1
|
Pantoja Newman PDS, Bajwa A, De Mario A, Mammucari C, Mancarella S. Orai channel pharmacological manipulation reduces metabolic flexibility in cardiac fibroblasts. Am J Physiol Cell Physiol 2025; 328:C1880-C1892. [PMID: 40298968 DOI: 10.1152/ajpcell.00822.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/23/2024] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
Cardiac fibroblasts (CFs) play a crucial role in regulating normal heart function and are also involved in the pathological remodeling of the heart that occurs due to hypertension, myocardial infarction, and heart failure. Metabolic changes in fibroblasts are key drivers in the progression of these diseases. Calcium (Ca2+) signaling and Ca2+ ion channels control many functions of fibroblasts. Orai Ca2+ channels are abundantly expressed in fibroblasts; however, their exact role is not yet fully understood. This study examined the role of Orai Ca2+ channels in maintaining Ca2+ homeostasis within organelles and in energy production in CFs. We found that chronic inhibition of Orai activity altered the expression levels of major metabolic enzymes, affecting the overall cell metabolism. Orai channels are required to refill the endoplasmic reticulum (ER) store. Acute Orai channel activity inhibition reduced Ca2+ content in the ER and mitochondria and was associated with the impaired ability to use glucose as a primary energy source. These results have significant implications for understanding the role of Orai-dependent Ca2+ entry in maintaining organellar Ca2+ homeostasis and cellular metabolic flexibility, sparking further research in this area.NEW & NOTEWORTHY We show that Orai actively contributes to organellar Ca2+ concentration and energy homeostasis of the cardiac fibroblast. These findings can have a significant impact during fibrogenesis.
Collapse
Affiliation(s)
| | - Amandeep Bajwa
- Department of Surgery, Transplant Research Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Salvatore Mancarella
- Department of Physiology, The University of Tennessee Health Science Center, Memphis, Tennessee, United States
| |
Collapse
|
2
|
Pujalte‐Martin M, Belaïd A, Bost S, Kahi M, Peraldi P, Rouleau M, Mazure NM, Bost F. Targeting cancer and immune cell metabolism with the complex I inhibitors metformin and IACS-010759. Mol Oncol 2024; 18:1719-1738. [PMID: 38214418 PMCID: PMC11223609 DOI: 10.1002/1878-0261.13583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 12/29/2023] [Indexed: 01/13/2024] Open
Abstract
Metformin and IACS-010759 are two distinct antimetabolic agents. Metformin, an established antidiabetic drug, mildly inhibits mitochondrial complex I, while IACS-010759 is a new potent mitochondrial complex I inhibitor. Mitochondria is pivotal in the energy metabolism of cells by providing adenosine triphosphate through oxidative phosphorylation (OXPHOS). Hence, mitochondrial metabolism and OXPHOS become a vulnerability when targeted in cancer cells. Both drugs have promising antitumoral effects in diverse cancers, supported by preclinical in vitro and in vivo studies. We present evidence of their direct impact on cancer cells and their immunomodulatory effects. In clinical studies, while observational epidemiologic studies on metformin were encouraging, actual trial results were not as expected. However, IACS-01075 exhibited major adverse effects, thereby causing a metabolic shift to glycolysis and elevated lactic acid concentrations. Therefore, the future outlook for these two drugs depends on preventive clinical trials for metformin and investigations into the plausible toxic effects on normal cells for IACS-01075.
