR14 in breast cancer, which protects cells from apoptosis and stimulates proliferation by activating the PI3-kinase/Akt/mTOR pathway and inhibiting the CHEK2 pathway. Both of these pathways are of great influence in breast cancer and PRR14 appears to be their novel interacting node, which renders patients more resistance to chemotherapy and provides a potential therapeutic target in breast cancer.
Collapse
|
11
|
Li F, Zhang C, Fu L. PRR14 overexpression promotes cell growth, epithelial to mesenchymal transition and metastasis of colon cancer via the AKT pathway. PLoS One 2019; 14:e0218839. [PMID: 31596887 PMCID: PMC6785111 DOI: 10.1371/journal.pone.0218839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Background PRR14 (Proline rich protein 14) was firstly identified for its ability to specify and localize heterochromatin during cell cycle progression. Aberrant expression of PRR14 is associated with the tumorigenesis and progression of lung cancer. However, its involvement in colon cancer remains unknown. Herein, we report the role of PRR14 in colon cancer. Methods Colon cancer tissue microarray was used to analyze and compare the expression of PRR14 among some clinicopathological characteristics of colon cancer. HCT116 and RKO cells were transfected with siRNA to downregulate PRR14 expression. The roles of PRR14 in proliferation, migration and invasion of the cell lines were determined using cell counting kit-8, colony formation assay, wound healing assay and transwell assays respectively. The expression of PRR14 was measured using immunofluorescence, qRT- PCR and western blot. Epithelial-mesenchymal transition (EMT) markers were determined by western blot. Results PRR14 was highly expressed in colon cancer tissues, and the expression level was correlated with tumor size, distant metastasis and Tumor Node Metastasis stages. Functional study revealed that downregulation of PRR14 inhibited colon cancer cells growth, migration and invasion. Furthermore, knockdown of PRR14 inhibited epithelial-mesenchymal transition (EMT) process, cell cycle-associated proteins expression and p-AKT level. Conclusion PRR14 may promote the progression and metastasis of colon cancer, and may be a novel prognostic and therapeutic marker for the disease.
Collapse
Affiliation(s)
- Fangfang Li
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Department of Reproductive Biology, Chongqing Medical University, Chongqing, China
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Chundong Zhang
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, China
| | - Lijuan Fu
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education, Department of Reproductive Biology, Chongqing Medical University, Chongqing, China
- Department of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
12
|
PRR14L mutations are associated with chromosome 22 acquired uniparental disomy, age-related clonal hematopoiesis and myeloid neoplasia. Leukemia 2018; 33:1184-1194. [PMID: 30573780 PMCID: PMC6451636 DOI: 10.1038/s41375-018-0340-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 10/03/2018] [Indexed: 12/31/2022]
Abstract
Acquired uniparental disomy (aUPD, also known as copy-neutral loss of heterozygosity) is a common feature of cancer cells and characterized by extended tracts of somatically-acquired homozygosity without any concurrent loss or gain of genetic material. The presumed genetic targets of many regions of aUPD remain unknown. Here we describe the association of chromosome 22 aUPD with mutations that delete the C-terminus of PRR14L in patients with chronic myelomonocytic leukemia (CMML), related myeloid neoplasms and age-related clonal hematopoiesis (ARCH). Myeloid panel analysis identified a median of 3 additional mutated genes (range 1-6) in cases with a myeloid neoplasm (n=8), but no additional mutations in cases with ARCH (n=2) suggesting that mutated PRR14L alone may be sufficient to drive clonality. PRR14L has very limited homology to other proteins and its function is unknown. ShRNA knockdown of PRR14L in human CD34+ cells followed by in vitro growth and differentiation assays showed an increase in monocytes and decrease in neutrophils consistent, with a CMML-like phenotype. RNA-Seq and cellular localization studies suggest a role for PRR14L in cell division. PRR14L is thus a novel, biallelically mutated gene and potential founding abnormality in myeloid neoplasms.
