1
|
Zhao Y, Dhani S, Gogvadze V, Zhivotovsky B. The crosstalk between SND1 and PDCD4 is associated with chemoresistance of non-small cell lung carcinoma cells. Cell Death Discov 2025; 11:34. [PMID: 39885142 PMCID: PMC11782486 DOI: 10.1038/s41420-025-02310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/18/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Non-small cell lung cancer (NSCLC) is highly resistant to chemo- or radiation therapy, which poses a huge challenge for treatment of advanced NSCLC. Previously, we demonstrated the oncogenic role of Tudor Staphylococcal nuclease (TSN, also known as Staphylococcal nuclease domain-containing protein 1, SND1), in regulating chemoresistance in NSCLC cells. Here, we showed that silencing of SND1 augmented the sensitivity of NSCLC cells to different chemotherapeutic drugs. Additionally, the expression of PDCD4 (a tumor suppressor highly associated with lung cancer) in NSCLC cells with low endogenous levels was attenuated by SND1 silencing, implying that SND1 might function as a molecular regulator upstream of PDCD4. PDCD4 is differentially expressed in various NSCLC cells. In the NSCLC cells (A549 and H23 cells) with low expression of PDCD4, despite the downregulation of PDCD4, silencing of SND1 still led to sensitization of NSCLC cells to treatment with different chemotherapeutic agents by the inhibition of autophagic activity. Thus, a novel correlation interlinking SND1 and PDCD4 in the regulation of NSCLC cells concerning chemotherapy was revealed, which contributes to understanding the mechanisms of chemoresistance in NSCLC.
Collapse
Affiliation(s)
- Yun Zhao
- Department of Occupational and Environmental Health, School of Public Health, Medical College of Soochow University, Suzhou, China
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Shanel Dhani
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Gogvadze
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, RAS, Moscow, Russia.
| |
Collapse
|
2
|
Li Y, Zhan B, Zhuang X, Zhao M, Chen X, Wang Q, Liu Q, Zhang L. Microglial Pdcd4 deficiency mitigates neuroinflammation-associated depression via facilitating Daxx mediated PPARγ/IL-10 signaling. J Neuroinflammation 2024; 21:143. [PMID: 38822367 PMCID: PMC11141063 DOI: 10.1186/s12974-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
The dysregulation of pro- and anti-inflammatory processes in the brain has been linked to the pathogenesis of major depressive disorder (MDD), although the precise mechanisms remain unclear. In this study, we discovered that microglial conditional knockout of Pdcd4 conferred protection against LPS-induced hyperactivation of microglia and depressive-like behavior in mice. Mechanically, microglial Pdcd4 plays a role in promoting neuroinflammatory responses triggered by LPS by inhibiting Daxx-mediated PPARγ nucleus translocation, leading to the suppression of anti-inflammatory cytokine IL-10 expression. Finally, the antidepressant effect of microglial Pdcd4 knockout under LPS-challenged conditions was abolished by intracerebroventricular injection of the IL-10 neutralizing antibody IL-10Rα. Our study elucidates the distinct involvement of microglial Pdcd4 in neuroinflammation, suggesting its potential as a therapeutic target for neuroinflammation-related depression.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Bing Zhan
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiao Zhuang
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Ming Zhao
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Xiaotong Chen
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qun Wang
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Qiji Liu
- Key Laboratory for Experimental Teratology of the Ministry of Education, Department of Medical Genetics, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lining Zhang
- Key Laboratory of Infection and Immunity, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, 44# Wenhua Xi Road, Jinan, 250012, Shandong, China.
| |
Collapse
|
3
|
Yang WH, George AP, Wang CM, Yang RH, Duncan AM, Patel D, Neil ZD, Yang WH. Tumor Suppressor p53 Down-Regulates Programmed Cell Death Protein 4 (PDCD4) Expression. Curr Oncol 2023; 30:1614-1625. [PMID: 36826085 PMCID: PMC9955764 DOI: 10.3390/curroncol30020124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
The programmed cell death protein 4 (PDCD4), a well-known tumor suppressor, inhibits translation initiation and cap-dependent translation by inhibiting the helicase activity of EIF4A. The EIF4A tends to target mRNAs with a structured 5'-UTR. In addition, PDCD4 can also prevent tumorigenesis by inhibiting tumor promoter-induced neoplastic transformation, and studies indicate that PDCD4 binding to certain mRNAs inhibits those mRNAs' translation. A previous study demonstrated that PDCD4 inhibits the translation of p53 mRNA and that treatment with DNA-damaging agents down-regulates PDCD4 expression but activates p53 expression. The study further demonstrated that treatment with DNA-damaging agents resulted in the downregulation of PDCD4 expression and an increase in p53 expression, suggesting a potential mechanism by which p53 regulates the expression of PDCD4. However, whether p53 directly regulates PDCD4 remains unknown. Herein, we demonstrate for the first time that p53 regulates PDCD4 expression. Firstly, we found that overexpression of p53 in p53-null cells (H1299 and Saos2 cells) decreased the PDCD4 protein level. Secondly, p53 decreased PDCD4 promoter activity in gene reporter assays. Moreover, we demonstrated that mutations in p53 (R273H: contact hotspot mutation, and R175H: conformational hotspot mutation) abolished p53-mediated PDCD4 repression. Furthermore, mutations in the DNA-binding domain, but not in the C-terminal regulatory domain, of p53 disrupted p53-mediated PDCD4 repression. Finally, the C-terminal regulatory domain truncation study showed that the region between aa374 and aa370 is critical for p53-mediated PDCD4 repression. Taken together, our results suggest that p53 functions as a novel regulator of PDCD4, and the relationship between p53 and PDCD4 may be involved in tumor development and progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wei-Hsiung Yang
