1
|
Wang JF, Wang MC, Jiang LL, Lin NM. The neuroscience in breast cancer: Current insights and clinical opportunities. Heliyon 2025; 11:e42293. [PMID: 39975839 PMCID: PMC11835589 DOI: 10.1016/j.heliyon.2025.e42293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/21/2025] Open
Abstract
The involvement of nerves in the development of breast cancer has emerged as a significant factor. Interaction between the nervous system and breast cancer can influence tumor initiation, growth, invasion, metastasis, reverse resistance to drugs, promote inflammation in tumors, and impair the immune system's ability to combat cancer. This review examined the intricate relationship linking the nervous system with breast cancer, emphasizing both central and peripheral aspects of the nervous system. Moreover, we reviewed neural cell factors and their impact on breast cancer progression, alongside the interactions between nerves and immunology, microbiota in breast cancer. Furthermore, the study discussed the potential of nerves as biomarkers for diagnosing and prognosticating breast cancer, and evaluated prospects for improving chemotherapy and immunotherapy therapeutic outcomes in breast cancer treatment. We hope to provide a deeper understanding of the neurobiological underpinnings of breast cancer and pave the way for the discovery of innovative therapeutic targets and prognostic markers.
Collapse
Affiliation(s)
- Jia-feng Wang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
| | - Meng-chuan Wang
- Affiliated Cixi Hospital, Wenzhou Medical University, Ningbo, 315300, China
| | - Lei-lei Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine,Hefei, 230031, China
| | - Neng-ming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
2
|
Chong ZX, Ho WY, Yeap SK. Decoding the tumour-modulatory roles of LIMK2. Life Sci 2024; 347:122609. [PMID: 38580197 DOI: 10.1016/j.lfs.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-β pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| |
Collapse
|
3
|
Yombo DJK, Ghandikota S, Vemulapalli CP, Singh P, Jegga AG, Hardie WD, Madala SK. SEMA3B inhibits TGFβ-induced extracellular matrix protein production and its reduced levels are associated with a decline in lung function in IPF. Am J Physiol Cell Physiol 2024; 326:C1659-C1668. [PMID: 38646784 PMCID: PMC11371361 DOI: 10.1152/ajpcell.00681.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/23/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1), in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that transforming growth factor-β (TGFβ) functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the antifibrotic effects of SEMA3B against TGFβ-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.NEW & NOTEWORTHY The excessive production and secretion of collagens and other extracellular matrix proteins by fibroblasts lead to the scarring of the lung in severe fibrotic lung diseases. This study unveils an antifibrotic role for semaphorin class 3B (SEMA3B) in the pathogenesis of idiopathic pulmonary fibrosis. SEMA3B functions as an inhibitor of transforming growth factor-β-driven fibroblast activation and reduced levels of SEMA3B and its receptor, neuropilin 1, are associated with decreased lung function in idiopathic pulmonary fibrosis.
Collapse
Affiliation(s)
- Dan J K Yombo
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Sudhir Ghandikota
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - Chanukya P Vemulapalli
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Priyanka Singh
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| | - Anil G Jegga
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
| | - William D Hardie
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, United States
| | - Satish K Madala
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States
| |
Collapse
|
4
|
Jiang X, Xu Z, Jiang S, Wang H, Xiao M, Shi Y, Wang K. PDZ and LIM Domain-Encoding Genes: Their Role in Cancer Development. Cancers (Basel) 2023; 15:5042. [PMID: 37894409 PMCID: PMC10605254 DOI: 10.3390/cancers15205042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/13/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
PDZ-LIM family proteins (PDLIMs) are a kind of scaffolding proteins that contain PDZ and LIM interaction domains. As protein-protein interacting molecules, PDZ and LIM domains function as scaffolds to bind to a variety of proteins. The PDLIMs are composed of evolutionarily conserved proteins found throughout different species. They can participate in cell signal transduction by mediating the interaction of signal molecules. They are involved in many important physiological processes, such as cell differentiation, proliferation, migration, and the maintenance of cellular structural integrity. Studies have shown that dysregulation of the PDLIMs leads to tumor formation and development. In this paper, we review and integrate the current knowledge on PDLIMs. The structure and function of the PDZ and LIM structural domains and the role of the PDLIMs in tumor development are described.
Collapse
Affiliation(s)
| | | | | | | | | | - Yueli Shi
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| | - Kai Wang
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China; (X.J.); (Z.X.); (S.J.); (H.W.); (M.X.)
| |
Collapse
|
5
|
Song J, Tang Y, Song F. Lnc‑RGS5 sponges miR‑542‑5p to promote FoxM1/VEGFA signaling and breast cancer cell proliferation. Int J Oncol 2023; 63:111. [PMID: 37594134 PMCID: PMC10552728 DOI: 10.3892/ijo.2023.5559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/26/2023] [Indexed: 08/19/2023] Open
Abstract
Breast cancer (BRCA) exhibits a high incidence rate among women worldwide. LOC127814295 (ENSG00000232995), termed long non‑coding (lnc)‑regulator of G protein signaling 5 (RGS5), is a novel lncRNA with a genomic region overlapping with protein‑coding gene RGS5. Results obtained using The Cancer Genome Atlas demonstrated that lnc‑RGS5 was deregulated in diverse cancer types, including BRCA; however, the functional role of lnc‑RGS5 remains unclear. Results of the present study demonstrated that lnc‑RGS5 was upregulated in BRCA tissues compared with healthy samples (n=30; P<0.0001), and was associated with the overall survival of patients with triple‑negative BRCA (n=106; P<0.05). Moreover, lnc‑RGS5 expression was significantly higher in triple‑negative BRCA samples than in LumA, LumB, or Her2 subtypes (P<0.05). Functionally, lnc‑RGS5 upregulation promoted BRCA cell proliferation in vitro, whereas lnc‑RGS5 knockdown elicited the opposite function. Stable knockdown of lnc‑RGS5 inhibited tumor cell proliferation in vivo. Bioinformatics analysis revealed that lnc‑RGS5 was significantly associated with RNA binding involved in post‑transcriptional gene silencing (P=0.002). Mechanistically, lnc‑RGS5 functions as a competing endogenous RNA via competitively sponging miR‑542‑5p to upregulate forkhead box M1 (FoxM1) and the VEGFA/Neuropilin 1 axis; thus, promoting BRCA cell proliferation in vitro. Moreover, rescue experiments validated that the lnc‑RGS5/miR‑542‑5p/FoxM1 axis promoted BRCA cell growth in vivo. Collectively, results of the present study demonstrated that lnc‑RGS5 may exhibit potential as a novel oncogenic lncRNA in BRCA. The present study may provide a novel theoretical basis for the role of lncRNA in the targeted therapy of BRCA.
Collapse
Affiliation(s)
| | | | - Fangzhou Song
- Molecular and Tumor Research Center, The Basic Medical School of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
6
|
Aiyappa-Maudsley R, McLoughlin LFV, Hughes TA. Semaphorins and Their Roles in Breast Cancer: Implications for Therapy Resistance. Int J Mol Sci 2023; 24:13093. [PMID: 37685898 PMCID: PMC10487980 DOI: 10.3390/ijms241713093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Breast cancer is the most common cancer worldwide and a leading cause of cancer-related deaths in women. The clinical management of breast cancer is further complicated by the heterogeneous nature of the disease, which results in varying prognoses and treatment responses in patients. The semaphorins are a family of proteins with varied roles in development and homoeostasis. They are also expressed in a wide range of human cancers and are implicated as regulators of tumour growth, angiogenesis, metastasis and immune evasion. More recently, semaphorins have been implicated in drug resistance across a range of malignancies. In breast cancer, semaphorins are associated with resistance to endocrine therapy as well as breast cancer chemotherapeutic agents such as taxanes and anthracyclines. This review will focus on the semaphorins involved in breast cancer progression and their association with drug resistance.
Collapse
Affiliation(s)
| | | | - Thomas A. Hughes
- School of Medicine, University of Leeds, Leeds LS9 7TF, UK; (R.A.-M.); (L.F.V.M.)
- School of Science, Technology and Health, York St John University, York YO31 7EX, UK
| |
Collapse
|
7
|
Vergara-Gerónimo CA, León-Del-Rio A, Rodríguez-Dorantes M, Camacho-Carranza R, Ostrosky-Wegman P, Salazar AM. Arsenic reduces the GATA3 expression associated with an increase in proliferation and migration of mammary epithelial cell line MCF-10A. Toxicol Appl Pharmacol 2023; 472:116573. [PMID: 37269932 DOI: 10.1016/j.taap.2023.116573] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/16/2023] [Accepted: 05/29/2023] [Indexed: 06/05/2023]
Abstract
Arsenic is associated with the development of breast cancer. However, the molecular mechanisms of arsenic induction of breast cancer are not fully defined. Interaction with zinc finger (ZnF) motifs in proteins is one of the proposed mechanisms of arsenic toxicity. GATA3 is a transcription factor that regulates the transcription of genes associated with cell proliferation, cell differentiation and the epithelial-mesenchymal transition (EMT) in mammary luminal cells. Given that GATA3 possesses two ZnF motifs essential for the function of this protein and that arsenic could alter the function of GATA3 through interaction with these structural motifs, we evaluated the effect of sodium arsenite (NaAsO2) on GATA3 function and its relevance in the development of arsenic-induced breast cancer. Breast cell lines derived from normal mammary epithelium (MCF-10A), hormone receptor-positive and hormone receptor negative breast cancer cells (T-47D and MDA-MB-453, respectively) were used. We observed a reduction on GATA3 protein levels at non-cytotoxic concentrations of NaAsO2 in MCF-10A and T-47D, but not in MDA-MB-453 cells. This reduction was associated with an increase in cell proliferation and cell migration in MCF-10A, but not in T-47D or MDA-MB-453 cells. The evaluation of cell proliferation and EMT markers indicate that the reduction on GATA3 protein levels by arsenic, disrupts the function of this transcription factor. Our data indicate that GATA3 is a tumor suppressor in the normal mammary epithelium and that arsenic could act as an initiator of breast cancer by disrupting the function of GATA3.