Collapse
Affiliation(s)
- Marc Pujalte‐Martin
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Amine Belaïd
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Simon Bost
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Michel Kahi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Pascal Peraldi
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Matthieu Rouleau
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
- CNRS UMR7370, LP2MNiceFrance
| | - Nathalie M. Mazure
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| | - Frédéric Bost
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire (C3M)NiceFrance
- Equipe Labellisée Ligue Nationale Contre le Cancer
- Faculté de MédecineUniversité Côte d'AzurNiceFrance
| |
Collapse
|
3
|
Yadav D, Yadav A, Bhattacharya S, Dagar A, Kumar V, Rani R. GLUT and HK: Two primary and essential key players in tumor glycolysis. Semin Cancer Biol 2024; 100:17-27. [PMID: 38494080 DOI: 10.1016/j.semcancer.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/02/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Cancer cells reprogram their metabolism to become "glycolysis-dominant," which enables them to meet their energy and macromolecule needs and enhancing their rate of survival. This glycolytic-dominancy is known as the "Warburg effect", a significant factor in the growth and invasion of malignant tumors. Many studies confirmed that members of the GLUT family, specifically HK-II from the HK family play a pivotal role in the Warburg effect, and are closely associated with glucose transportation followed by glucose metabolism in cancer cells. Overexpression of GLUTs and HK-II correlates with aggressive tumor behaviour and tumor microenvironment making them attractive therapeutic targets. Several studies have proven that the regulation of GLUTs and HK-II expression improves the treatment outcome for various tumors. Therefore, small molecule inhibitors targeting GLUT and HK-II show promise in sensitizing cancer cells to treatment, either alone or in combination with existing therapies including chemotherapy, radiotherapy, immunotherapy, and photodynamic therapy. Despite existing therapies, viable methods to target the glycolysis of cancer cells are currently lacking to increase the effectiveness of cancer treatment. This review explores the current understanding of GLUT and HK-II in cancer metabolism, recent inhibitor developments, and strategies for future drug development, offering insights into improving cancer treatment efficacy.
Collapse
Affiliation(s)
- Dhiraj Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India; Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India
| | - Anubha Yadav
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Sujata Bhattacharya
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India
| | - Akansha Dagar
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-Ku, Yokohama 236-0027, Japan
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh 201303, India.
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida, Noida, Uttar Pradesh, India.
| |
Collapse
|
4
|
Wang T, Zhang M, Khan M, Li J, Wu X, Ma T, Li Y. Cryptotanshinone suppresses ovarian cancer via simultaneous inhibition of glycolysis and oxidative phosphorylation. Biomed Pharmacother 2024; 170:115956. [PMID: 38039759 DOI: 10.1016/j.biopha.2023.115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Ovarian cancer is one of the most lethal cancers in female reproductive system due to heterogeneity and lack of effective treatment. Targeting aerobic glycolysis, a predominant energy metabolism of cancer cells has been recognized a novel strategy to overcome cancer cell growth. However, the capability of cancer cells to undergo metabolic reprogramming guarantees their survival even when glycolysis is inhibited. Here in this study, we have shown that Cryptotanshinone (CT), a lipid-soluble bioactive anticancer molecule of Salvia miltiorrhiza, inhibits both glycolysis and oxidative phosphorylation (OXPHOS) in ovarian cancer cells leading to growth suppression and apoptosis induction. Our mechanistic study revealed that CT decreased glucose uptake and lactate production, and inhibited the kinase activity of LDHA and HK2. The molecular docking study showed that CT could directly bind with GLUT1, LDHA, HK2, PKM2 and complex-1. The immunoblotting data showed that CT decreased the expression of aberrantly activated glycolytic proteins includingGLUT1, LDHA, HK2, and PKM2. Besides, we found that CT inhibited mitochondrial ComplexⅠ activity, decreased the ratio of NAD+/NADH, and suppressed the generation of ATP and induced activation of AMPK, which controls energy-reducing processes. These in vitro findings were further validated using xenograft model. The findings of in vivo studies were in line with in vitro studies. Taken together, CT effectively suppressed glycolysis and OXPHOS, inhibited growth and induced apoptosis in ovarian cancer cells both in vitro and in vivo study models.