- Correspondence: ; Tel.: +1-912-721-8203; Fax: +1-912-721-8268
| |
Collapse
|
4
|
Chen G, Li PH, He JY, Su YL, Chen HJ, Dong JD, Huang YH, Huang XH, Jiang YF, Qin QW, Sun HY. Molecular cloning, inducible expression with SGIV and Vibrio alginolyticus challenge, and function analysis of Epinephelus coioides PDCD4. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104013. [PMID: 33465381 DOI: 10.1016/j.dci.2021.104013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Programmed cell death 4 (PDCD4) in mammals, a gene closely associated with apoptosis, is involved in many biological processes, such as cell aging, differentiation, regulation of cell cycle, and inflammatory response. In this study, grouper Epinephelus coioides PDCD4, EcPDCD4-1 and EcPDCD4-2, were obtained. The open reading frame (ORF) of EcPDCD4-1 is 1413 bp encoding 470 amino acids with a molecular mass of 52.39 kDa and a theoretical pI of 5.33. The ORF of EcPDCD4-2 is 1410 bp encoding 469 amino acids with a molecular mass of 52.29 kDa and a theoretical pI of 5.29. Both EcPDCD4-1 and EcPDCD4-2 proteins contain two conserved MA3 domains, and their mRNA were detected in all eight tissues of E. coioides by quantitative real-time PCR (qRT-PCR) with the highest expression in liver. The expressions of two EcPDCD4s were significantly up-regulated after Singapore grouper iridovirus (SGIV) or Vibrio alginolyticus infection. In addition, over-expression of EcPDCD4-1 or EcPDCD4-2 can inhibit the activity of the nuclear factor-κB (NF-κB) and activator protein-1 (AP-1), and regulate SGIV-induced apoptosis. The results demonstrated that EcPDCD4s might play important roles in E. coioides tissues during pathogen-caused inflammation.
Collapse
Affiliation(s)
- Guo Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China; Hainan Key Laboratory of Tropical Marine Biotechnology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China; Department of Laboratory, Jining No.1 People's Hospital; Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Shandong, 272111, PR China; Life Sciences Institute, Zhejiang University, Zhejiang Province, 310058, PR China
| | - Pin-Hong Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jia-Yang He
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Ling Su
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - He-Jia Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Jun-De Dong
- Hainan Key Laboratory of Tropical Marine Biotechnology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China
| | - You-Hua Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Xiao-Hong Huang
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Feng Jiang
- Department of Laboratory, Jining No.1 People's Hospital; Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, Shandong, 272111, PR China.
| | - Qi-Wei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| | - Hong-Yan Sun
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
5
|
Liu L, Feng Y, Hu S, Li H, Li Y, Ke J, Long X. PDCD4 suppresses autophagy and promotes apoptosis via Akt in chondrocytes of temporomandibular joint osteoarthritis. Oral Dis 2021. [DOI: 10.1111/odi.13559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Li Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM) School and Hospital of Stomatology Wuhan University Wuhan Hubei Province China
| | - Yaping Feng
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM) School and Hospital of Stomatology Wuhan University Wuhan Hubei Province China
| | - Shiyu Hu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM) School and Hospital of Stomatology Wuhan University Wuhan Hubei Province China
| | - Huimin Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM) School and Hospital of Stomatology Wuhan University Wuhan Hubei Province China
| | - Yanyan Li
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM) School and Hospital of Stomatology Wuhan University Wuhan Hubei Province China
| | - Jin Ke
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM) School and Hospital of Stomatology Wuhan University Wuhan Hubei Province China
| | - Xing Long
- Department of Oral and Maxillofacial Surgery School and Hospital of Stomatology Wuhan University Wuhan Hubei Province China
| |
Collapse
|
6
|
Jing X, Ren D, Gao F, Chen Y, Wu X, Han Y, Han Q, Li L, Wang X, Tang W, Zhang Y. Gene deficiency or pharmacological inhibition of PDCD4-mediated FGR signaling protects against acute kidney injury. Acta Pharm Sin B 2021; 11:394-405. [PMID: 33643819 PMCID: PMC7893143 DOI: 10.1016/j.apsb.2020.10.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
Recent studies have shown that programmed cell death 4 (PDCD4) modulates distinct signal transduction pathways in different pathological conditions. Despite acute and chronic immune responses elicited by ischemia contributing to the functional deterioration of the kidney, the contributions and mechanisms of PDCD4 in acute kidney injury (AKI) have remained unclear. Using two murine AKI models including renal ischemia/reperfusion injury (IRI) and cisplatin-induced AKI, we found that PDCD4 deficiency markedly ameliorated renal dysfunction and inflammatory responses in AKI mice. Consistently, upregulation of PDCD4 was also confirmed in the kidneys from patients with biopsy confirmed acute tubular necrosis from a retrospective cohort study. Moreover, we found that overexpression of Fgr, a member of the tyrosine kinase family, dramatically aggravated renal injury and counteracted the protective effects of PDCD4 deficiency in AKI mice. We discovered that FGR upregulated NOTCH1 expression through activating STAT3. Most importantly, we further found that systemic administration of ponatinib, a tyrosine kinase inhibitor, significantly ameliorated AKI in mice. In summary, we identified that PDCD4 served as an important regulator, at least in part, of FGR/NOTCH1-mediated tubular apoptosis and inflammation in AKI mice. Furthermore, our findings suggest that ponatinib-mediated pharmacologic targeting of this pathway had therapeutic potential for mitigating AKI.