Collapse
Affiliation(s)
- Cristian A Vergara-Gerónimo
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Alfonso León-Del-Rio
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | | | - Rafael Camacho-Carranza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Patricia Ostrosky-Wegman
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Apartado Postal 70228, Ciudad de México, Mexico.
| |
Collapse
|
8
|
Martínez-Ramos S, Rafael-Vidal C, Malvar-Fernández B, Rodriguez-Trillo A, Veale D, Fearon U, Conde C, Conde-Aranda J, Radstake TRDJ, Pego-Reigosa JM, Reedquist KA, García S. HOXA5 is a key regulator of class 3 semaphorins expression in the synovium of rheumatoid arthritis patients. Rheumatology (Oxford) 2023; 62:2621-2630. [PMID: 36398888 PMCID: PMC10321103 DOI: 10.1093/rheumatology/keac654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/08/2022] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Class 3 semaphorins are reduced in the synovial tissue of RA patients and these proteins are involved in the pathogenesis of the disease. The aim of this study was to identify the transcription factors involved in the expression of class 3 semaphorins in the synovium of RA patients. METHODS Protein and mRNA expression in synovial tissue from RA and individuals at risk (IAR) patients, human umbilical vein endothelial cells (HUVEC) and RA fibroblast-like synoviocytes (FLS) was determined by ELISA, immunoblotting and quantitative PCR. TCF-3, EBF-1 and HOXA5 expression was knocked down using siRNA. Cell viability, migration and invasion were determined using MTT, calcein, wound closure and invasion assays, respectively. RESULTS mRNA expression of all class 3 semaphorins was significantly lower in the synovium of RA compared with IAR patients. In silico analysis suggested TCF-3, EBF-1 and HOXA5 as transcription factors involved in the expression of these semaphorins. TCF-3, EBF-1 and HOXA5 silencing significantly reduced the expression of several class 3 semaphorin members in FLS and HUVEC. Importantly, HOXA5 expression was significantly reduced in the synovium of RA compared with IAR patients and was negatively correlated with clinical disease parameters. Additionally, TNF-α down-regulated the HOXA5 expression in FLS and HUVEC. Finally, HOXA5 silencing enhanced the migratory and invasive capacities of FLS and the viability of HUVEC. CONCLUSION HOXA5 expression is reduced during the progression of RA and could be a novel therapeutic strategy for modulating the hyperplasia of the synovium, through the regulation of class 3 semaphorins expression.
Collapse
Affiliation(s)
- Sara Martínez-Ramos
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Carlos Rafael-Vidal
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Beatriz Malvar-Fernández
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Angela Rodriguez-Trillo
- Laboratorio de Reumatología Experimental y Observacional, Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico, Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Douglas Veale
- Rheumatology EULAR Centre of Excellence, St Vincent's University Hospital and University College Dublin, Dublin, Ireland
| | - Ursula Fearon
- Rheumatology EULAR Centre of Excellence, St Vincent's University Hospital and University College Dublin, Dublin, Ireland
- Department of Molecular Rheumatology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin, Ireland
| | - Carmen Conde
- Laboratorio de Reumatología Experimental y Observacional, Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico, Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saude (SERGAS), Santiago de Compostela, Spain
| | - Javier Conde-Aranda
- Molecular and Cellular Gastroenterology, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Jose María Pego-Reigosa
- Rheumatology & Immuno-mediated Diseases Research Group (IRIDIS), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
- Rheumatology Department, University Hospital Complex of Vigo, Vigo, Spain
| | - Kris A Reedquist
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Samuel García
- Correspondence to: Samuel García, Rheumatology & Immune-mediated Diseases (IRIDIS) Group, Galicia Sur Health Research Institute (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Estrada Clara Campoamor No. 341, Beade, 36312 Vigo (Pontevedra), Spain. E-mail:
| |
Collapse
|
9
|
Malvi P, Reddy DS, Kumar R, Chava S, Burela S, Parajuli K, Zhang X, Wajapeyee N. LIMK2 promotes melanoma tumor growth and metastasis through G3BP1-ESM1 pathway-mediated apoptosis inhibition. Oncogene 2023; 42:1478-1491. [PMID: 36922679 DOI: 10.1038/s41388-023-02658-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Melanoma is the leading cause of skin cancer-related deaths, and current melanoma therapies, including targeted therapies and immunotherapies, benefit only a subset of metastatic melanoma patients due to either intrinsic or acquired resistance. LIM domain kinase 2 (LIMK2) is a serine/threonine kinase that plays an important role in the regulation of actin filament dynamics. Here, we show that LIMK2 is overexpressed in melanoma, and its genetic or pharmacological inhibition impairs melanoma tumor growth and metastasis in both cell culture and mice. To determine the mechanism by which LIMK2 promotes melanoma tumor growth and metastatic progression, we performed a phosphoproteomics analysis and identified G3BP1 as a key LIMK2 target, which mirrored the effects of LIMK2 inhibition when inhibited. To further determine the role of G3BP1 downstream of LIMK2, we knocked down the expression of G3BP1, performed RNA-seq analysis, and identified ESM1 as a downstream target of G3BP1. G3BP1 was required for ESM1 mRNA stability, and ESM1 ectopic expression rescued LIMK2 or G3BP1 inhibition-induced suppression of melanoma growth and metastatic attributes. These results collectively identify the LIMK2→G3BP1→ESM1 pathway as a facilitator of melanoma tumor growth and metastasis and document that LIMK2 is a therapeutically tractable target for melanoma therapy.
Collapse
Affiliation(s)
- Parmanand Malvi
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Dhana Sekhar Reddy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Raj Kumar
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Suresh Chava
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Sneha Burela
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Keshab Parajuli
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Xuchen Zhang
- Department of Pathology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Narendra Wajapeyee
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
- UAB O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| |
Collapse
|
10
|
Bica C, Tirpe A, Nutu A, Ciocan C, Chira S, Gurzau ES, Braicu C, Berindan-Neagoe I. Emerging roles and mechanisms of semaphorins activity in cancer. Life Sci 2023; 318:121499. [PMID: 36775114 DOI: 10.1016/j.lfs.2023.121499] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Semaphorins are regulatory molecules that are linked to the modulation of several cancer processes, such as angiogenesis, cancer cell invasiveness and metastasis, tumor growth, as well as cancer cell survival. Semaphorin (SEMA) activity depends on the cancer histotypes and their particularities. In broad terms, the effects of SEMAs result from their interaction with specific receptors/co-receptors - Plexins, Neuropilins and Integrins - and the subsequent effects upon the downstream effectors (e.g. PI3K/AKT, MAPK/ERK). The present article serves as an integrative review work, discussing the broad implications of semaphorins in cancer, focusing on cell proliferation/survival, angiogenesis, invasion, metastasis, stemness, and chemo-resistance/response whilst highlighting their heterogeneity as a family. Herein, we emphasized that semaphorins are largely implicated in cancer progression, interacting with the tumor microenvironment components. Whilst some SEMAs (e.g. SEMA3A, SEMA3B) function widely as tumor suppressors, others (e.g. SEMA3C) act as pro-tumor semaphorins. The differences observed in terms of the biological structure of SEMAs and the particularities of each cancer histotypes require that each semaphorin be viewed as a unique entity, and its roles must be researched accordingly. A more in-depth and comprehensive view of the molecular mechanisms that promote and sustain the malignant behavior of cancer cells is of utmost importance.
Collapse
Affiliation(s)
- Cecilia Bica
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Alexandru Tirpe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Faculty of Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes Street, 400012 Cluj-Napoca, Romania.
| | - Andreea Nutu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Cristina Ciocan
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Sergiu Chira
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Eugen S Gurzau
- Cluj School of Public Health, College of Political, Administrative and Communication Sciences, Babes-Bolyai University, 7 Pandurilor Street, Cluj-Napoca, Romania; Environmental Health Center, 58 Busuiocului Street, 400240 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania.
| |
Collapse
|
11
|
Darbeheshti F, Mansoori Y, Azizi-Tabesh G, Zolfaghari F, Kadkhoda S, Rasti A, Rezaei N, Shakoori A. Evaluation of Circ_0000977-Mediated Regulatory Network in Breast Cancer: A Potential Discriminative Biomarker for Triple-Negative Tumors. Biochem Genet 2023:10.1007/s10528-023-10331-x. [PMID: 36645554 DOI: 10.1007/s10528-023-10331-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023]
Abstract
Previous investigations have revealed that circular RNAs (circRNAs) play pivotal roles in cancer development and progression by participating in several biological procedures, such as competing endogenous RNA (ceRNA) networks. Recently, circRNAs have been proposed as non-invasive, stable, and affordable cell-free biomarkers for cancer screening and test monitoring. Although, their clinical usefulness vastly remains to be evaluated in breast cancer (BC). Triple-negative breast cancer (TNBC), as the most challenging BC subtype, is an urgent requirement of identifying specific biomarkers and discovering the molecular mechanisms that lead to aggressive behaviors of tumor cells. The therapeutic strategies for TN patients have remained limited due to the impracticality of endocrine therapies and a remarkable portion of patients with TNBC experience recurrence, chemoresistance, and metastasis. TNBC Microarray expression profile analysis found that circ_0000977 is one of the most dysregulated circRNA in TNBC in comparison with non-TNBC. It could be a clue referring to the potential clinical utility of circ_0000977 in TNBC. The current study aims to assess the clinical implications and potential ceRNA regulatory network of circ_0000977 in TNBC. We confirmed circ_0000977 down-regulation in TNBC cell lines and tumors versus non-TNBC samples by real-time PCR. Subsequently, an assessment of the diagnostic value of circ_0000977 in plasma samples from triple-negative patients revealed a potential diagnostic cell-free biomarker in triple-negative BC. Finally, our integrative approach uncovered potential circ-0000977/miR-135b-5p/mRNAs regulatory network in TNBC. The inhibitory effect of miR-135b-5p on its downstream mRNAs was assessed by knocking down it in MDA-MB-231 cells. Functional and correlation analyses revealed APC and GATA3 could be regulated by circ_0000977/miR-135b-5p ceRNA axis, which presents valuable insight into circ-0000977-mediated gene silencing involved in the ceRNA network of TNBC. This study uncovered the potential clinical implication of circ_0000977 for the diagnosis and treatment of TNBC patients.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Yaser Mansoori
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Ghasem Azizi-Tabesh
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Zolfaghari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Azam Rasti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran. .,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Hu J, Chen W, Shen L, Chen Z, Huang J. Crosstalk between the peripheral nervous system and breast cancer influences tumor progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188828. [PMID: 36283598 DOI: 10.1016/j.bbcan.2022.188828] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022]
Abstract
Recent studies have shown that peripheral nerves play an important role in the progression of breast cancer. Breast cancer cells (BCCs) promote local peripheral nerve growth and branching by secreting neuroactive molecules, including neurotrophins and axon guidance molecules (AGMs). Sympathetic nerves promote breast cancer progression, while parasympathetic and sensory nerves mainly have anti-tumor effects in the progression of breast cancer. Specifically, peripheral nerves can influence the progression of breast cancer by secreting neurotransmitters not only directly binding to the corresponding receptors of BCCs, but also indirectly acting on immune cells to modulate anti-tumor immunity. In this review, we summarize the crosstalk between breast cancer and peripheral nerves and the roles of important neuroactive molecules in the progression of breast cancer. In addition, we summarize indicators, including nerve fiber density and perineural invasion (PNI), that may help determine the prognosis of breast cancer based on current research results, as well as potential therapeutic approaches, such as β-blockers and retroviral-mediated genetic neuroengineering techniques, that may enhance the prognosis of breast cancer. In addition, we propose suggestions for future research priorities based on a current lack of knowledge in this area.