Collapse
Affiliation(s)
- Tong Wang
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengmeng Zhang
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Muhammad Khan
- Cancer Research Lab, Institute of Zoology, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| | - Jingjing Li
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiao Wu
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tonghui Ma
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yongming Li
- School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Chu YD, Cheng LC, Lim SN, Lai MW, Yeh CT, Lin WR. Aldolase B-driven lactagenesis and CEACAM6 activation promote cell renewal and chemoresistance in colorectal cancer through the Warburg effect. Cell Death Dis 2023; 14:660. [PMID: 37816733 PMCID: PMC10564793 DOI: 10.1038/s41419-023-06187-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/13/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Colorectal cancer (CRC) is a prevalent malignancy worldwide and is associated with a high mortality rate. Changes in bioenergy metabolism, such as the Warburg effect, are often observed in CRC. Aldolase B (ALDOB) has been identified as a potential regulator of these changes, but its exact role in CRC cell behavior and bioenergetic homeostasis is not fully understood. To investigate this, two cohorts of CRC patients were analyzed independently. The results showed that higher ALDOB expression was linked to unfavorable prognosis, increased circulating carcinoembryonic antigen (CEA) levels, and altered bioenergetics in CRC. Further analysis using cell-based assays demonstrated that ALDOB promoted cell proliferation, chemoresistance, and increased expression of CEA in CRC cells. The activation of pyruvate dehydrogenase kinase-1 (PDK1) by ALDOB-induced lactagenesis and secretion, which in turn mediated the effects on CEA expression. Secreted lactate was found to enhance lactate dehydrogenase B (LDHB) expression in adjacent cells and to be a crucial modulator of ALDOB-mediated phenotypes. Additionally, the effect of ALDOB on CEA expression was downstream of the bioenergetic changes mediated by secreted lactate. The study also identified CEA cell adhesion molecule-6 (CEACAM6) as a downstream effector of ALDOB that controlled CRC cell proliferation and chemoresistance. Notably, CEACAM6 activation was shown to enhance protein stability through lysine lactylation, downstream of ALDOB-mediated lactagenesis. The ALDOB/PDK1/lactate/CEACAM6 axis plays an essential role in CRC cell behavior and bioenergetic homeostasis, providing new insights into the involvement of CEACAM6 in CRC and the Warburg effect. These findings may lead to the development of new treatment strategies for CRC patients.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Li-Chun Cheng
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Wei Lai
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Division of Pediatric Gastroenterology Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan.
| |
Collapse
|
6
|
Mkrtumyan AM, Markova TN, Ovchinnikova MA, Ivanova IA, Kuzmenko KV. Metformin as an activator of AMP-activated protein kinase. Known and new mechanisms of action. DIABETES MELLITUS 2023; 26:585-595. [DOI: 10.14341/dm13044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Metformin, known in the medical community as the drug of first choice for type 2 diabetes mellitus, belongs to the group of biguanides and has proven to be an effective treatment in clinical practice. Our knowledge of the pharmacodynamic properties of metformin has long been limited to the following well-known mechanisms: a decrease in hyperglycemia due to an increase in peripheral insulin sensitivity, glucose utilization by cells, inhibition of hepatic gluconeogenesis, an increase in the capacity of all types of membrane glucose transporters, activation of fibrinolysis, and a decrease in the levels of atherogenic lipoproteins. Recent studies show that the range of positive pleiotropic effects of metformin is not limited to the above, and that the molecular mechanisms of its action are more complex than previously thought. This article presents a less known, but equally important action of metformin, in particular, its anti-oncogenic, antiviral, and anti-aging effects. In our study, we highlight that the activation of 5’-adenosine monophosphate-activated protein kinase (AMPK) should be considered as the primary mechanism of action through which almost all beneficial effects are achieved. In the light of recent scientific advances in metformin pharmacology, together with the pathogenetic uncertainty of the term «biguanide», it seems fair and reasonable to apply a more relevant definition to the drugn, namely «AMPK activator».