Collapse
Affiliation(s)
- Xu Jing
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
- Department of Clinical Laboratory, the Second Hospital of Shandong University, Jinan 250033, China
| | - Dandan Ren
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
- Chengda Biology Co., Ltd., Shenyang 110179, China
| | - Fei Gao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Ye Chen
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiao Wu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yue Han
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Qingsheng Han
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Liang Li
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Xiaojie Wang
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Wei Tang
- Department of Microbiology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| | - Yan Zhang
- Department of Pharmacology, School of Basic Medical Science, Shandong University, Jinan 250012, China
| |
Collapse
|
7
|
Lu K, Chen Q, Li M, He L, Riaz F, Zhang T, Li D. Programmed cell death factor 4 (PDCD4), a novel therapy target for metabolic diseases besides cancer. Free Radic Biol Med 2020; 159:150-163. [PMID: 32745771 DOI: 10.1016/j.freeradbiomed.2020.06.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 02/06/2023]
Abstract
Programmed cell death factor 4 (PDCD4) is originally described as a tumor suppressor gene that exerts antineoplastic effects by promoting apoptosis and inhibiting tumor cell proliferation, invasion, and metastasis. Several investigations have probed the aberrant expression of PDCD4 with the progression of metabolic diseases, such as polycystic ovary syndrome (PCOS), obesity, diabetes, and atherosclerosis. It has been ascertained that PDCD4 causes glucose and lipid metabolism disorders, insulin resistance, oxidative stress, chronic inflammatory response, and gut flora disorders to regulate the progression of metabolic diseases. This review aims to summarize the latest researches to uncover the structure, expression regulation, and biological functions of PDCD4 and to elucidate the regulatory mechanism of the development of tumors and metabolic diseases. This review has emphasized the understanding of the PDCD4 role and to provide new ideas for the research, diagnosis, and treatment of tumors and metabolic diseases.
Collapse
Affiliation(s)
- Kaikai Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Qian Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Mengda Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Lei He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Farooq Riaz
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Tianyun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China
| | - Dongmin Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, Shaanxi, 710061, PR China.
| |
Collapse
|
8
|
Wang S, Wu M, Qin L, Song Y, Peng A. DAXX mediates high phosphate-induced endothelial cell apoptosis in vitro through activating ERK signaling. PeerJ 2020; 8:e9203. [PMID: 32596036 PMCID: PMC7307556 DOI: 10.7717/peerj.9203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/24/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUD AND PURPOSE Hyperphosphatemia, which is a high inorganic phosphate (Pi) level in the serum, promotes endothelial cells dysfunction and is associated with cardiovascular diseases in patients with chronic kidney diseases (CKD). However, the underlying mechanism of high Pi-induced endothelia cell apoptosis remains unclear. METHODS Human umbilical vein endothelial cells (HUVECs) were treated with normal Pi (1.0 mM) and high Pi (3.0 mM), and then cell apoptosis, abnormal gene expression and potential signaling pathway involvement in simulated hyperphosphatemia were examined using flow cytometry, quantitative PCR (qPCR) and western blot analysis. A two-step 5/6 nephrectomy was carried out to induce CKD and biochemical measurements were taken. RESULTS The rat model of CKD revealed that hyperphosphatemia is correlated with an increased death-domain associated protein (DAXX) expression in endothelial cells. In vitro, high Pi increased the mRNA and protein expression level of DAXX in HUVECs, effects that were reversed by additional phosphonoformic acid treatment. Functionally, high Pi resulted in a significantly increased apoptosis in HUVECs, whereas DAXX knockdown markedly repressed high Pi-induced cell apoptosis, indicating that DAXX mediated high Pi-induced endothelial cell apoptosis. High Pi treatment and DAXX overexpression induced the activation of extracellular regulated protein kinases (ERKs), while DAXX knockdown inhibited high Pi-induced ERKs activation. Finally, we demonstrated that DAXX overexpression induced HUVECs apoptosis in the presence of normal Pi, whereas additional treatment with U0126 (a specific ERK inhibitor) reversed that effect. CONCLUSION Upregulated DAXX promoted high Pi-induced HUVECs apoptosis by activating ERK signaling and indicated that the DAXX/ERK signaling axis may be served as a potential target for CKD therapy.
Collapse
Affiliation(s)
- Shu Wang
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mingyu Wu
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling Qin
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yaxiang Song
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ai Peng
- Nephrology and Rheumatology, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Mahmud I, Liao D. DAXX in cancer: phenomena, processes, mechanisms and regulation. Nucleic Acids Res 2019; 47:7734-7752. [PMID: 31350900 PMCID: PMC6735914 DOI: 10.1093/nar/gkz634] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 07/05/2019] [Accepted: 07/12/2019] [Indexed: 12/13/2022] Open
Abstract
DAXX displays complex biological functions. Remarkably, DAXX overexpression is a common feature in diverse cancers, which correlates with tumorigenesis, disease progression and treatment resistance. Structurally, DAXX is modular with an N-terminal helical bundle, a docking site for many DAXX interactors (e.g. p53 and ATRX). DAXX's central region folds with the H3.3/H4 dimer, providing a H3.3-specific chaperoning function. DAXX has two functionally critical SUMO-interacting motifs. These modules are connected by disordered regions. DAXX's structural features provide a framework for deciphering how DAXX mechanistically imparts its functions and how its activity is regulated. DAXX modulates transcription through binding to transcription factors, epigenetic modifiers, and chromatin remodelers. DAXX's localization in the PML nuclear bodies also plays roles in transcriptional regulation. DAXX-regulated genes are likely important effectors of its biological functions. Deposition of H3.3 and its interactions with epigenetic modifiers are likely key events for DAXX to regulate transcription, DNA repair, and viral infection. Interactions between DAXX and its partners directly impact apoptosis and cell signaling. DAXX's activity is regulated by posttranslational modifications and ubiquitin-dependent degradation. Notably, the tumor suppressor SPOP promotes DAXX degradation in phase-separated droplets. We summarize here our current understanding of DAXX's complex functions with a focus on how it promotes oncogenesis.