Collapse
Affiliation(s)
- Jianming Hu
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Wuzhen Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Lesang Shen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Zhigang Chen
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| | - Jian Huang
- Department of Breast Surgery, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China..
| |
Collapse
|
13
|
Upregulated GATA3/miR205-5p Axis Inhibits MFNG Transcription and Reduces the Malignancy of Triple-Negative Breast Cancer. Cancers (Basel) 2022; 14:cancers14133057. [PMID: 35804829 PMCID: PMC9264964 DOI: 10.3390/cancers14133057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Triple-negative cancer (TNBC) is a deadly disease that presents a potential health threat to women worldwide. It is the most aggressive and presents a poor prognosis among all breast cancer subgroups. We previously demonstrated that the elevated expression of manic fringe (MFNG) plays a pivotal role in breast cancer. However, the mechanism through which MFNG is regulated remains obscure. The study presented here set out to determine the mechanism by which MFNG expression is regulated in TNBC. Our findings revealed that GATA3 and miR-205-p cooperatively block the transcription of MFNG leading to the inhibition of cell migration and tumor growth in vitro and in vivo. Our study uncovers a novel GATA3/miR-205-p/MFNG feed-forward loop and miR205-5p could be adopted as a potential therapeutic strategy of TNBC. Abstract Triple-negative breast cancer (TNBC) accounts for approximately 20% of all breast carcinomas and has the worst prognosis of all breast cancer subtypes due to the lack of an effective target. Therefore, understanding the molecular mechanism underpinning TNBC progression could explore a new target for therapy. While the Notch pathway is critical in the development process, its dysregulation leads to TNBC initiation. Previously, we found that manic fringe (MFNG) activates the Notch signaling and induces breast cancer progression. However, the underlying molecular mechanism of MFNG upstream remains unknown. In this study, we explore the regulatory mechanisms of MFNG in TNBC. We show that the increased expression of MFNG in TNBC is associated with poor clinical prognosis and significantly promotes cell growth and migration, as well as Notch signaling activation. The mechanistic studies reveal that MFNG is a direct target of GATA3 and miR205-5p and demonstrate that GATA3 and miR205-5p overexpression attenuate MFNG oncogenic effects, while GATA3 knockdown mimics MFNG phenotype to promote TNBC progression. Moreover, we illustrate that GATA3 is required for miR205-5p activation to inhibit MFNG transcription by binding to the 3′ UTR region of its mRNA, which forms the GATA3/miR205-5p/MFNG feed-forward loop. Additionally, our in vivo data show that the miR205-5p mimic combined with polyetherimide-black phosphorus (PEI-BP) nanoparticle remarkably inhibits the growth of TNBC-derived tumors which lack GATA3 expression. Collectively, our study uncovers a novel GATA3/miR205-5p/MFNG feed-forward loop as a pathway that could be a potential therapeutic target for TNBC.
Collapse
|
14
|
Meng Z, Li FL, Fang C, Yeoman B, Qiu Y, Wang Y, Cai X, Lin KC, Yang D, Luo M, Fu V, Ma X, Diao Y, Giancotti FG, Ren B, Engler AJ, Guan KL. The Hippo pathway mediates Semaphorin signaling. SCIENCE ADVANCES 2022; 8:eabl9806. [PMID: 35613278 PMCID: PMC9132450 DOI: 10.1126/sciadv.abl9806] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Semaphorins were originally identified as axonal guidance molecules, but they also control processes such as vascular development and tumorigenesis. The downstream signaling cascades of Semaphorins in these biological processes remain unclear. Here, we show that the class 3 Semaphorins (SEMA3s) activate the Hippo pathway to attenuate tissue growth, angiogenesis, and tumorigenesis. SEMA3B restoration in lung cancer cells with SEMA3B loss of heterozygosity suppresses cancer cell growth via activating the core Hippo kinases LATS1/2 (large tumor suppressor kinase 1/2). Furthermore, SEMA3 also acts through LATS1/2 to inhibit angiogenesis. We identified p190RhoGAPs as essential partners of the SEMA3A receptor PlexinA in Hippo regulation. Upon SEMA3 treatment, PlexinA interacts with the pseudo-guanosine triphosphatase (GTPase) domain of p190RhoGAP and simultaneously recruits RND GTPases to activate p190RhoGAP, which then stimulates LATS1/2. Disease-associated etiological factors, such as genetic lesions and oscillatory shear, diminish Hippo pathway regulation by SEMA3. Our study thus discovers a critical role of Hippo signaling in mediating SEMA3 physiological function.
Collapse
Affiliation(s)
- Zhipeng Meng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Fu-Long Li
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Cao Fang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin Yeoman
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yunjiang Qiu
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Sylvester Comprehensive Cancer Center, Miami, FL 33136, USA
| | - Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Kimberly C. Lin
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Di Yang
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Min Luo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Vivian Fu
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Xiaoxiao Ma
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yarui Diao
- Regeneration Next Initiative, Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Filippo G. Giancotti
- Department of Cancer Biology and David H. Koch Center for Applied Research of GU Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Herbert Irving Comprehensive Cancer Center and Department of Genetics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10033, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam J. Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
15
|
Zheng Y, Wang K, Li N, Zhang Q, Chen F, Li M. Prognostic and Immune Implications of a Novel Pyroptosis-Related Five-Gene Signature in Breast Cancer. Front Surg 2022; 9:837848. [PMID: 35656090 PMCID: PMC9152226 DOI: 10.3389/fsurg.2022.837848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
Background Breast cancer (BC) is the most common cancer among women worldwide, with enormous heterogeneity. Pyroptosis has a significant impact on the development and progression of tumors. Nonetheless, the possible correlation between pyroptosis-related genes (PRGs) and the BC immune microenvironment has yet to be investigated. Materials and methods In The Cancer Genome Atlas Breast Cancer cohort, 38 PRGs were shown to be significantly different between malignant and non-malignant breast tissues. The 38 PRGs’ consensus clustering grouped 1,089 individuals into two pyroptosis-related (PR) patterns. Using univariate and LASSO-Cox analyses, a PR five-gene predictive signature was constructed based on the differentially expressed genes between two clusters. The tools estimation of stromal and immune cells in malignant tumours using expression data (ESTIMATE), cell type identification by estimating relative subsets Of RNA transcripts (CIBERSORT), and single-sample gene set enrichment analysis (ssGSEA) were used to investigate the BC tumor microenvironment (TME). Results In TME, the two PR clusters displayed distinct clinicopathological characteristics, survival outcomes, and immunocyte infiltration features. The developed five-signature model (SEMA3B, IGKC, KLRB1, BIRC3, and PSME2) classified BC patients into two risk groups based on the estimated median risk score. Patients in the low-scoring category had a higher chance of survival and more extensive immunocyte infiltration. An external validation set can yield similar results. Conclusion Our data suggest that PRGs have a significant impact on the BC immunological microenvironment. The PR clusters and associated predictive signature stimulate additional research into pyroptosis in order to optimize therapeutic strategies for BC patients and their responses to immune therapy.