Collapse
Affiliation(s)
- A. M. Mkrtumyan
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - T. N. Markova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry;
Moscow City Clinical Hospital № 52
| | | | - I. A. Ivanova
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| | - K. V. Kuzmenko
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry
| |
Collapse
|
7
|
Malyarenko OS, Usoltseva RV, Silchenko AS, Zueva AO, Ermakova SP. The Combined Metabolically Oriented Effect of Fucoidan from the Brown Alga Saccharina cichorioides and Its Carboxymethylated Derivative with 2-Deoxy-D-Glucose on Human Melanoma Cells. Int J Mol Sci 2023; 24:12050. [PMID: 37569428 PMCID: PMC10418387 DOI: 10.3390/ijms241512050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Melanoma is the most aggressive and treatment-resistant form of skin cancer. It is phenotypically characterized by aerobic glycolysis that provides higher proliferative rates and resistance to cell death. The glycolysis regulation in melanoma cells by means of effective metabolic modifiers represents a promising therapeutic opportunity. This work aimed to assess the metabolically oriented effect and mechanism of action of fucoidan from the brown alga Saccharina cichorioides (ScF) and its carboxymethylated derivative (ScFCM) in combination with 2-deoxy-D-glucose (2-DG) on the proliferation and colony formation of human melanoma cell lines SK-MEL-28, SK-MEL-5, and RPMI-7951. The metabolic profile of melanoma cells was determined by the glucose uptake and Lactate-GloTM assays. The effect of 2-DG, ScF, ScFCM, and their combination on the proliferation, colony formation, and activity of glycolytic enzymes was assessed by the MTS, soft agar, and Western blot methods, respectively. When applied separately, 2-DG (IC50 at 72 h = 8.7 mM), ScF (IC50 at 72 h > 800 µg/mL), and ScFCM (IC50 at 72 h = 573.9 μg/mL) inhibited the proliferation and colony formation of SK-MEL-28 cells to varying degrees. ScF or ScFCM enhanced the inhibiting effect of 2-DG at low, non-toxic concentrations via the downregulation of Glut 1, Hexokinase II, PKM2, LDHA, and pyruvate dehydrogenase activities. The obtained results emphasize the potential of the use of 2-DG in combination with algal fucoidan or its derivative as metabolic modifiers for inhibition of melanoma SK-MEL-28 cell proliferation.
Collapse
Affiliation(s)
| | | | | | | | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, Pr. 100-Letiya Vladivostoka 159, 690022 Vladivostok, Russia
| |
Collapse
|
8
|
Correa-Romero BF, Olivares-Marin IK, Regalado-Gonzalez C, Nava GM, Madrigal-Perez LA. The role of the SNF1 signaling pathway in the growth of Saccharomyces cerevisiae in different carbon and nitrogen sources. Braz J Microbiol 2023:10.1007/s42770-023-00954-y. [DOI: 10.1007/s42770-023-00954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
|
9
|
Singh R, Gupta V, Kumar A, Singh K. 2-Deoxy-D-Glucose: A Novel Pharmacological Agent for Killing Hypoxic Tumor Cells, Oxygen Dependence-Lowering in Covid-19, and Other Pharmacological Activities. Adv Pharmacol Pharm Sci 2023; 2023:9993386. [PMID: 36911357 PMCID: PMC9998157 DOI: 10.1155/2023/9993386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/02/2023] [Accepted: 02/17/2023] [Indexed: 03/06/2023] Open
Abstract
The nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DG) has shown promising pharmacological activities, including inhibition of cancerous cell growth and N-glycosylation. It has been used as a glycolysis inhibitor and as a potential energy restriction mimetic agent, inhibiting pathogen-associated molecular patterns. Radioisotope derivatives of 2-DG have applications as tracers. Recently, 2-DG has been used as an anti-COVID-19 drug to lower the need for supplemental oxygen. In the present review, various pharmaceutical properties of 2-DG are discussed.
Collapse
Affiliation(s)
- Raman Singh
- Division Chemistry & Toxicology, WTL-Clean and Renewable Energy Pvt. Ltd., New Delhi, India
| | - Vidushi Gupta
- Department of Chemistry, Indian Institute of Science Education and Research, Mohali, Punjab, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Jant-Pali, Mahendergarh, Haryana 123031, India
| | - Kuldeep Singh
- Department of Applied Chemistry, Amity University Madhya Pradesh, Gwalior, MP 474005, India
| |
Collapse
|
10
|
Wali L, Karbiener M, Chou S, Kovtunyk V, Adonyi A, Gösler I, Contreras X, Stoeva D, Blaas D, Stöckl J, Kreil TR, Gualdoni GA, Gorki AD. Host-directed therapy with 2-Deoxy-D-glucose inhibits human rhinoviruses, endemic coronaviruses, and SARS-CoV-2. J Virus Erad 2022; 8:100305. [PMID: 36514716 PMCID: PMC9731833 DOI: 10.1016/j.jve.2022.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Rhinoviruses (RVs) and coronaviruses (CoVs) upregulate host cell metabolic pathways such as glycolysis to meet their bioenergetic demands for rapid multiplication. Using the glycolysis inhibitor 2-deoxy-D-glucose (2-DG), we assessed the dose-dependent inhibition of viral replication of minor- and major-receptor group RVs in epithelial cells. 2-DG disrupted RV infection cycle by inhibiting template negative-strand as well as genomic positive-strand RNA synthesis, resulting in less progeny virus and RV-mediated cell death. Assessment of 2-DG´s intracellular kinetics revealed that after a short-exposure to 2-DG, the active intermediate, 2-DG6P, is stored intracellularly for several hours. Finally, we confirmed the antiviral effect of 2-DG on pandemic SARS-CoV-2 and showed for the first time that 2-DG also reduces replication of endemic human coronaviruses (HCoVs). These results provide further evidence that 2-DG could be utilized as a broad-spectrum antiviral.