Collapse
Affiliation(s)
- Iqbal Mahmud
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| | - Daiqing Liao
- Department of Anatomy and Cell Biology, UF Health Cancer Center, University of Florida College of Medicine, 1333 Center Drive, Gainesville, FL 32610-0235, USA
| |
Collapse
|
10
|
Matsuhashi S, Manirujjaman M, Hamajima H, Ozaki I. Control Mechanisms of the Tumor Suppressor PDCD4: Expression and Functions. Int J Mol Sci 2019; 20:ijms20092304. [PMID: 31075975 PMCID: PMC6539695 DOI: 10.3390/ijms20092304] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 02/06/2023] Open
Abstract
PDCD4 is a novel tumor suppressor to show multi-functions inhibiting cell growth, tumor invasion, metastasis, and inducing apoptosis. PDCD4 protein binds to the translation initiation factor eIF4A, some transcription factors, and many other factors and modulates the function of the binding partners. PDCD4 downregulation stimulates and PDCD4 upregulation inhibits the TPA-induced transformation of cells. However, PDCD4 gene mutations have not been found in tumor cells but gene expression was post transcriptionally downregulated by micro environmental factors such as growth factors and interleukins. In this review, we focus on the suppression mechanisms of PDCD4 protein that is induced by the tumor promotors EGF and TPA, and in the inflammatory conditions. PDCD4-protein is phosphorylated at 2 serines in the SCFβTRCP ubiquitin ligase binding sequences via EGF and/or TPA induced signaling pathway, ubiquitinated, by the ubiquitin ligase and degraded in the proteasome system. The PDCD4 protein synthesis is inhibited by microRNAs including miR21.
Collapse
Affiliation(s)
- Sachiko Matsuhashi
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - M Manirujjaman
- Department of Internal Medicine, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| | - Hiroshi Hamajima
- Saga Food & Cosmetics Laboratory, Division of Food Manufacturing Industry Promotion, SAGA Regional Industry Support Center, 114 Yaemizo, Nabesima-Machi, Saga 849-0932, Japan.
| | - Iwata Ozaki
- Health Administration Center, Saga Medical School, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan.
| |
Collapse
|
11
|
Guo J, Ozaki I, Xia J, Kuwashiro T, Kojima M, Takahashi H, Ashida K, Anzai K, Matsuhashi S. PDCD4 Knockdown Induces Senescence in Hepatoma Cells by Up-Regulating the p21 Expression. Front Oncol 2019; 8:661. [PMID: 30687637 PMCID: PMC6334536 DOI: 10.3389/fonc.2018.00661] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 12/13/2018] [Indexed: 12/26/2022] Open
Abstract
While the over-expression of tumor suppressor programmed cell death 4 (PDCD4) induces apoptosis, it was recently shown that PDCD4 knockdown also induced apoptosis. In this study, we examined the cell cycle regulators whose activation is affected by PDCD4 knockdown to investigate the contribution of PDCD4 to cell cycle regulation in three types of hepatoma cells: HepG2, Huh7 (mutant p53 and p16-deficient), and Hep3B (p53- and Rb-deficient). PDCD4 knockdown suppressed cell growth in all three cell lines by inhibiting Rb phosphorylation via down-regulating the expression of Rb itself and CDKs, which phosphorylate Rb, and up-regulating the expression of the CDK inhibitor p21 through a p53-independent pathway. We also found that apoptosis was induced in a p53-dependent manner in PDCD4 knockdown HepG2 cells (p53+), although the mechanism of cell death in PDCD4 knockdown Hep3B cells (p53-) was different. Furthermore, PDCD4 knockdown induced cellular senescence characterized by β-galactosidase staining, and p21 knockdown rescued the senescence and cell death as well as the inhibition of Rb phosphorylation induced by PDCD4 knockdown. Thus, PDCD4 is an important cell cycle regulator of hepatoma cells and may be a promising therapeutic target for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jing Guo
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Iwata Ozaki
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan.,Health Administration Centre, Saga Medical School, Saga University, Saga, Japan
| | - Jinghe Xia
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Takuya Kuwashiro
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Motoyasu Kojima
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Hirokazu Takahashi
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Kenji Ashida
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Keizo Anzai
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| | - Sachiko Matsuhashi
- Division of Hepatology, Diabetology and Endocrinology, Department of Internal Medicine, Saga Medical School, Saga University, Saga, Japan
| |
Collapse
|
12
|
Cbl-b deficiency provides protection against UVB-induced skin damage by modulating inflammatory gene signature. Cell Death Dis 2018; 9:835. [PMID: 30082827 PMCID: PMC6079082 DOI: 10.1038/s41419-018-0858-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 06/28/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Exposure of skin to ultraviolet (UV) radiation induces DNA damage, inflammation, and immune suppression that ultimately lead to skin cancer. However, some of the pathways that regulate these events are poorly understood. We exposed mice to UVB to study its early effects in the absence of Cbl-b, a known suppressor of antitumor immune response in the skin. Cbl-b-/- mice were protected from UV-induced cell damage as shown by the lower number of cyclobutane pyrimidine dimers and sunburn cells in exposed skin compared to wild-type mice. Microarray data revealed that deficiency of Cbl-b resulted in differential expression of genes involved in apoptosis evasion, tumor suppression and cell survival in UV-exposed skin. After UVB, Cbl-b-/- mice upregulated gene expression pattern associated with regulation of epidermal cell proliferation linked to Wnt signaling mediators and enzymes that relate to cell removal and tissue remodeling like MMP12. Additionally, the skin of Cbl-b-/- mice was protected from chronic inflammatory responses and epidermal hyperplasia in a 4-weeks UVB treatment protocol. Overall, our results suggest a novel role for Cbl-b in regulating inflammation and physiologic clearance of damaged cells in response to UVB by modulating inflammatory gene signature.