Collapse
Affiliation(s)
- Yuanyuan Zheng
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Kainan Wang
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Ning Li
- Department of Foreign Language, Dalian Medical University, Dalian, China
| | - Qianran Zhang
- Department of Breast Diseases, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fengxi Chen
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Man Li
- Department of Oncology, The Second Hospital of Dalian Medical University, Dalian, China
- Correspondence: Man Li
| |
Collapse
|
16
|
Jiang S, Bu X, Tang D, Yan C, Huang Y, Fang K. A Tumor Suppressor Gene-Based Prognostic Classifier Predicts Prognosis, Tumor Immune Infiltration, and Small Molecule Compounds in Breast Cancer. Front Genet 2022; 12:783026. [PMID: 35186006 PMCID: PMC8850650 DOI: 10.3389/fgene.2021.783026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/14/2021] [Indexed: 11/30/2022] Open
Abstract
Objective: Tumor suppressor genes (TSGs) play critical roles in the cell cycle checkpoints and in modulating genomic stability. Here, we aimed to develop a TSG-based prognostic classifier for breast cancer. Methods: Gene expression profiles and clinical information of breast cancer were curated from TCGA (discovery set) and Gene Expression Omnibus (GEO) repository (GSE12093 and GSE17705 datasets as testing sets). Univariate cox regression analysis and random forest machine learning method were presented for screening characteristic TSGs. After multivariate cox regression analyses, a TSG-based prognostic classifier was constructed. The predictive efficacy was verified by C-index and receiver operating characteristic (ROC) curves. Meanwhile, the predictive independency was assessed through uni- and multivariate cox regression analyses and stratified analyses. Tumor immune infiltration was estimated via ESTIMATE and CIBERSORT algorithms. Small molecule agents were predicted through CMap method. Molecular subtypes were clustered based on the top 100 TSGs with the most variance. Results: A prognostic classifier including nine TSGs was established. High-risk patients were predictive of undesirable prognosis. C-index and ROC curves demonstrated its excellent predictive performance in prognosis. Also, this prognostic classifier was independent of conventional clinicopathological parameters. Low-risk patients exhibited increased infiltration levels of immune cells like T cells CD8. Totally, 48 small molecule compounds were predicted to potentially treat breast cancer. Five TSG-based molecular subtypes were finally constructed, with distinct prognosis and clinicopathological features. Conclusion: Collectively, this study provided a TSG-based prognostic classifier with the potential to predict clinical outcomes and immune infiltration in breast cancer and identified potential small molecule agents against breast cancer.
Collapse
Affiliation(s)
- Suxiao Jiang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Xiangjing Bu
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
| | - Desheng Tang
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Changsheng Yan
- Department of Surgery, The First Affiliated Hospital of Harbin Medical University, Heilongjiang, China
| | - Yan Huang
- Department of Surgery, Affiliated Hospital of Ningxia Medical University, Ningxia, China
| | - Kun Fang
- Department of Surgery, Yinchuan Maternal and Child Health Hospital, Yinchuan, China
- *Correspondence: Kun Fang,
| |
Collapse
|
17
|
Li CH, Hsu TI, Chang YC, Chan MH, Lu PJ, Hsiao M. Stationed or Relocating: The Seesawing EMT/MET Determinants from Embryonic Development to Cancer Metastasis. Biomedicines 2021; 9:1265. [PMID: 34572451 PMCID: PMC8472300 DOI: 10.3390/biomedicines9091265] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial and mesenchymal transition mechanisms continue to occur during the cell cycle and throughout human development from the embryo stage to death. In embryo development, epithelial-mesenchymal transition (EMT) can be divided into three essential steps. First, endoderm, mesoderm, and neural crest cells form, then the cells are subdivided, and finally, cardiac valve formation occurs. After the embryonic period, the human body will be subjected to ongoing mechanical stress or injury. The formation of a wound requires EMT to recruit fibroblasts to generate granulation tissues, repair the wound and re-create an intact skin barrier. However, once cells transform into a malignant tumor, the tumor cells acquire the characteristic of immortality. Local cell growth with no growth inhibition creates a solid tumor. If the tumor cannot obtain enough nutrition in situ, the tumor cells will undergo EMT and invade the basal membrane of nearby blood vessels. The tumor cells are transported through the bloodstream to secondary sites and then begin to form colonies and undergo reverse EMT, the so-called "mesenchymal-epithelial transition (MET)." This dynamic change involves cell morphology, environmental conditions, and external stimuli. Therefore, in this manuscript, the similarities and differences between EMT and MET will be dissected from embryonic development to the stage of cancer metastasis.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Tai-I Hsu
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Yu-Chan Chang
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei 112, Taiwan;
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
| | - Pei-Jung Lu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Clinical Medicine Research Center, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan 704, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (C.-H.L.); (T.-I.H.); (M.-H.C.)
- Department of Biochemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
18
|
Qi Y, Mo K, Zhang T. A transcription factor that promotes proliferation, migration, invasion, and epithelial-mesenchymal transition of ovarian cancer cells and its possible mechanisms. Biomed Eng Online 2021; 20:83. [PMID: 34399777 PMCID: PMC8366031 DOI: 10.1186/s12938-021-00919-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/05/2021] [Indexed: 01/23/2023] Open
Abstract
Background Ovarian cancer is one of the most common gynecological malignancies with the high morbidity and mortality. This study was aimed to explore the role of non-structure maintenance of chromosomes condensin I complex subunit H (NCAPH) in the progression of ovarian cancer (OC) and the transcription regulatory effects of GATA binding protein 3 (GATA3) on this gene. Methods Firstly, NCAPH and GATA3 expression in OC tissues and several human OC cell lines was, respectively, evaluated by TNMplot database and Western blot analysis. Then, NCAPH was silenced to assess the proliferation, migration, and invasion of OC cells in turn using CCK-8, wound healing, and transwell assays. Western blotting was used to determine the expression of epithelial--mesenchymal transition (EMT)-related proteins and PI3K/PDK1/AKT signaling proteins. The potential binding sites of GATA3 on NCAPH promoter were predicated using JASPAR database, which were verified by luciferase reporter assay and chromosomal immunoprecipitation. Subsequently, GATA3 was overexpressed to examine the biological functions of OC cells with NCAPH silencing. Results NCAPH and GATA3 expression was significantly upregulated in OC tissues and cell lines. NCAPH loss-of-function notably inhibited the proliferation, migration, invasion, and EMT of OC cells. Moreover, the expression of p-PI3K, PDK1, and p-AKT was downregulated after NCAPH knockdown. Furthermore, GATA3 was confirmed to bind to NCAPH promoter. GATA3 overexpression alleviated the inhibitory effects of NCAPH silencing on the proliferation, migration, invasion, EMT, and expression of proteins in PI3K/PDK1/AKT pathway of OC cells. Conclusion To sum up, NCAPH expression transcriptional activation by GATA3 accelerates the progression of OC via upregulating PI3K/PDK1/AKT pathway.
Collapse
Affiliation(s)
- Yingying Qi
- Department of Gynecology, the Fifth Affiliated Hospital of Guangzhou Medical University, No. 621 Harbor Road, Guangzhou, 510700, Guangdong, China
| | - Kexin Mo
- Department of Gynecology, the Fifth Affiliated Hospital of Guangzhou Medical University, No. 621 Harbor Road, Guangzhou, 510700, Guangdong, China
| | - Ting Zhang
- Department of Gynecology, the Fifth Affiliated Hospital of Guangzhou Medical University, No. 621 Harbor Road, Guangzhou, 510700, Guangdong, China.
| |
Collapse
|
19
|
Darbeheshti F, Zokaei E, Mansoori Y, Emadi Allahyari S, Kamaliyan Z, Kadkhoda S, Tavakkoly Bazzaz J, Rezaei N, Shakoori A. Circular RNA hsa_circ_0044234 as distinct molecular signature of triple negative breast cancer: a potential regulator of GATA3. Cancer Cell Int 2021; 21:312. [PMID: 34126989 PMCID: PMC8201848 DOI: 10.1186/s12935-021-02015-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have been implicated in the initiation and development of breast cancer as functional non-coding RNAs (ncRNA). The roles of circRNAs as the competing endogenous RNAs (ceRNAs) to sponge microRNAs (miRNAs) have also been indicated. However, the functions of circRNAs in breast cancer have not been totally elucidated. This study aimed to explore the clinical implications and possible roles of circ_0044234 in carcinogenesis of the most problematic BC subtype, triple negative breast cancer (TNBC), which are in desperate need of biomarkers and targeted therapies. METHODS The importance of circ_0044234 as one of the most dysregulated circRNAs in TNBC was discovered through microarray expression profile analysis. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to confirm the downregulation of circ_0044234 in triple negative tumors and cell lines versus non-triple negative ones. The bioinformatics prediction revealed that circ_0044234 could act as an upstream sponge in the miR-135b/GATA3 axis, two of the most dysregulated transcripts in TNBC. RESULTS Our experimental investigation of circ_0044234 expressions in various BC subtypes as well as cell lines reveals that TNBC expresses circ_0044234 at a substantially lower level than non-TNBC. The ROC curve analysis indicates that it could be applied as a discriminative biomarker to identify TNBC from other BC subtypes. Moreover, circ_0044234 expression could be an independent prognostic biomarker in BC. Interestingly, a substantial inverse expression correlation was detected between circ_0044234 and miR-135b-5p as well as between miR-135b-5p and GATA3 in breast tumors. CONCLUSIONS The possible clinical usefulness of circ_0044234 as a promising distinct biomarker and upcoming therapeutic target for TNBC have been indicated in this research. Our comprehensive approach revealed the potential circ_0044234/miR135b-5p/GATA3 ceRNA axis in TNBC.
Collapse
Affiliation(s)
- Farzaneh Darbeheshti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Zokaei
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Yaser Mansoori
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran.,Department of Medical Genetics, Fasa University of Medical Sciences, Fasa, Iran
| | - Sima Emadi Allahyari
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zeeba Kamaliyan
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Tavakkoly Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Abbas Shakoori
- Medical Genetic Ward, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, Iran. .,Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Genomic profiling reveals heterogeneous populations of ductal carcinoma in situ of the breast. Commun Biol 2021; 4:438. [PMID: 33795819 PMCID: PMC8016951 DOI: 10.1038/s42003-021-01959-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
In a substantial number of patients, ductal carcinoma in situ (DCIS) of the breast will never progress to invasive ductal carcinoma, and these patients are often overtreated under the current clinical criteria. Although various candidate markers are available, relevant markers for delineating risk categories have not yet been established. In this study, we analyzed the clinical characteristics of 431 patients with DCIS and performed whole-exome sequencing analysis in a 21-patient discovery cohort and targeted deep sequencing analysis in a 72-patient validation cohort. We determined that age <45 years, HER2 amplification, and GATA3 mutation are possible indicators of relapse. PIK3CA mutation negativity and PgR negativity were also suggested to be risk factors. Spatial transcriptome analysis further revealed that GATA3 dysfunction upregulates epithelial-to-mesenchymal transition and angiogenesis, followed by PgR downregulation. These results reveal the existence of heterogeneous cell populations in DCIS and provide predictive markers for classifying DCIS and optimizing treatment. Satoi Nagasawa and Yuta Kuze et al. report a multi-omic analysis of ductal carcinoma in situ (DCIS) of the breast, including whole-exome, single-cell, and spatial transcriptome sequencing. They find that for patients under 45 years of age, HER2 amplification and GATA3 mutation are associated with higher risk of relapse, suggesting they could be used as predictive markers when deciding on a treatment course.