Collapse
Affiliation(s)
| | | | | | | | | | - Irene Gösler
- Center of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Austria
| | | | | | - Dieter Blaas
- Center of Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Austria
| | - Johannes Stöckl
- Institute of Immunology, Center of Pathophysiology, Immunology & Infectiology, Medical University of Vienna, Austria
| | - Thomas R. Kreil
- Global Pathogen Safety, Takeda Manufacturing Austria AG, Austria
| | | | - Anna-Dorothea Gorki
- G.ST Antivirals GmbH, Austria,Corresponding author. G.ST Antivirals GmbH, Doktor-Bohr-Gasse 7 (VBC6), 1030, Vienna, Austria
| |
Collapse
|
11
|
Talaat IM, Kim B. A brief glimpse of a tangled web in a small world: Tumor microenvironment. Front Med (Lausanne) 2022; 9:1002715. [PMID: 36045917 PMCID: PMC9421133 DOI: 10.3389/fmed.2022.1002715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
A tumor is a result of stepwise accumulation of genetic and epigenetic alterations. This notion has deepened the understanding of cancer biology and has introduced the era of targeted therapies. On the other hand, there have been a series of attempts of using the immune system to treat tumors, dating back to ancient history, to sporadic reports of inflamed tumors undergoing spontaneous regression. This was succeeded by modern immunotherapies and immune checkpoint inhibitors. The recent breakthrough has broadened the sight to other players within tumor tissue. Tumor microenvironment is a niche or a system orchestrating reciprocal and dynamic interaction of various types of cells including tumor cells and non-cellular components. The output of this complex communication dictates the functions of the constituent elements present within it. More complicated factors are biochemical and biophysical settings unique to TME. This mini review provides a brief guide on a range of factors to consider in the TME research.
Collapse
Affiliation(s)
- Iman M. Talaat
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Byoungkwon Kim
- Department of Pathology, H.H. Sheikh Khalifa Specialty Hospital, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
12
|
Xu X, Qiu Y, Chen S, Wang S, Yang R, Liu B, Li Y, Deng J, Su Y, Lin Z, Gu J, Li S, Huang L, Zhou Y. Different roles of the insulin-like growth factor (IGF) axis in non-small cell lung cancer. Curr Pharm Des 2022; 28:2052-2064. [DOI: 10.2174/1381612828666220608122934] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/29/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Non-small cell lung cancer (NSCLC) remains one of the deadliest malignant diseases, with high incidence and mortality worldwide. The insulin-like growth factor (IGF) axis, consisting of IGF-1, IGF-2, related receptors (IGF-1R, -2R), and high-affinity binding proteins (IGFBP 1–6), is associated with promoting fetal development, tissue growth, and metabolism. Emerging studies have also identified the role of the IGF axis in NSCLC, including cancer growth, invasion, and metastasis. Upregulation of IGE-1 and IGF-2, overexpression of IGF-1R, and dysregulation of downstream signaling molecules involved in the PI-3K/Akt and MAPK pathways jointly increase the risk of cancer growth and migration in NSCLC. At the genetic level, some noncoding RNAs could influence the proliferation and differentiation of tumor cells through the IGF signaling pathway. The resistance to some promising drugs might be partially attributed to the IGF axis. Therapeutic strategies targeting the IGF axis have been evaluated, and some have shown promising efficacy. In this review, we summarize the biological roles of the IGF axis in NSCLC, including the expression and prognostic significance of the related components, noncoding RNA regulation, involvement in drug resistance, and therapeutic application. This review offers comprehensive understanding of NSCLC and provides insightful ideas for future research.