Collapse
|
13
|
Abdulhussain MM, Hasan NA, Hussain AG. Interrelation of the Circulating and Tissue MicroRNA-21 with Tissue PDCD4 Expression and the Invasiveness of Iraqi Female Breast Tumors. Indian J Clin Biochem 2017; 34:26-38. [PMID: 30728670 DOI: 10.1007/s12291-017-0710-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
The changes in the translational repression and variation in mRNA degradation induced by micro RNA are important aspects of tumorigenesis. The association of microRNA-21 with clinicopathologic features and expression of programed cell death 4 (PDCD4) in Iraqi female's with breast tumors has not been studied. MicroRNAs were extracted from a set of 60 breast tumor tissues and blood samples of females with breast cancer and benign breast lesions obtained after breast-reductive surgery, and only blood samples from 30 normal volunteers. These extracts were evaluated for miR-21 expression by quantitative RT-PCR. Analysis of PDCD4 protein expression was carried out as miR-21 target gene by immunohistochemical tests and correlating the results with patients' clinicopathological features. Significant overexpression of miRNA-21 was found in breast cancer group. The fold increase in the miR-21 gene expression was significantly higher in circulating exosomes and breast tissues of breast cancer patients as compared to other groups (P < 0.001). Overexpression of miR-21 was also significantly associated with the advanced tumor stage and histological grade. In breast cancer patients, PDCD4 protein expression was decreased to about 70% of the level in the control group. The delta Ct of exosomal and breast tissue miRNA-21 was negatively associated with PDCD4 expression. In conclusion, the translational repression of the PDCD4 induced by the high expression of miR-21 promotes breast cell transformation and development of breast tumor, and circulating miR-21 level could be applied to the screening panels for early detection of women breast cancer.
Collapse
Affiliation(s)
- Meena M Abdulhussain
- 1Department of Chemistry and Biochemistry, College of Medicine, Alnahrain University, Baghdad, Iraq
| | - Najat A Hasan
- 1Department of Chemistry and Biochemistry, College of Medicine, Alnahrain University, Baghdad, Iraq
| | - Alaa G Hussain
- 2Department of Clinical Pathology, College of Medicine, Alnahrain University, Baghdad, Iraq
| |
Collapse
|
14
|
Jiang Y, Jia Y, Zhang L. Role of programmed cell death 4 in diseases: a double-edged sword. Cell Mol Immunol 2017; 14:cmi201784. [PMID: 28920585 PMCID: PMC5675960 DOI: 10.1038/cmi.2017.84] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 07/23/2017] [Indexed: 12/28/2022] Open
Affiliation(s)
- Yang Jiang
- Hematology Department, The Second Hospital of Shandong University, Jinan, China
| | - Yufeng Jia
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan 250012, China
| | - Lining Zhang
- Department of Immunology and Key Laboratory of Infection and Immunity of Shandong Province, Shandong University School of Basic Medical Sciences, 44 Wenhua Xi Road, Jinan 250012, China
| |
Collapse
|
15
|
Wang Y, Mei H, Shao Q, Wang J, Lin Z. Association of ribosomal protein S6 kinase 1 with cellular radiosensitivity of non-small lung cancer. Int J Radiat Biol 2017; 93:581-589. [PMID: 28276898 DOI: 10.1080/09553002.2017.1294273] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Mei
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiang Shao
- Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jian Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Lin
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal 2017; 33:49-58. [PMID: 28189587 DOI: 10.1016/j.cellsig.2017.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/23/2017] [Accepted: 02/06/2017] [Indexed: 11/17/2022]
Abstract
The activation of p53 in response to different types of cellular stress induces several protective reactions including cell cycle arrest, senescence or cell death. These protective effects are a consequence of the activation of p53 by specific phosphorylation performed by several kinases. The reversion of the cell cycle arrest, induced by p53, is a consequence of the phosphorylated and activated p53, which triggers its own downregulation and that of its positive regulators. The different down-regulatory processes have a sequential and temporal order of events. The mechanisms implicated in p53 down-regulation include phosphatases, deacetylases, and protein degradation by the proteasome or autophagy, which also affect different p53 protein targets and functions. The necessary first step is the dephosphorylation of p53 to make it available for interaction with mdm2 ubiquitin-ligase, which requires the activation of phosphatases targeting both p53 and p53-activating kinases. In addition, deacetylation of p53 is required to make lysine residues accessible to ubiquitin ligases. The combined action of these downregulatory mechanisms brings p53 protein back to its basal levels, and cell cycle progression can resume if cells have overcome the stress or damage situation. The specific targeting of these down-regulatory mechanisms can be exploited for therapeutic purposes in cancers harbouring wild-type p53.