Collapse
|
13
|
Zhao H, Chen G, Ye L, Yu H, Li S, Jiang WG. DOK7V1 influences the malignant phenotype of lung cancer cells through PI3K/AKT/mTOR and FAK/paxillin signaling pathways. Int J Oncol 2018; 54:381-389. [PMID: 30431081 DOI: 10.3892/ijo.2018.4624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Downstream of tyrosine kinase 7 transcript variant 1 (DOK7V1) is a docking protein mediating signal transduction between receptors and intracellular downstream molecules. Our previous study indicated that DOK7V1 was decreased in lung cancer and its lower expression was associated with a decreased survival rate. The 5‑year overall survival rate for patients with lung cancer was 20.2 and 18.6% for high and low DOK7 expression, respectively; the 5‑year disease‑free survival rate for patients with lung cancer was 14.3 and 16.9% for high and low DOK7 expression, respectively. DOK7V1 inhibited proliferation and migration, but enhanced adhesion, of lung cancer cells. In the present study, the effect of DOK7V1 and its domains [pleckstrin homology (PH) and phosphotyrosine‑binding (PTB) domain] on the malignant phenotype and associated signaling pathway in lung cancer cells was investigated. The results indicated that truncation of DOK7V1 domains (DOK7V1Δ‑PH and DOK7V1Δ‑PTB) inhibited the proliferation and migration of lung cancer cells which exhibited the same trend as DOK7V1, whereas DOK7V1Δ‑PH and DOK7V1Δ‑PTB exhibited different functions from those of DOK7V1 in cell matrix adhesion. Consistently, DOK7V1 overexpression in lung cancer cells suppressed the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathways, but activated the focal adhesion kinase (FAK)/paxillin signaling pathway. Taken together, these results indicate that DOK7V1 may inhibit proliferation and migration via negatively regulating the PI3K/AKT/mTOR signaling pathway, and increase adhesion by upregulating the FAK/paxillin signaling pathway in lung cancer cells.
Collapse
Affiliation(s)
- Huishan Zhao
- Reproductive Medicine Centre, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, P.R. China
| | - Gang Chen
- Comprehensive Liver Cancer Center, Beijing 302 Hospital, Beijing 100039, P.R. China
| | - Lin Ye
- Cardiff‑China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, P.R. China
| | - Shenglan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing100069, P.R. China
| | - Wen G Jiang
- Cardiff‑China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
14
|
Went M, Sud A, Försti A, Halvarsson BM, Weinhold N, Kimber S, van Duin M, Thorleifsson G, Holroyd A, Johnson DC, Li N, Orlando G, Law PJ, Ali M, Chen B, Mitchell JS, Gudbjartsson DF, Kuiper R, Stephens OW, Bertsch U, Broderick P, Campo C, Bandapalli OR, Einsele H, Gregory WA, Gullberg U, Hillengass J, Hoffmann P, Jackson GH, Jöckel KH, Johnsson E, Kristinsson SY, Mellqvist UH, Nahi H, Easton D, Pharoah P, Dunning A, Peto J, Canzian F, Swerdlow A, Eeles RA, Kote-Jarai ZS, Muir K, Pashayan N, Nickel J, Nöthen MM, Rafnar T, Ross FM, da Silva Filho MI, Thomsen H, Turesson I, Vangsted A, Andersen NF, Waage A, Walker BA, Wihlborg AK, Broyl A, Davies FE, Thorsteinsdottir U, Langer C, Hansson M, Goldschmidt H, Kaiser M, Sonneveld P, Stefansson K, Morgan GJ, Hemminki K, Nilsson B, Houlston RS. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat Commun 2018; 9:3707. [PMID: 30213928 PMCID: PMC6137048 DOI: 10.1038/s41467-018-04989-w] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 06/06/2018] [Indexed: 02/08/2023] Open
Abstract
Genome-wide association studies (GWAS) have transformed our understanding of susceptibility to multiple myeloma (MM), but much of the heritability remains unexplained. We report a new GWAS, a meta-analysis with previous GWAS and a replication series, totalling 9974 MM cases and 247,556 controls of European ancestry. Collectively, these data provide evidence for six new MM risk loci, bringing the total number to 23. Integration of information from gene expression, epigenetic profiling and in situ Hi-C data for the 23 risk loci implicate disruption of developmental transcriptional regulators as a basis of MM susceptibility, compatible with altered B-cell differentiation as a key mechanism. Dysregulation of autophagy/apoptosis and cell cycle signalling feature as recurrently perturbed pathways. Our findings provide further insight into the biological basis of MM.