Collapse
Affiliation(s)
- Xiongye Xu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanli Qiu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Simin Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuaishuai Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruifu Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Baomo Liu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yufei Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiating Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Su
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ziying Lin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jincui Gu
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shaoli Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanbin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
13
|
Rusanov DA, Zou J, Babak MV. Biological Properties of Transition Metal Complexes with Metformin and Its Analogues. Pharmaceuticals (Basel) 2022; 15:ph15040453. [PMID: 35455450 PMCID: PMC9031419 DOI: 10.3390/ph15040453] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a widely prescribed medication for the treatment and management of type 2 diabetes. It belongs to a class of biguanides, which are characterized by a wide range of diverse biological properties, including anticancer, antimicrobial, antimalarial, cardioprotective and other activities. It is known that biguanides serve as excellent N-donor bidentate ligands and readily form complexes with virtually all transition metals. Recent evidence suggests that the mechanism of action of metformin and its analogues is linked to their metal-binding properties. These findings prompted us to summarize the existing data on the synthetic strategies and biological properties of various metal complexes with metformin and its analogues. We demonstrated that coordination of biologically active biguanides to various metal centers often resulted in an improved pharmacological profile, including reduced drug resistance as well as a wider spectrum of activity. In addition, coordination to the redox-active metal centers, such as Au(III), allowed for various activatable strategies, leading to the selective activation of the prodrugs and reduced off-target toxicity.
Collapse
Affiliation(s)
- Daniil A. Rusanov
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Laboratory of Medicinal Chemistry, N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Avenue 47, 119991 Moscow, Russia
| | - Jiaying Zou
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Maria V. Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR 999077, China; (D.A.R.); (J.Z.)
- Correspondence:
| |
Collapse
|
14
|
Repas J, Zupin M, Vodlan M, Veranič P, Gole B, Potočnik U, Pavlin M. Dual Effect of Combined Metformin and 2-Deoxy-D-Glucose Treatment on Mitochondrial Biogenesis and PD-L1 Expression in Triple-Negative Breast Cancer Cells. Cancers (Basel) 2022; 14:1343. [PMID: 35267651 PMCID: PMC8909901 DOI: 10.3390/cancers14051343] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/23/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023] Open
Abstract
Metformin and 2-deoxy-D-glucose (2DG) exhibit multiple metabolic and immunomodulatory anti-cancer effects, such as suppressed proliferation or PD-L1 expression. Their combination or 2DG alone induce triple-negative breast cancer (TNBC) cell detachment, but their effects on mitochondria, crucial for anchorage-independent growth and metastasis formation, have not yet been evaluated. In the present study, we explored the effects of metformin, 2DG and their combination (metformin + 2DG) on TNBC cell mitochondria in vitro. Metformin + 2DG increased mitochondrial mass in TNBC cells. This was associated with an increased size but not number of morphologically normal mitochondria and driven by the induction of mitochondrial biogenesis rather than suppressed mitophagy. 2DG and metformin + 2DG strongly induced the unfolded protein response by inhibiting protein N-glycosylation. Together with adequate energy stress, this was one of the possible triggers of mitochondrial enlargement. Suppressed N-glycosylation by 2DG or metformin + 2DG also caused PD-L1 deglycosylation and reduced surface expression in MDA-MB-231 cells. PD-L1 was increased in low glucose and normalized by both drugs. 2DG and metformin + 2DG reduced PD-1 expression in Jurkat cells beyond the effects on activation, while cytokine secretion was mostly preserved. Despite increasing mitochondrial mass in TNBC cells, metformin and 2DG could therefore potentially be used as an adjunct therapy to improve anti-tumor immunity in TNBC.
Collapse
Affiliation(s)
- Jernej Repas
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Mateja Zupin
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Maja Vodlan
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia;
| | - Boris Gole
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
| | - Uroš Potočnik
- Center for Human Molecular Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia; (M.Z.); (B.G.); (U.P.)