Collapse
Affiliation(s)
- Pedro A Lazo
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
17
|
Lin CW, Wang LK, Wang SP, Chang YL, Wu YY, Chen HY, Hsiao TH, Lai WY, Lu HH, Chang YH, Yang SC, Lin MW, Chen CY, Hong TM, Yang PC. Daxx inhibits hypoxia-induced lung cancer cell metastasis by suppressing the HIF-1α/HDAC1/Slug axis. Nat Commun 2016; 7:13867. [PMID: 28004751 PMCID: PMC5192219 DOI: 10.1038/ncomms13867] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Hypoxia is a major driving force of cancer invasion and metastasis. Here we show that death domain-associated protein (Daxx) acts to negatively regulate hypoxia-induced cell dissemination and invasion by inhibiting the HIF-1α/HDAC1/Slug pathway. Daxx directly binds to the DNA-binding domain of Slug, impeding histone deacetylase 1 (HDAC1) recruitment and antagonizing Slug E-box binding. This, in turn, stimulates E-cadherin and occludin expression and suppresses Slug-mediated epithelial–mesenchymal transition (EMT) and cell invasiveness. Under hypoxic conditions, stabilized hypoxia-inducible factor (HIF)-1α downregulates Daxx expression and promotes cancer invasion, whereas re-expression of Daxx represses hypoxia-induced cancer invasion. Daxx also suppresses Slug-mediated lung cancer metastasis in an orthotopic lung metastasis mouse model. Using clinical tumour samples, we confirmed that the HIF-1α/Daxx/Slug pathway is an outcome predictor. Our results support that Daxx can act as a repressor in controlling HIF-1α/HDAC1/Slug-mediated cancer cell invasion and is a potential therapeutic target for inhibition of cancer metastasis. Hypoxia and epithelial-to-mesenchymal transition promotes cancer metastasis. Here the authors show that Daxx inhibits hypoxia-induced lung cancer metastasis by attenuating Slug-mediated transcriptional repression of epithelial-like markers that in turn cause cells to exhibit low invasiveness.
Collapse
Affiliation(s)
- Ching-Wen Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Lu-Kai Wang
- Radiation Biology Core Laboratory of Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Shu-Ping Wang
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, USA
| | - Yi-Liang Chang
- Department of Pathology and Graduate Institute of Pathology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Yi-Ying Wu
- Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Wei-Yun Lai
- Aptamer Core, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Hsuan-Hsuan Lu
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei 11529, Taiwan
| | - Shuenn-Chen Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Wei Lin
- Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11221, Taiwan
| | - Chi-Yuan Chen
- Graduate Institute of Health Industry Technology and Research Center for Industry of Human Ecology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Tse-Ming Hong
- Graduate Institute of Clinical Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Pan-Chyr Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| |
Collapse
|
18
|
Targeting the eIF4A RNA helicase as an anti-neoplastic approach. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:781-91. [DOI: 10.1016/j.bbagrm.2014.09.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023]
|
19
|
Programmed cell death 4 protein (Pdcd4) and homeodomain-interacting protein kinase 2 (Hipk2) antagonistically control translation of Hipk2 mRNA. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1564-73. [DOI: 10.1016/j.bbamcr.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 03/11/2015] [Accepted: 03/14/2015] [Indexed: 12/29/2022]
|
20
|
Pisano A, Ceglia S, Palmieri C, Vecchio E, Fiume G, de Laurentiis A, Mimmi S, Falcone C, Iaccino E, Scialdone A, Pontoriero M, Masci FF, Valea R, Krishnan S, Gaspari M, Cuda G, Scala G, Quinto I. CRL3IBTK Regulates the Tumor Suppressor Pdcd4 through Ubiquitylation Coupled to Proteasomal Degradation. J Biol Chem 2015; 290:13958-71. [PMID: 25882842 PMCID: PMC4447969 DOI: 10.1074/jbc.m114.634535] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Indexed: 12/19/2022] Open
Abstract
The human inhibitor of Bruton's tyrosine kinase isoform α (IBtkα) is a BTB protein encoded by the IBTK gene, which maps to chromosomal locus 6q14.1, a mutational hot spot in lymphoproliferative disorders. Here, we demonstrate that IBtkα forms a CRL3IBTK complex promoting its self-ubiquitylation. We identified the tumor suppressor Pdcd4 as IBtkα interactor and ubiquitylation substrate of CRL3IBTK for proteasomal degradation. Serum-induced degradation of Pdcd4 required both IBtkα and Cul3, indicating that CRL3IBTK regulated the Pdcd4 stability in serum signaling. By promoting Pdcd4 degradation, IBtkα counteracted the suppressive effect of Pdcd4 on translation of reporter luciferase mRNAs with stem-loop structured or unstructured 5′-UTR. IBtkα depletion by RNAi caused Pdcd4 accumulation and decreased the translation of Bcl-xL mRNA, a well known target of Pdcd4 repression. By characterizing CRL3IBTK as a novel ubiquitin ligase, this study provides new insights into regulatory mechanisms of cellular pathways, such as the Pdcd4-dependent translation of mRNAs.