Collapse
|
21
|
Yang B, Su Z, Chen G, Zeng Z, Tan J, Wu G, Zhu S, Lin L. Identification of prognostic biomarkers associated with metastasis and immune infiltration in osteosarcoma. Oncol Lett 2021; 21:180. [PMID: 33574919 PMCID: PMC7816295 DOI: 10.3892/ol.2021.12441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma is the most common primary malignancy of the bones, and is associated with a high rate of metastasis and a poor prognosis. A tight association between the tumor microenvironment (TME) and osteosarcoma metastasis has been established. In the present study, the Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data (ESTIMATE) algorithm was applied to calculate the immune and stromal scores of patients with osteosarcoma based on data from The Cancer Genome Atlas database. A metagene approach and deconvolution method were used to reveal distinct TME landscapes in patients with osteosarcoma. Bioinformatics analysis was used to identify differentially expressed genes (DEGs) associated with metastasis and immune infiltration in osteosarcoma, and a risk model was constructed using the DEGs with potential prognostic significance. Subsequently, gene set enrichment and Spearman's correlation analyses were used to delineate the biological processes associated with these prognostic biomarkers. Finally, immunohistochemical (IHC) analysis was performed to evaluate the expression levels of immune infiltrates and prognostic biomarkers in clinical osteosarcoma tissues. The results of the ESTIMATE demonstrated that patients with non-metastatic osteosarcoma presented with higher immune/stromal scores and a more favorable prognosis compared with those with metastatic osteosarcoma. The TME landscapes in patients with osteosarcoma suggested that high levels of tumor-infiltrating immune cells (TIICs) may suppress metastasis. Increased numbers of CD56bright natural killer cells, immature B cells, M1 macrophages and neutrophils, and lower levels of M2 macrophages were observed in the non-metastatic tissues compared with those in the metastatic tissues. A total of 69 DEGs were identified to be associated with metastasis and immune infiltration in osteosarcoma. Of these, GATA3, LPAR5, EVI2B, RIAM and CFH exhibited prognostic potential and were highly expressed in non-metastatic osteosarcoma tissues based on the IHC analysis results. These biomarkers were involved in various immune-related biological processes and were positively associated with multiple TIICs and immune signatures. The risk model constructed using these prognostic biomarkers demonstrated high predictive accuracy for the prognosis of osteosarcoma. In conclusion, the present study proposed a five-biomarker prognostic signature for the prediction of metastasis and immune infiltration in patients with osteosarcoma.
Collapse
Affiliation(s)
- Bingsheng Yang
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Zexin Su
- Department of Joint Surgery, Huadu District People's Hospital, Southern Medical University, Guangzhou, Guangdong 510800, P.R. China
| | - Guoli Chen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, Fujian 351100, P.R. China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Jianye Tan
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Guofeng Wu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Shuang Zhu
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| | - Lijun Lin
- Department of Orthopaedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510282, P.R. China
| |
Collapse
|
22
|
Li GZ, Shen D, Li GH, Wei M, Zheng LJ, Liu ZL, Sun RQ, Zhou SJ, Zhang ZL, Gao YC. Decreased expression of serum semaphorin 3B is associated with poor prognosis of patients with hepatocellular carcinoma. Exp Ther Med 2021; 21:236. [PMID: 33603844 PMCID: PMC7851624 DOI: 10.3892/etm.2021.9667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 12/08/2020] [Indexed: 01/01/2023] Open
Abstract
Semaphorin 3B (SEMA-3B), which belongs to the semaphorin family, has an important role in cell apoptosis and inhibition of angiogenesis. A previous study by our group revealed that SEMA-3B was downregulated in tumor tissues of patients with hepatocellular carcinoma (HCC) and exerts anti-motility and anti-invasion effects on tumor cells. However, the serum levels of SEMA-3B and their clinical significance have remained elusive; therefore, the aim of the present study was to monitor its expression in HCC and investigate its clinical significance. ELISA was used to determine the serum levels of SEMA-3B in 132 patients with HCC and 57 healthy individuals. The association between SEMA-3B and clinicopathological parameters was investigated. Serum SEMA-3B was indicated to be significantly decreased in patients with HCC as compared with that in the controls (P<0.05) and it was negatively associated with tumor size (P=0.039), encapsulation (P=0.002) and TNM stage (P=0.034). The prognosis of patients with low expression of SEMA-3B was poor. In conclusion, the results of the present study revealed that serum SEMA-3B is decreased in HCC and is negatively associated with prognosis; therefore, it may be used as a prognostic marker in HCC.
Collapse
Affiliation(s)
- Guang-Zhen Li
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Di Shen
- Department of Gynecology and Obstetrics, Shandong Maternity and Child Care Hospital, Jinan, Shandong 250014, P.R. China
| | - Guang-Hong Li
- Department of Endocrinology, The Affiliated Hospital of Taishan Medical College, Tai'an, Shandong 271000, P.R. China
| | - Meng Wei
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Li-Jie Zheng
- Department of General Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Zeng-Li Liu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Rong-Qi Sun
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Shao-Jun Zhou
- Department of General Surgery, Qilu Hospital of Shandong University, Qingdao, Shandong 266035, P.R. China
| | - Zong-Li Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yan-Chao Gao
- Department of Hepatobiliary Surgery, Liaocheng People's Hospital, Liaocheng, Shandong 252000, P.R. China
| |
Collapse
|
23
|
Mastrantonio R, You H, Tamagnone L. Semaphorins as emerging clinical biomarkers and therapeutic targets in cancer. Theranostics 2021; 11:3262-3277. [PMID: 33537086 PMCID: PMC7847692 DOI: 10.7150/thno.54023] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a large family of developmental regulatory signals, characterized by aberrant expression in human cancers. These molecules crucially control cell-cell communication, cell migration, invasion and metastasis, tumor angiogenesis, inflammatory and anti-cancer immune responses. Semaphorins comprise secreted and cell surface-exposed molecules and their receptors are mainly found in the Plexin and Neuropilin families, which are further implicated in a signaling network controlling the tumor microenvironment. Accumulating evidence indicates that semaphorins may be considered as novel clinical biomarkers for cancer, especially for the prediction of patient survival and responsiveness to therapy. Moreover, preclinical experimental studies have demonstrated that targeting semaphorin signaling can interfere with tumor growth and/or metastatic dissemination, suggesting their relevance as novel therapeutic targets in cancer; this has also prompted the development of semaphorin-interfering molecules for application in the clinic. Here we will survey, in diverse human cancers, the current knowledge about the relevance of semaphorin family members, and conceptualize potential lines of future research development in this field.
Collapse
|
24
|
Effects of miR-373 Inhibition on Glioblastoma Growth by Reducing Limk1 In Vitro. J Immunol Res 2020; 2020:7671502. [PMID: 33062725 PMCID: PMC7539108 DOI: 10.1155/2020/7671502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive brain tumor with shorter median overall survival time. It is urgent to find novel methods to enhance the therapeutic efficiency clinically. miR-373 is related to the biological development process of cancers, but there are no reports whether modulation on miR-373 could affect GBM development or modify the efficiency of chemo- or radiotherapy yet. Our current study found that the higher level of miR-373 was observed in U-251 cells. Inhibition on miR-373 could reduce the U-251 cell number by 65% and PCNA expression obviously. In addition, inhibition on miR-373 sensitized U-251 cells to chemo- or radiotherapy. The cell cycle of U-251 cells could be modulated by miR-373 knockdown, which could enhance the p21 expression and reduce the cdc2 level. Anti-miR-373 could increase the Bax/Bcl-2 ratio of U-251 cells and induce cell apoptosis significantly. These above effects of miR-373 could be reversed by Limk1 overexpression. Thus, our experimental data confirmed the fact that miR-373 could be a new therapeutic target to enhance the efficiency of chemo- or radiotherapy for clinical GBM patients.
Collapse
|
25
|
Zhang X, Shao S, Li L. Characterization of Class-3 Semaphorin Receptors, Neuropilins and Plexins, as Therapeutic Targets in a Pan-Cancer Study. Cancers (Basel) 2020; 12:cancers12071816. [PMID: 32640719 PMCID: PMC7409005 DOI: 10.3390/cancers12071816] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/03/2020] [Indexed: 12/19/2022] Open
Abstract
Class-3 semaphorins (SEMA3s), initially characterized as axon guidance cues, have been recognized as key regulators for immune responses, angiogenesis, tumorigenesis and drug responses. The functions of SEMA3s are attributed to the activation of downstream signaling cascades mainly mediated by cell surface receptors neuropilins (NRPs) and plexins (PLXNs), yet their roles in human cancers are not completely understood. Here, we provided a detailed pan-cancer analysis of NRPs and PLXNs in their expression, and association with key signal transducers, patient survival, tumor microenvironment (TME), and drug responses. The expression of NRPs and PLXNs were dysregulated in many cancer types, and the majority of them were further dysregulated in metastatic tumors, indicating a role in metastatic progression. Importantly, the expression of these genes was frequently associated with key transducers, patient survival, TME, and drug responses; however, the direction of the association varied for the particular gene queried and the specific cancer type/subtype tested. Specifically, NRP1, NRP2, PLXNA1, PLXNA3, PLXNB3, PLXNC1, and PLXND1 were primarily associated with aggressive phenotypes, whereas the rest were more associated with favorable prognosis. These data highlighted the need to study each as a separate entity in a cancer type- and subtype-dependent manner.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
- Correspondence:
| | - Shuai Shao
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43201, USA;
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
26
|
Peszek W, Kras P, Grabarek BO, Boroń D, Oplawski M. Cisplatin Changes Expression of SEMA3B in Endometrial Cancer. Curr Pharm Biotechnol 2020; 21:1368-1376. [PMID: 32410560 DOI: 10.2174/1389201021666200514215839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/22/2020] [Accepted: 04/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Semaphorin 3B (SEMA3B) is characterized as a strong suppressing factor of the proliferation of cancerous cells and also by its anti-angiogenic effect. However, the knowledge on the changes in the expression profile of SEMA3B under the influence of cisplatin in endometrial cancer remains fragmented. The aim of this work was to note the changes in expression of SEMA3B when under the influence of cisplatin in the endometrial cancer cell line. METHODS Ishikawa cell line cells were exposed to three different concentrations of cisplatin: 2.5μM; 5μM; 10μM for 12, 24 and 48 hours and were compared to cells untreated by the drug. Changes in the expression profile of SEMA3B were determined based upon RtqPCR (mRNA) alongside the ELISA assay (protein). The Statistica 13.0 PL program was used for statistical analysis (p<0.05). RESULTS Changes on the transcriptome level seem to be more dynamic than on the proteome level. Regardless of the concentration given or the exposition period, the expression of semaphorin 3B was, in fact, higher in cells exposed to cisplatin. Statistically substantial differences (p<0.05) in the expression of SEMA3B mRNA and protein were seen for all incubation periods at the given cisplatin level when compared to the control. CONCLUSION Cisplatin causes a growth in the expression of SEMA3B in an endometrial cancer cell culture, this results in the restoration in the state of cell homeostasis and shows the effectiveness of pharmacotherapy, including a low risk of drug resistance.