- Laboratory for Biochemistry, Molecular Biology and Genomics, University of Maribor, SI-2000 Maribor, Slovenia
- Department for Science and Research, University Medical Centre Maribor, SI-2000 Maribor, Slovenia
| | - Mojca Pavlin
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (J.R.); (M.V.)
- Group for Nano- and Biotechnological Applications, Faculty of Electrical Engineering, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Metformin and Breast Cancer: Where Are We Now? Int J Mol Sci 2022; 23:ijms23052705. [PMID: 35269852 PMCID: PMC8910543 DOI: 10.3390/ijms23052705] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022] Open
Abstract
Breast cancer is the most prevalent cancer and the leading cause of cancer-related death among women worldwide. Type 2 diabetes–associated metabolic traits such as hyperglycemia, hyperinsulinemia, inflammation, oxidative stress, and obesity are well-known risk factors for breast cancer. The insulin sensitizer metformin, one of the most prescribed oral antidiabetic drugs, has been suggested to function as an antitumoral agent, based on epidemiological and retrospective clinical data as well as preclinical studies showing an antiproliferative effect in cultured breast cancer cells and animal models. These benefits provided a strong rationale to study the effects of metformin in routine clinical care of breast cancer patients. However, the initial enthusiasm was tempered after disappointing results in randomized controlled trials, particularly in the metastatic setting. Here, we revisit the current state of the art of metformin mechanisms of action, critically review past and current metformin-based clinical trials, and briefly discuss future perspectives on how to incorporate metformin into the oncologist’s armamentarium for the prevention and treatment of breast cancer.
Collapse
|
16
|
Eltoukhy L, Loderer C. A Multi-enzyme Cascade for the Biosynthesis of AICA Ribonucleoside Di- and Triphosphate. Chembiochem 2022; 23:e202100596. [PMID: 34859954 PMCID: PMC9299608 DOI: 10.1002/cbic.202100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/01/2021] [Indexed: 11/10/2022]
Abstract
AICA (5'-aminoimidazole-4-carboxamide) ribonucleotides with different phosphorylation levels are the pharmaceutically active metabolites of AICA nucleoside-based drugs. The chemical synthesis of AICA ribonucleotides with defined phosphorylation is challenging and expensive. In this study, we describe two enzymatic cascades to synthesize AICA derivatives with defined phosphorylation levels from the corresponding nucleobase and the co-substrate phosphoribosyl pyrophosphate. The cascades are composed of an adenine phosphoribosyltransferase from Escherichia coli (EcAPT) and different polyphosphate kinases: polyphosphate kinase from Acinetobacter johnsonii (AjPPK), and polyphosphate kinase from Meiothermus ruber (MrPPK). The role of the EcAPT is to bind the nucleobase to the sugar moiety, while the kinases are responsible for further phosphorylation of the nucleotide to produce the desired phosphorylated AICA ribonucleotide. The selected enzymes were characterized, and conditions were established for two enzymatic cascades. The diphosphorylated AICA ribonucleotide derivative ZDP, synthesized from the cascade EcAPT/AjPPK, was produced with a conversion up to 91 %. The EcAPT/MrPPK cascade yielded ZTP with conversion up to 65 % with ZDP as a side product.