Collapse
Affiliation(s)
- Molly Went
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Amit Sud
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Asta Försti
- German Cancer Research Center, 69120, Heidelberg, Germany
- Center for Primary Health Care Research, Lund University, SE-205 02, Malmo, Sweden
| | - Britt-Marie Halvarsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Niels Weinhold
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
| | - Scott Kimber
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mark van Duin
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | | | - Amy Holroyd
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - David C Johnson
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Ni Li
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Giulia Orlando
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Philip J Law
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Mina Ali
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Bowang Chen
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Jonathan S Mitchell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Daniel F Gudbjartsson
- deCODE Genetics, Sturlugata 8, IS-101, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, IS-101, Reykjavik, Iceland
| | - Rowan Kuiper
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | - Owen W Stephens
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Uta Bertsch
- German Cancer Research Center, 69120, Heidelberg, Germany
- National Centre of Tumor Diseases, 69120, Heidelberg, Germany
| | - Peter Broderick
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Chiara Campo
- German Cancer Research Center, 69120, Heidelberg, Germany
| | | | | | - Walter A Gregory
- Clinical Trials Research Unit, University of Leeds, Leeds, LS2 9PH, UK
| | - Urban Gullberg
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Jens Hillengass
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4003, Basel, Switzerland
| | | | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University Hospital Essen, University of Duisburg-Essen, Essen, D-45147, Germany
| | - Ellinor Johnsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Sigurður Y Kristinsson
- Department of Hematology, Landspitali, National University Hospital of Iceland, IS-101, Reykjavik, Iceland
| | - Ulf-Henrik Mellqvist
- Section of Hematology, Sahlgrenska University Hospital, Gothenburg, 413 45, Sweden
| | - Hareth Nahi
- Center for Hematology and Regenerative Medicine, SE-171 77, Stockholm, Sweden
| | - Douglas Easton
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Paul Pharoah
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Alison Dunning
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
| | - Julian Peto
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Anthony Swerdlow
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Division of Breast Cancer Research, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Rosalind A Eeles
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - ZSofia Kote-Jarai
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Kenneth Muir
- Institute of Population Health, University of Manchester, Manchester, M13 9PL, UK
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Nora Pashayan
- Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, CB1 8RN, UK
- Department of Applied Health Research, University College London, London, WC1E 7HB, UK
| | - Jolanta Nickel
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, D-53127, Bonn, Germany
- Department of Genomics, Life & Brain Center, University of Bonn, D-53127, Bonn, Germany
| | - Thorunn Rafnar
- deCODE Genetics, Sturlugata 8, IS-101, Reykjavik, Iceland
| | - Fiona M Ross
- Wessex Regional Genetics Laboratory, University of Southampton, Salisbury, SP2 8BJ, UK
| | | | - Hauke Thomsen
- German Cancer Research Center, 69120, Heidelberg, Germany
| | - Ingemar Turesson
- Hematology Clinic, Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Annette Vangsted
- Department of Haematology, University Hospital of Copenhagen at Rigshospitalet, Blegdamsvej 9, DK-2100, Copenhagen, Denmark
| | - Niels Frost Andersen
- Department of Haematology, Aarhus University Hospital, Tage-Hansens Gade 2, DK-8000, Aarhus C, Denmark
| | - Anders Waage
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Box 8905, N-7491, Trondheim, Norway
| | - Brian A Walker
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Anna-Karin Wihlborg
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
| | - Annemiek Broyl
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | - Faith E Davies
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Sturlugata 8, IS-101, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, IS-101, Reykjavik, Iceland
| | - Christian Langer
- Department of Internal Medicine III, University of Ulm, D-89081, Ulm, Germany
| | - Markus Hansson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden
- Hematology Clinic, Skåne University Hospital, SE-221 85, Lund, Sweden
| | - Hartmut Goldschmidt
- Department of Internal Medicine V, University of Heidelberg, 69117, Heidelberg, Germany
- National Centre of Tumor Diseases, 69120, Heidelberg, Germany
| | - Martin Kaiser
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Pieter Sonneveld
- Department of Hematology, Erasmus MC Cancer Institute, 3075 EA, Rotterdam, The Netherlands
| | | | - Gareth J Morgan
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Kari Hemminki
- German Cancer Research Center, 69120, Heidelberg, Germany.
- Center for Primary Health Care Research, Lund University, SE-205 02, Malmo, Sweden.
| | - Björn Nilsson
- Hematology and Transfusion Medicine, Department of Laboratory Medicine, BMC B13, Lund University, SE-221 84, Lund, Sweden.