Collapse
Affiliation(s)
- Wojciech Peszek
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Piotr Kras
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| | - Beniamin O Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Dariusz Boroń
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland,Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Zabrze, Poland,Department of Clinical Trials, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Kraków, Poland
| | - Marcin Oplawski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
| |
Collapse
|
27
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020. [PMID: 32399610 DOI: 10.1007/s00204-020-02752-z)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
28
|
Helm JS, Rudel RA. Adverse outcome pathways for ionizing radiation and breast cancer involve direct and indirect DNA damage, oxidative stress, inflammation, genomic instability, and interaction with hormonal regulation of the breast. Arch Toxicol 2020; 94:1511-1549. [PMID: 32399610 PMCID: PMC7261741 DOI: 10.1007/s00204-020-02752-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/16/2020] [Indexed: 12/15/2022]
Abstract
Knowledge about established breast carcinogens can support improved and modernized toxicological testing methods by identifying key mechanistic events. Ionizing radiation (IR) increases the risk of breast cancer, especially for women and for exposure at younger ages, and evidence overall supports a linear dose-response relationship. We used the Adverse Outcome Pathway (AOP) framework to outline and evaluate the evidence linking ionizing radiation with breast cancer from molecular initiating events to the adverse outcome through intermediate key events, creating a qualitative AOP. We identified key events based on review articles, searched PubMed for recent literature on key events and IR, and identified additional papers using references. We manually curated publications and evaluated data quality. Ionizing radiation directly and indirectly causes DNA damage and increases production of reactive oxygen and nitrogen species (RONS). RONS lead to DNA damage and epigenetic changes leading to mutations and genomic instability (GI). Proliferation amplifies the effects of DNA damage and mutations leading to the AO of breast cancer. Separately, RONS and DNA damage also increase inflammation. Inflammation contributes to direct and indirect effects (effects in cells not directly reached by IR) via positive feedback to RONS and DNA damage, and separately increases proliferation and breast cancer through pro-carcinogenic effects on cells and tissue. For example, gene expression changes alter inflammatory mediators, resulting in improved survival and growth of cancer cells and a more hospitable tissue environment. All of these events overlap at multiple points with events characteristic of "background" induction of breast carcinogenesis, including hormone-responsive proliferation, oxidative activity, and DNA damage. These overlaps make the breast particularly susceptible to ionizing radiation and reinforce that these biological activities are important characteristics of carcinogens. Agents that increase these biological processes should be considered potential breast carcinogens, and predictive methods are needed to identify chemicals that increase these processes. Techniques are available to measure RONS, DNA damage and mutation, cell proliferation, and some inflammatory proteins or processes. Improved assays are needed to measure GI and chronic inflammation, as well as the interaction with hormonally driven development and proliferation. Several methods measure diverse epigenetic changes, but it is not clear which changes are relevant to breast cancer. In addition, most toxicological assays are not conducted in mammary tissue, and so it is a priority to evaluate if results from other tissues are generalizable to breast, or to conduct assays in breast tissue. Developing and applying these assays to identify exposures of concern will facilitate efforts to reduce subsequent breast cancer risk.
Collapse
Affiliation(s)
- Jessica S Helm
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA
| | - Ruthann A Rudel
- Silent Spring Institute, 320 Nevada Street, Suite 302, Newton, MA, 02460, USA.
| |
Collapse
|
29
|
Zhang X, Klamer B, Li J, Fernandez S, Li L. A pan-cancer study of class-3 semaphorins as therapeutic targets in cancer. BMC Med Genomics 2020; 13:45. [PMID: 32241267 PMCID: PMC7118829 DOI: 10.1186/s12920-020-0682-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Initially characterized as axon guidance factors, semaphorins also have been implicated to have critical roles in multiple physiological and developmental functions, including the regulation of immune responses, angiogenesis, organ formation, and the etiology of multiple forms of cancer. Moreover, their contribution in immunity and the regulation of tumour microenvironment is becoming increasingly recognized. Here, we provide a comprehensive analysis of class-3 semaphorins, the only secreted family of genes among veterbrate semaphorins, in terms of their expression profiles and their association with patient survival. We also relate their role with immune subtypes, tumour microenvironment, and drug sensitivity using a pan-cancer study. RESULTS Expression profiles of class-3 semaphorins (SEMA3s) and their association with patient survival and tumour microenvironment were studied in 31 cancer types using the TCGA pan-cancer data. The expression of SEMA3 family varies in different cancer types with striking inter- and intra- cancer heterogeneity. In general, our results show that SEMA3A, SEMA3C, and SEMA3F are primarily upregulated in cancer cells, while the rest of SEMA3s are mainly down-regulated in the tested tumours. The expression of SEMA3 family members was frequently associated with patient overall survival. However, the direction of the association varied with regards to the particular SEMA3 isoform queried and the specific cancer type tested. More specifically, SEMA3A and SEMA3E primarily associate with a poor prognosis of survival, while SEMA3G typically associates with survival advantage. The rest of SEMA3s show either survival advantage or disadvantage dependent on cancer type. In addition, all SEMA3 genes show significant association with immune infiltrate subtypes, and they also correlate with level of stromal cell infiltration and tumour cell stemness with various degrees. Finally, our study revealed that SEMA3 genes, especially SEMA3C and SEMA3F may contribute to drug induced cancer cell resistance. CONCLUSIONS Our systematic analysis of class-3 semaphorin gene expression and their association with immune infiltrates, tumour microenvironment and cancer patient outcomes highlights the need to study each SEMA3 member as a separate entity within each specific cancer type. Also our study validated the identification of class-3 semaphorin signals as promising therapeutic targets in cancer although further laboratory validation still needed.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH, 43210, USA.
| | - Brett Klamer
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH, 43210, USA
| | - Jin Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH, 43210, USA
| | - Soledad Fernandez
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH, 43210, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH, 43210, USA
| |
Collapse
|
30
|
Wang C, Yang S, Jin L, Dai G, Yao Q, Xiang H, Zhang Y, Liu X, Xue B. Biological and Clinical Significance of GATA3 Detected from TCGA Database and FFPE Sample in Bladder Cancer Patients. Onco Targets Ther 2020; 13:945-958. [PMID: 32099398 PMCID: PMC6999784 DOI: 10.2147/ott.s237099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The purpose of the present study was to investigate the biological and clinical significance of GATA binding protein 3 (GATA3) in bladder cancer patients. Patients and Methods For the detection of the correlation between GATA3 expression and bladder cancer, we downloaded the mRNA expression data from the Cancer Genome Atlas (TCGA) database and conducted immunohistochemistry staining on formalin-fixed paraffin-embedded (FFPE) sample tissues. Then, bladder cancer cell lines were utilized to investigate the potential functions of GATA3 by cell apoptosis, proliferation and cycle assays. Results The mRNA data from TCGA database and bladder cancer cell lines suggested that GATA3 mRNA expression was significantly higher compared with normal tissues and cells. Conversely, the Western blot assay revealed that the expression of GATA3 was significantly lower in bladder cancer than normal urothelial cell line. Additionally, we found that over-expression of GATA3 was significantly associated with tumor subtype (P = 0.001 in TCGA; P = 0.004 in FFPE tissues), earlier clinical stage (P < 0.001 in TCGA; P < 0.001 in FFPE) and lower grade tumor (P = 0.057 in TCGA; P = 0.002 in FFPE). Kaplan-Meier analysis and multivariate Cox regression analysis indicated that age (P < 0.001 in both cohort), clinical stage (P = 0.028 in TCGA; P = 0.011 in FFPE), recurrence (P < 0.001) and low GATA3 in TCGA cohort (P = 0.035) but high GATA3 in FFPE cohort (P = 0.033) were independent risk factors for overall survival in patients. The assay to detect potential functions of GATA3 indicated that this biomarker could arrest the cell cycle of G2/M and S phase in T24 cells, and inhibit bladder cancer cells proliferation. Conclusion Collectively, our findings identified that GATA3 served as an important prognosis biomarker for bladder cancer patients. However, the mechanism of GATA3 in bladder cancer deserves further studies.