Collapse
Affiliation(s)
- Antonio Pisano
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Simona Ceglia
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Camillo Palmieri
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Eleonora Vecchio
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Fiume
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Annamaria de Laurentiis
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Selena Mimmi
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Cristina Falcone
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Enrico Iaccino
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Annarita Scialdone
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Marilena Pontoriero
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Francesca Fasanella Masci
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Rosanna Valea
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Shibu Krishnan
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Marco Gaspari
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giovanni Cuda
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Giuseppe Scala
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| | - Ileana Quinto
- From the Department of Experimental and Clinical Medicine, University "Magna Graecia" of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
21
|
Abstract
Homeodomain interacting protein kinase 2 (HIPK2) functions as either a co-repressor or a co-activator of transcriptional regulators. Dysregulation of HIPK2 is associated with cancer and neurological disease. Recently, we found that HIPK2 is also an important driver of kidney fibrosis in the HIV-1 transgenic murine model, Tg26. HIPK2 protein levels are upregulated in the tubular epithelial cells of Tg26 mice as well as in kidney biopsies of patients with HIV-associated nephropathy, focal segmental glomerulosclerosis, diabetic nephropathy, and IgA nephropathy. We found that HIPK2 regulates pro-apoptotic, pro-fibrotic, and pro-inflammatory pathways including p53, transforming growth factor β (TGF-β)-SMAD family member 3 (Smad3), Notch, Wingless and INT-1 (Wnt)/β-catenin, and nuclear factor kappa-light-chain-enhancer of activated B cells in renal tubular epithelial cells. Our data suggest that HIPK2 may be a potential target for antifibrotic therapy. As mice with germline deletion of HIPK2 do not exhibit any phenotypic change under basal conditions, we do not expect significant side effects with specific HIPK2 inhibitors. However, potential effects of HIPK2 on tumor growth should be considered because of its tumor suppressor effects. Therefore, further understanding of structure-function relationships and post-translational modifications of HIPK2 are necessary to develop more specific drugs targeting the pro-fibrotic effects of HIPK2.
Collapse
Affiliation(s)
- Ying Fan
- Department of Nephrology, Shanghai 6th People's Hospital affiliated to Shanghai Jiaotong University , Shanghai, China
| | - Niansong Wang
- Department of Nephrology, Shanghai 6th People's Hospital affiliated to Shanghai Jiaotong University , Shanghai, China
| | - Peter Chuang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai , New York, New York, USA
| |
Collapse
|
22
|
Zhou L, Feng Y, Jin Y, Liu X, Sui H, Chai N, Chen X, Liu N, Ji Q, Wang Y, Li Q. Verbascoside promotes apoptosis by regulating HIPK2-p53 signaling in human colorectal cancer. BMC Cancer 2014; 14:747. [PMID: 25282590 PMCID: PMC4197337 DOI: 10.1186/1471-2407-14-747] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 09/26/2014] [Indexed: 01/18/2023] Open
Abstract
Background We investigated the role of the HIPK2–p53 signaling pathway in tumorigenesis and resistance to the drug Verbascoside (VB) in colorectal cancer (CRC), using in vivo and in vitro experiments. Methods Primary human CRC samples and normal intestinal tissues from patients were analyzed for HIPK2 expression by immunohistochemistry (IHC) and its expression was correlated against patients’ clinicopathological characteristics. Human CRC HCT-116 cells were implanted in BALB/c nude mice; mice with xenografted tumors were randomly administrated vehicle (control), 20, 40, or 80 mg/mL VB, or 1 mg/mL fluorouracil (5-FU). HIPK2, p53, Bax, and Bcl-2 expression in these tumors were determined by IHC. In vitro effects of VB on CRC cell proliferation and apoptosis were measured by CCK-8 assay and flow cytometry; HIPK2, p53, p-p53, Bax, and Bcl-2 were measured by western blot. Results IHC analysis for 100 human CRC tumor samples and 20 normal intestinal tissues, showed HIPK2 expression to inversely correlate with Dukes stage and depth of invasion in CRC (P < 0.05). In vivo, the inhibition rates of 20, 40, and 80 mg/mL VB on CRC xenograft tumor weight were 42.79%, 53.90%, and 60.99%, respectively, and were accompanied by increased expression of HIPK2, p53, and Bax, and decreased Bcl-2 expression in treated tumors. In vitro, VB significantly inhibited proliferation of CRC cell lines HCT-116, HT-29, LoVo, and SW620, in a time- and dose-dependent manner. The apoptosis rates of 25, 50, and 100 μM VB on HCT-116 cells were 10.83 ± 1.28, 11.25 ± 1.54, and 20.19 ± 2.87%, and on HT-29 cells were 18.92 ± 6.12, 21.57 ± 4.05, and 25.14 ± 6.73%, respectively. In summary, VB treatment significantly enhanced the protein expression of pro-apoptotic HIPK2, p53, p-p53, Bax, and decreased anti-apoptotic Bcl-2 expression in CRC cells. Conclusions HIPK2 protein modulates the phosphorylation status of p53, and levels of Bax and Bcl-2 in CRC. We also found that VB effectively activated the HIPK2–p53 signaling pathway, resulting in increased CRC cell apoptosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
23
|
Fehler O, Singh P, Haas A, Ulrich D, Müller JP, Ohnheiser J, Klempnauer KH. An evolutionarily conserved interaction of tumor suppressor protein Pdcd4 with the poly(A)-binding protein contributes to translation suppression by Pdcd4. Nucleic Acids Res 2014; 42:11107-18. [PMID: 25190455 PMCID: PMC4176178 DOI: 10.1093/nar/gku800] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tumor suppressor protein programmed cell death 4 (Pdcd4) has been implicated in the translational regulation of specific mRNAs, however, the identities of the natural Pdcd4 target mRNAs and the mechanisms by which Pdcd4 affects their translation are not well understood. Pdcd4 binds to the eukaryotic translation initiation factor eIF4A and inhibits its helicase activity, which has suggested that Pdcd4 suppresses translation initiation of mRNAs containing structured 5′-untranslated regions. Recent work has revealed a second inhibitory mechanism, which is eIF4A-independent and involves direct RNA-binding of Pdcd4 to the target mRNAs. We have now identified the poly(A)-binding protein (PABP) as a novel direct interaction partner of Pdcd4. The ability to interact with PABP is shared between human and Drosophila Pdcd4, indicating that it has been highly conserved during evolution. Mutants of Pdcd4 that have lost the ability to interact with PABP fail to stably associate with ribosomal complexes in sucrose density gradients and to suppress translation, as exemplified by c-myb mRNA. Overall, our work identifies PABP as a novel functionally relevant Pdcd4 interaction partner that contributes to the regulation of translation by Pdcd4.