- Broad Institute, 7 Cambridge Center, Cambridge, MA, 02142, USA.
| | - Richard S Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SW7 3RP, UK.
| |
Collapse
|
15
|
Flentje A, Kober KM, Carrico AW, Neilands TB, Flowers E, Heck NC, Aouizerat BE. Minority stress and leukocyte gene expression in sexual minority men living with treated HIV infection. Brain Behav Immun 2018; 70:335-345. [PMID: 29548994 PMCID: PMC5953835 DOI: 10.1016/j.bbi.2018.03.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 03/12/2018] [Indexed: 12/17/2022] Open
Abstract
Sexual minority (i.e., non-heterosexual) individuals experience poorer mental and physical health, accounted for in part by the additional burden of sexual minority stress occurring from being situated in a culture favoring heteronormativity. Informed by previous research, the purpose of this study was to identify the relationship between sexual minority stress and leukocyte gene expression related to inflammation, cancer, immune function, and cardiovascular function. Sexual minority men living with HIV who were on anti-retroviral medication, had viral load < 200 copies/mL, and had biologically confirmed, recent methamphetamine use completed minority stress measures and submitted blood samples for RNA sequencing on leukocytes. Differential gene expression and pathway analyses were conducted comparing those with clinically elevated minority stress (n = 18) and those who did not meet the clinical cutoff (n = 20), covarying reactive urine toxicology results for very recent stimulant use. In total, 90 differentially expressed genes and 138 gene set pathways evidencing 2-directional perturbation were observed at false discovery rate (FDR) < 0.10. Of these, 41 of the differentially expressed genes and 35 of the 2-directionally perturbed pathways were identified as functionally related to hypothesized mechanisms of inflammation, cancer, immune function, and cardiovascular function. The neuroactive-ligand receptor pathway (implicated in cancer development) was identified using signaling pathway impact analysis. Our results suggest several potential biological pathways for future work investigating the relationship between sexual minority stress and health.
Collapse
Affiliation(s)
- Annesa Flentje
- Community Health Systems, School of Nursing, University of California, San Francisco, United States.
| | - Kord M Kober
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Computational Health Sciences, University of California, San Francisco, United States
| | | | - Torsten B Neilands
- Center for AIDS Prevention Studies, Department of Medicine, University of California, San Francisco, United States
| | - Elena Flowers
- Department of Physiological Nursing, School of Nursing, University of California, San Francisco, United States; Institute for Human Genetics, University of California, San Francisco, United States
| | - Nicholas C Heck
- Department of Psychology, Marquette University, United States
| | - Bradley E Aouizerat
- Bluestone Center for Clinical Research, College of Dentistry, New York University, United States
| |
Collapse
|
16
|
Chen G, Yu H, Satherley L, Zabkiewicz C, Resaul J, Zhao H, Mu H, Zhi X, He J, Ye L, Jiang WG. The downstream of tyrosine kinase 7 is reduced in lung cancer and is associated with poor survival of patients with lung cancer. Oncol Rep 2017; 37:2695-2701. [PMID: 28393246 PMCID: PMC5428884 DOI: 10.3892/or.2017.5538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/03/2017] [Indexed: 01/23/2023] Open
Abstract
The downstream of tyrosine kinase 7 (DOK7) is an adaptor protein mediating signalling transduction between receptors and intracellular downstream molecules. Reduced expression of DOK7 has been observed in breast cancer. The present study aimed to investigate the role played by DOK7 in lung cancer. The expression of DOK7 at both mRNA and protein levels was evaluated in human lung cancer. A reduced expression of DOK7 transcripts was seen in lung cancers compared with normal lung tissues. Kaplan-Meier analyses showed that the reduced expression of DOK7 was associated with poorer overall survival and progression-free survival of patients with lung cancer. A further western blot analysis revealed a predominant expression of DOK7 isoform 1 (DOK7V1) in normal lung tissues, which was reduced in lung cancer. Forced overexpression of DOK7V1 in lung cancer cell lines, A549 and H3122 resulted in a decrease of in vitro cell proliferation and migration, while adhesion to extracellular matrix was enhanced following the expression. In conclusion, DOK7 was reduced in lung cancer and reduced DOK7 expression was associated with poorer survival. DOK7 isoform 1 plays an inhibitory role on the proliferation and migration of lung cancer cells in which Akt pathway may be involved.
Collapse
Affiliation(s)
- Gang Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Hefen Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Lucy Satherley
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Catherine Zabkiewicz
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Jeyna Resaul
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Huishan Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Hu Mu
- Xuanwu Hospital Capital Medical University, Beijing 100053, P.R. China
| | - Xiuyi Zhi
- Xuanwu Hospital Capital Medical University, Beijing 100053, P.R. China
| | - Junqi He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, P.R. China
| | - Lin Ye
- Cardiff-China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Wen G Jiang
- Cancer Institute of Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|