Collapse
Affiliation(s)
- Chenglu Wang
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Shuang Yang
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Lu Jin
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Guangcheng Dai
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Qiu Yao
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Han Xiang
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Yongsheng Zhang
- Department of Pathology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Xiaolong Liu
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| | - Boxin Xue
- Department of Urology, Second Affiliated Hospital of Soochow University, Suzhou 215004, People's Republic of China
| |
Collapse
|
31
|
Lan T, Li H, Zhang D, Xu L, Liu H, Hao X, Yan X, Liao H, Chen X, Xie K, Li J, Liao M, Huang J, Yuan K, Zeng Y, Wu H. KIAA1429 contributes to liver cancer progression through N6-methyladenosine-dependent post-transcriptional modification of GATA3. Mol Cancer 2019; 18:186. [PMID: 31856849 PMCID: PMC6921542 DOI: 10.1186/s12943-019-1106-z] [Citation(s) in RCA: 323] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/20/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification, the most abundant internal methylation of eukaryotic RNA transcripts, is critically implicated in RNA processing. As the largest known component in the m6A methyltransferase complex, KIAA1429 plays a vital role in m6A methylation. However, its function and mechanism in hepatocellular carcinoma (HCC) remain poorly defined. METHODS Quantitative PCR, western blot and immunohistochemistry were used to measure the expression of KIAA1429 in HCC. The effects of KIAA1429 on the malignant phenotypes of hepatoma cells were examined in vitro and in vivo. MeRIP-seq, RIP-seq and RNA-seq were performed to identify the target genes of KIAA1429. RESULTS KIAA1429 was considerably upregulated in HCC tissues. High expression of KIAA1429 was associated with poor prognosis among HCC patients. Silencing KIAA1429 suppressed cell proliferation and metastasis in vitro and in vivo. GATA3 was identified as the direct downstream target of KIAA1429-mediated m6A modification. KIAA1429 induced m6A methylation on the 3' UTR of GATA3 pre-mRNA, leading to the separation of the RNA-binding protein HuR and the degradation of GATA3 pre-mRNA. Strikingly, a long noncoding RNA (lncRNA) GATA3-AS, transcribed from the antisense strand of the GATA3 gene, functioned as a cis-acting element for the preferential interaction of KIAA1429 with GATA3 pre-mRNA. Accordingly, we found that the tumor growth and metastasis driven by KIAA1429 or GATA3-AS were mediated by GATA3. CONCLUSION Our study proposed a complex KIAA1429-GATA3 regulatory model based on m6A modification and provided insights into the epi-transcriptomic dysregulation in hepatocarcinogenesis and metastasis.
Collapse
Affiliation(s)
- Tian Lan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hui Li
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Delin Zhang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Lin Xu
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Hailing Liu
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiangyong Hao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China
| | - Xiaokai Yan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Haotian Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Xiangzheng Chen
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Kunlin Xie
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Jiaxin Li
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Mingheng Liao
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Jiwei Huang
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China
| | - Kefei Yuan
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Yong Zeng
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| | - Hong Wu
- Department of Liver Surgery & Liver Transplantation, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
- Laboratory of Liver Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, China.
| |
Collapse
|
32
|
Dai X, Ma R, Zhao X, Zhou F. Epigenetic profiles capturing breast cancer stemness for triple negative breast cancer control. Epigenomics 2019; 11:1811-1825. [PMID: 31729259 DOI: 10.2217/epi-2019-0266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: Triple-negative breast cancers (TNBCs) contain a higher percentage of breast cancer stem cells (BCSCs) than the other subtypes and lack effective yet safe-targeted therapies. We would like to unveil genes relevant to the therapeutic control of breast cancer stemness at the epigenetic level. Methods: We sequenced the transcriptome of BCSCs isolated from TNBCs, identified genes differentially expressed in these cells and subjected to DNA methylation and established the Bayesian network as well as interactions out of them. Results & conclusion: We presented a core epigenetic BCSC gene panel consisting of eight genes that can be used for BCSCs and TNBCs identification, and revealed the dominant roles of FOXA1 and GATA3 in orchestrating breast cancer heterogeneity and stemness.
Collapse
Affiliation(s)
- Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China
| | - Rong Ma
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, PR China.,Department of Biochemistry, School of Medicine, McGill University, Montreal H3A0G4, Canada
| | - Xijiang Zhao
- Affiliated Hospital of Jiangnan University, Wuxi 214062, PR China
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science & Technology, & Key Laboratory of Symbolic Computation & Knowledge Engineering of Ministry of Education, Jilin University, Jilin, Changchun 130012, PR China
| |
Collapse
|
33
|
Gioelli N, Maione F, Camillo C, Ghitti M, Valdembri D, Morello N, Darche M, Zentilin L, Cagnoni G, Qiu Y, Giacca M, Giustetto M, Paques M, Cascone I, Musco G, Tamagnone L, Giraudo E, Serini G. A rationally designed NRP1-independent superagonist SEMA3A mutant is an effective anticancer agent. Sci Transl Med 2019; 10:10/442/eaah4807. [PMID: 29794061 DOI: 10.1126/scitranslmed.aah4807] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 11/20/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Vascular normalizing strategies, aimed at ameliorating blood vessel perfusion and lessening tissue hypoxia, are treatments that may improve the outcome of cancer patients. Secreted class 3 semaphorins (SEMA3), which are thought to directly bind neuropilin (NRP) co-receptors that, in turn, associate with and elicit plexin (PLXN) receptor signaling, are effective normalizing agents of the cancer vasculature. Yet, SEMA3A was also reported to trigger adverse side effects via NRP1. We rationally designed and generated a safe, parenterally deliverable, and NRP1-independent SEMA3A point mutant isoform that, unlike its wild-type counterpart, binds PLXNA4 with nanomolar affinity and has much greater biochemical and biological activities in cultured endothelial cells. In vivo, when parenterally administered in mouse models of pancreatic cancer, the NRP1-independent SEMA3A point mutant successfully normalized the vasculature, inhibited tumor growth, curbed metastatic dissemination, and effectively improved the supply and anticancer activity of chemotherapy. Mutant SEMA3A also inhibited retinal neovascularization in a mouse model of age-related macular degeneration. In summary, mutant SEMA3A is a vascular normalizing agent that can be exploited to treat cancer and, potentially, other diseases characterized by pathological angiogenesis.
Collapse
Affiliation(s)
- Noemi Gioelli
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Federica Maione
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Chiara Camillo
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Michela Ghitti
- Biomolecular NMR Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Donatella Valdembri
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Noemi Morello
- Department of Neuroscience, University of Torino School of Medicine, 10126 Torino, Italy
| | - Marie Darche
- Growth, Reparation and Tissue Regeneration Laboratory, ERL-CNRS 9215, University of Paris-Est, 94000 Créteil, France
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Gabriella Cagnoni
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Yaqi Qiu
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy.,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology, 34149 Trieste, Italy
| | - Maurizio Giustetto
- Department of Neuroscience, University of Torino School of Medicine, 10126 Torino, Italy.,National Institute of Neuroscience-Italy, 10126 Torino, Italy
| | - Michel Paques
- Vision Institute, Sorbonne University, UPMC University of Paris 06, INSERM, CNRS, 75012 Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, 75012 Paris, France
| | - Ilaria Cascone
- Growth, Reparation and Tissue Regeneration Laboratory, ERL-CNRS 9215, University of Paris-Est, 94000 Créteil, France
| | - Giovanna Musco
- Biomolecular NMR Unit, IRCCS Ospedale San Raffaele, 20132 Milano, Italy
| | - Luca Tamagnone
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| | - Enrico Giraudo
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy. .,Department of Science and Drug Technology, University of Torino, 10125 Torino, Italy
| | - Guido Serini
- Department of Oncology, University of Torino School of Medicine, 10060 Candiolo, Torino, Italy. .,Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Torino, Italy
| |
Collapse
|
34
|
Chen LH, Liao CY, Lai LC, Tsai MH, Chuang EY. Semaphorin 6A Attenuates the Migration Capability of Lung Cancer Cells via the NRF2/HMOX1 Axis. Sci Rep 2019; 9:13302. [PMID: 31527696 PMCID: PMC6746772 DOI: 10.1038/s41598-019-49874-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/30/2019] [Indexed: 01/04/2023] Open
Abstract
Cell migration is a fundamental feature of cancer recurrence. Since recurrence is correlated with high mortality in lung cancer, it follows that reducing cell migration would decrease recurrence and increase survival rates. Semaphorin-6A (SEMA6A), a protein initially known as a regulator of axonal guidance, is down-regulated in lung cancer tissue, and low levels of SEMA6A are associated with cancer recurrence. Thus, we hypothesized that SEMA6A could suppress cancer cell migration. In this study, we found that the migration capability of H1299 lung cancer cells decreased with SEMA6A overexpression, while it increased with SEMA6A silencing. Moreover, silencing of the cellular homeostasis protein Heme-oxygenase-1 (HMOX1) and/or the transcription factor Nuclear Factor, Erythroid-2-Like-2 (NRF2) reversed the migration-suppressing effect of SEMA6A and the SEMA6A-driven alterations in expression of urokinase insulin-like-growth-factor-binding-protein-3, Matrix metalloproteinase (MMP)-1, and MMP9, the downstream effectors of HMOX1. Taken together, these results demonstrate that SEMA6A is a potential suppressor of cancer migration that functions through the NRF2/HMOX1 axis. Our results explain why low SEMA6A is linked to high recurrence in the clinical setting and suggest that SEMA6A could be useful as a biomarker or target in lung cancer therapy.