Collapse
Affiliation(s)
- Olesja Fehler
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Priyanka Singh
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Astrid Haas
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Diana Ulrich
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Jan P Müller
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Johanna Ohnheiser
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| | - Karl-Heinz Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 2, D-48149 Münster, Germany
| |
Collapse
|
24
|
Fay MM, Clegg JM, Uchida KA, Powers MA, Ullman KS. Enhanced arginine methylation of programmed cell death 4 protein during nutrient deprivation promotes tumor cell viability. J Biol Chem 2014; 289:17541-52. [PMID: 24764298 DOI: 10.1074/jbc.m113.541300] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The role of programmed cell death 4 (PDCD4) in tumor biology is context-dependent. PDCD4 is described as a tumor suppressor, but its coexpression with protein arginine methyltransferase 5 (PRMT5) promotes accelerated tumor growth. Here, we report that PDCD4 is methylated during nutrient deprivation. Methylation occurs because of increased stability of PDCD4 protein as well as increased activity of PRMT5 toward PDCD4. During nutrient deprivation, levels of methylated PDCD4 promote cell viability, which is dependent on an enhanced interaction with eIF4A. Upon recovery from nutrient deprivation, levels of methylated PDCD4 are regulated by phosphorylation, which controls both the localization and stability of methylated PDCD4. This study reveals that, in response to particular environmental cues, the role of PDCD4 is up-regulated and is advantageous for cell viability. These findings suggest that the methylated form of PDCD4 promotes tumor viability during nutrient deprivation, ultimately allowing the tumor to grow more aggressively.
Collapse
Affiliation(s)
- Marta M Fay
- From the Oncological Sciences Department, Huntsman Cancer Institute and
| | - James M Clegg
- From the Oncological Sciences Department, Huntsman Cancer Institute and
| | - Kimberly A Uchida
- From the Oncological Sciences Department, Huntsman Cancer Institute and Department of Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Matthew A Powers
- From the Oncological Sciences Department, Huntsman Cancer Institute and
| | | |
Collapse
|
25
|
Biyanee A, Ohnheiser J, Singh P, Klempnauer KH. A novel mechanism for the control of translation of specific mRNAs by tumor suppressor protein Pdcd4: inhibition of translation elongation. Oncogene 2014; 34:1384-92. [PMID: 24681950 DOI: 10.1038/onc.2014.83] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 12/12/2022]
Abstract
The tumor suppressor gene Pdcd4 (programmed cell death gene 4) has drawn considerable attention because its downregulation is involved in the development of several types of cancer. Because Pdcd4 interacts with the translation initiation factor eIF4A and inhibits its helicase activity, Pdcd4 has been implicated in the translational suppression of cellular mRNAs containing structured 5'-untranslated regions. However, Pdcd4's role in translation regulation is still poorly understood, because only very few physiological Pdcd4 target mRNAs are known. By using a Pdcd4-deficient clone of the chicken B-cell line DT40, we have discovered that the mRNA of the A-myb proto-oncogene is a novel Pdcd4 target RNA whose translation is suppressed by Pdcd4. Interestingly, the inhibitory effect of Pdcd4 is independent of the Pdcd4-eIF4A interaction, but is dependent on an RNA-binding domain at the N terminus of Pdcd4 and on sequences located within the coding region of A-myb mRNA, indicating that Pdcd4 suppresses A-myb translation by a novel mechanism. Our data show that the Pdcd4 RNA-binding domain preferentially recognizes an RNA secondary structure element formed by the part of the A-myb coding region that mediates Pdcd4-dependent suppression. Previously, we have shown that Pdcd4 also suppresses the translation of the c-myb mRNA by a similar mechanism involving binding of Pdcd4 to RNA secondary structure formed by the c-myb coding region. Surprisingly, our data show that Pdcd4 exerts its inhibitory activity only when the target region of Pdcd4 in A-myb and c-myb mRNA is itself translated, consistent with a mechanism in which Pdcd4 suppresses translation by interfering with translation elongation. Taken together, our work reveals a novel mechanism by which Pdcd4 affects the translational of cellular RNAs. Furthermore, as c-myb and A-myb are members of the Myb proto-oncogene family whose deregulation has been implicated in tumorigenesis, inhibiting their translation might contribute to the tumor-suppressive activity of Pdcd4.
Collapse
Affiliation(s)
- A Biyanee
- 1] Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany [2] Graduate School of Chemistry (GSC-MS), Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - J Ohnheiser
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - P Singh
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| | - K-H Klempnauer
- Institute for Biochemistry, Westfälische-Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|