Collapse
Affiliation(s)
- Li-Han Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Che-Yu Liao
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Liang-Chuan Lai
- Institute of Physiology, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan. .,Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, Taiwan. .,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| | - Eric Y Chuang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan. .,Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, Taiwan. .,School of Chinese Medicine, China Medical University, Taichung, Taiwan. .,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.
| |
Collapse
|
35
|
Dziobek K, Opławski M, Grabarek B, Zmarzły N, Januszyk P, Adwent I, Dąbruś D, Leśniak E, Kiełbasiński R, Kieszkowski P, Boroń D. Expression of Semaphorin 3B (SEMA3B) in Various Grades of Endometrial Cancer. Med Sci Monit 2019; 25:4569-4574. [PMID: 31217417 PMCID: PMC6598462 DOI: 10.12659/msm.916762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND SEMA3B is known as an inhibitor of angiogenesis and cell proliferation. During carcinogenesis, the loss of SEMA3B function is observed, which results in the progression of neoplastic changes. The aim of this study was to evaluate the expression profile of SEMA3B in endometrial cancer (G1-G3) in comparison to the control group and to assess whether the observed changes in expression could become a molecular marker in endometrial cancer. MATERIAL AND METHODS The study group consisted of 45 patients diagnosed with endometrial cancer (G1, 17; G2, 15; G3, 13). The control group included 15 patients. SEMA3B expression was assessed using the immunohistochemical method. Statistical analysis was carried out using the Statistica 12 PL program (StatSoft, USA). It included the Kruskal-Wallis test and post hoc Dunn's test (p<0.05). RESULTS Statistically significant differences in the level of SEMA3B expression were observed between all analyzed groups. The expression pattern of SEMA3B was as follows: cancer cells G1>G2>G3; endothelial cells: G3>G1>G2; stromal cells: G2>G1>G3. CONCLUSIONS Analysis of the SEMA3B expression profile shows the complexity of neoplastic transformation, which confirms the different expression of SEMA3B in endometrial cancer cells and endothelial cells. The present results and data in the literature data suggest that SEMA3B expression indicates the progression of carcinogenesis in the context of endometrial cancer.
Collapse
Affiliation(s)
- Konrad Dziobek
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Cracow, Poland
| | - Beniamin Grabarek
- Department of Molecular Biology, Medical University of Silesia in Katowice, Katowice, Poland
| | - Nikola Zmarzły
- Department of Molecular Biology, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Januszyk
- Department Midwifery, Opole Medical High School, Opole, Poland
| | - Iwona Adwent
- Department Midwifery, Opole Medical High School, Opole, Poland
| | - Dariusz Dąbruś
- Department Midwifery, Opole Medical High School, Opole, Poland
| | - Ewa Leśniak
- Department Midwifery, Opole Medical High School, Opole, Poland
| | - Robert Kiełbasiński
- Department of Obstetrics and Gynecology Ward, Health Center in Mikołów, Mikołów, Poland
| | | | - Dariusz Boroń
- Center of Oncology, M. Sklodowska-Curie Memorial Institute, Cracow Branch, Cracow, Poland.,Department Midwifery, Opole Medical High School, Opole, Poland.,Department of Histology and Cell Pathology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
36
|
Gurrapu S, Tamagnone L. Semaphorins as Regulators of Phenotypic Plasticity and Functional Reprogramming of Cancer Cells. Trends Mol Med 2019; 25:303-314. [PMID: 30824197 DOI: 10.1016/j.molmed.2019.01.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023]
Abstract
Semaphorins, initially found as neuronal guidance cues in embryo development, are now appreciated as major regulators of tissue morphogenesis and homeostasis, as well as of cancer progression. In fact, semaphorin signals have a profound impact on cell morphology, which has been commonly associated with the ability to regulate monomeric GTPases, cell-substrate adhesion, and cytoskeletal dynamics. Recently, however, several reports have indicated a novel and additional function of diverse semaphorins in the regulation of gene expression and cell phenotype plasticity. In this review article, we discuss these novel findings, focusing on the role of semaphorin signals in the regulation of bi-directional epithelial-mesenchymal transitions, stem cell properties, and drug resistance, which greatly contribute to the pathogenesis of cancer.
Collapse
Affiliation(s)
- Sreeharsha Gurrapu
- Cancer Cell Biology Laboratory, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy
| | - Luca Tamagnone
- Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "A. Gemelli" IRCCS, 00168 Rome, Italy. .,Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy
| |
Collapse
|
37
|
Class-3 Semaphorins and Their Receptors: Potent Multifunctional Modulators of Tumor Progression. Int J Mol Sci 2019; 20:ijms20030556. [PMID: 30696103 PMCID: PMC6387194 DOI: 10.3390/ijms20030556] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/28/2022] Open
Abstract
Semaphorins are the products of a large gene family containing 28 genes of which 21 are found in vertebrates. Class-3 semaphorins constitute a subfamily of seven vertebrate semaphorins which differ from the other vertebrate semaphorins in that they are the only secreted semaphorins and are distinguished from other semaphorins by the presence of a basic domain at their C termini. Class-3 semaphorins were initially characterized as axon guidance factors, but have subsequently been found to regulate immune responses, angiogenesis, lymphangiogenesis, and a variety of additional physiological and developmental functions. Most class-3 semaphorins transduce their signals by binding to receptors belonging to the neuropilin family which subsequently associate with receptors of the plexin family to form functional class-3 semaphorin receptors. Recent evidence suggests that class-3 semaphorins also fulfill important regulatory roles in multiple forms of cancer. Several class-3 semaphorins function as endogenous inhibitors of tumor angiogenesis. Others were found to inhibit tumor metastasis by inhibition of tumor lymphangiogenesis, by direct effects on the behavior of tumor cells, or by modulation of immune responses. Notably, some semaphorins such as sema3C and sema3E have also been found to potentiate tumor progression using various mechanisms. This review focuses on the roles of the different class-3 semaphorins in tumor progression.
Collapse
|
38
|
Xiang R, Xu Y, Zhang W, Kong Y, Tan L, Chen S, Deng Y, Tao Z. Semaphorin 3A inhibits allergic inflammation by regulating immune responses in a mouse model of allergic rhinitis. Int Forum Allergy Rhinol 2018; 9:528-537. [PMID: 30597767 DOI: 10.1002/alr.22274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 12/01/2018] [Accepted: 12/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Rong Xiang
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yu Xu
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Wei Zhang
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yong‐Gang Kong
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Lu Tan
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Shi‐Ming Chen
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Yu‐Qin Deng
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| | - Ze‐Zhang Tao
- Department of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
- Research Institute of Otolaryngology‒Head and Neck SurgeryRenmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
39
|
Zhang Y, Li A, Shi J, Fang Y, Gu C, Cai J, Lin C, Zhao L, Liu S. Imbalanced LIMK1 and LIMK2 expression leads to human colorectal cancer progression and metastasis via promoting β-catenin nuclear translocation. Cell Death Dis 2018; 9:749. [PMID: 29970879 PMCID: PMC6030168 DOI: 10.1038/s41419-018-0766-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/05/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
Epithelial–mesenchymal transition (EMT)-induced metastasis contributes to human colorectal cancer (CRC) progression, especially in advanced CRC. However, the underlying mechanism of β-catenin in this process is elusive. We identified that LIM domain kinase (LIMK)2 was progressively downregulated with tumor progression from precancerous lesions to advanced cancer. Gain- and loss-of-function assays revealed that LIMK2 inhibits cell proliferation via cell cycle arrest at the G1–S transition and suppresses the ability of cell metastasis by restricting the EMT process. Reduced LIMK2 expression enhanced the nuclear accumulation of β-catenin and activated the Wnt signaling pathway, thus contributing to tumor progression. A homolog of the LIMK family, LIMK1, which was overexpressed throughout tumor progression, served as a competitive inhibitor of LIMK2 via β-catenin nuclear translocation. The imbalanced expression of LIMK1 and LIMK2 is important in CRC progression, and the combined effects provide a new insight into the mechanism of CRC progression. These findings provide a new understanding for LIMK-based anticancer therapy.
Collapse
Affiliation(s)
- Yue Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aimin Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiaolong Shi
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangdong Provincial Engineering Technology Research Center of Minimally Invasive Surgery, Guangzhou, Guandong, China
| | - Yuxin Fang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuncai Gu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianqun Cai
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chuang Lin
- Department of pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guandong, China
| | - Liang Zhao
- Department of pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guandong, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
40
|
Butti R, Kumar TV, Nimma R, Kundu GC. Impact of semaphorin expression on prognostic characteristics in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:79-88. [PMID: 29910635 PMCID: PMC5987790 DOI: 10.2147/bctt.s135753] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer is one of the major causes of cancer-related deaths among women worldwide. Aberrant regulation of various growth factors, cytokines, and other proteins and their receptors in cancer cells drives the activation of various oncogenic signaling pathways that lead to cancer progression. Semaphorins are a class of proteins which are differentially expressed in various types of cancer including breast cancer. Earlier, these proteins were known to have a major function in the nerve cell adhesion, migration, and development of the central nervous system. However, their role in the regulation of several aspects of tumor progression has eventually emerged. There are over 30 genes encoding the semaphorins, which are divided into eight subclasses. It has been reported that some members of semaphorin classes are antiangiogenic and antimetastatic in nature, whereas others act as proangiogenic and prometastatic genes. Because of their differential expression and role in angiogenesis and metastasis, semaphorins emerged as one of the important prognostic factors for appraising breast cancer progression.
Collapse
Affiliation(s)
- Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Totakura Vs Kumar
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Ramakrishna Nimma
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| | - Gopal C Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
41
|
Expression of semaphorin class 3 is higher in the proliferative phase on the human endometrium. Arch Gynecol Obstet 2018; 297:1175-1179. [PMID: 29450692 DOI: 10.1007/s00404-018-4719-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The semaphorins are related to angiogenesis and cell proliferation depending on the tissue. The purpose of this study was to assess gene expression of class 3 semaphorin (SEMA3A-F) and protein expression of semaphorin 3A (SEMA3A) within human endometrium throughout the menstrual cycle. METHODS Gene expression of SEMA3A-F was analyzed by real-time PCR (qRT-PCR) and protein expression of SEMA3A was analyzed by ELISA in endometrial biopsies in the proliferative and secretory phase of the menstrual cycle. RESULTS Gene expression of SEMA3A, SEMA3C, SEMA3D, and SEMA3E was statistically significant decreased in secretory compared to proliferative phase endometrium (p < 0.05). Accordingly, SEMA3A protein expression in the secretory phase was lower than protein expression in proliferative phase endometrium (p ≤ 0.05). CONCLUSION SEMA3A, 3C, 3D, and 3E are possibly related to cell proliferation in the endometrium, being more expressed in the proliferative phase of the cycle. This finding may stimulate studies of class 3 semaphorins as a possible target for treatment of endometrial pathologies.
Collapse
|