Collapse
Affiliation(s)
- Lobna Eltoukhy
- Chair of Molecular Biotechnology Institute for MicrobiologyTechnische Universität DresdenZellescher Weg 20b01217DresdenGermany
| | - Christoph Loderer
- Chair of Molecular Biotechnology Institute for MicrobiologyTechnische Universität DresdenZellescher Weg 20b01217DresdenGermany
| |
Collapse
|
17
|
Alfaifi A, Bahashwan S, Alsaadi M, Malhan H, Aqeel A, Al-Kahiry W, Almehdar H, Qadri I. Metabolic Biomarkers in B-Cell Lymphomas for Early Diagnosis and Prediction, as Well as Their Influence on Prognosis and Treatment. Diagnostics (Basel) 2022; 12:394. [PMID: 35204484 PMCID: PMC8871334 DOI: 10.3390/diagnostics12020394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 11/22/2022] Open
Abstract
B-cell lymphomas exhibit a vast variety of clinical and histological characteristics that might complicate the diagnosis. Timely diagnosis is crucial, as treatments for aggressive subtypes are considered successful and frequently curative, whereas indolent B-cell lymphomas are incurable and often need several therapies. The purpose of this review is to explore the current advancements achieved in B-cell lymphomas metabolism and how these indicators help to early detect metabolic changes in B-cell lymphomas and the use of predictive biological markers in refractory or relapsed disease. Since the year 1920, the Warburg effect has been known as an integral part of metabolic reprogramming. Compared to normal cells, cancerous cells require more glucose. These cancer cells undergo aerobic glycolysis instead of oxidative phosphorylation to metabolize glucose and form lactate as an end product. With the help of these metabolic alterations, a novel biomass is generated by the formation of various precursors. An aggressive metabolic phenotype is an aerobic glycolysis that has the advantage of producing high-rate ATP and preparing the biomass for the amino acid, as well as fatty acid, synthesis needed for a rapid proliferation of cells, while aerobic glycolysis is commonly thought to be the dominant metabolism in cancer cells. Later on, many metabolic biomarkers, such as increased levels of lactate dehydrogenase (LDH), plasma lactate, and deficiency of thiamine in B-cell lymphoma patients, were discovered. Various kinds of molecules can be used as biomarkers, such as genes, proteins, or hormones, because they all refer to body health. Here, we focus only on significant metabolic biomarkers in B-cell lymphomas. In conclusion, many metabolic biomarkers have been shown to have clinical validity, but many others have not been subjected to extensive testing to demonstrate their clinical usefulness in B-cell lymphoma. Furthermore, they play an essential role in the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
- Department of Hematology, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- King AbdulAziz University Hospital, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia;
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Aqeel Aqeel
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Waiel Al-Kahiry
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia; (H.M.); (A.A.); (W.A.-K.)
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia; (A.A.); (M.A.); (H.A.)
| |
Collapse
|
18
|
Ando T, Tai-Nagara I, Sugiura Y, Kusumoto D, Okabayashi K, Kido Y, Sato K, Saya H, Navankasattusas S, Li DY, Suematsu M, Kitagawa Y, Seiradake E, Yamagishi S, Kubota Y. Tumor-specific inter-endothelial adhesion mediated by FLRT2 facilitates cancer aggressiveness. J Clin Invest 2022; 132:153626. [PMID: 35104247 PMCID: PMC8920344 DOI: 10.1172/jci153626] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/28/2022] [Indexed: 11/17/2022] Open
Abstract
Blood vessel abnormalization alters cancer cell metabolism and promotes cancer dissemination and metastasis. However, the biological features of the abnormalized blood vessels that facilitate cancer progression and whether they can be targeted therapeutically have not been fully investigated. Here, we found that an axon guidance molecule, fibronectin leucine-rich transmembrane protein 2 (FLRT2), is expressed preferentially in abnormalized vessels of advanced colorectal cancers in humans, and that its expression correlates negatively with long-term survival. Endothelial-specific deletion of Flrt2 in mice selectively pruned abnormalized vessels, resulting in a unique metabolic state termed "oxygen-glucose uncoupling", which suppresses tumor metastasis. Moreover, Flrt2 deletion caused an increase in the number of mature vessels, resulting in a significant increase in the anti-tumor effects of immune checkpoint blockers. Mechanistically, we found that FLRT2 forms non-canonical inter-endothelial adhesions that safeguard against oxidative stress through homophilic binding. Together, our results demonstrate the existence of tumor-specific inter-endothelial adhesions that enable abnormalized vessels to facilitate cancer aggressiveness. Targeting this type of adhesion complex could be a safe and effective therapeutic option to suppress cancer progression.
Collapse
Affiliation(s)
- Tomofumi Ando
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Ikue Tai-Nagara
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Dai Kusumoto
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Koji Okabayashi
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yasuaki Kido
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kohji Sato
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Keio University School of Medicine, Tokyo, Japan
| | - Sutip Navankasattusas
- Department of Medicine, University of Utah, Salt Lake City, United States of America
| | - Dean Y Li
- Department of Medicine, University of Utah, Salt Lake City, United States of America
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yuko Kitagawa
- Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Satoru Yamagishi
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
19
|
Chu YD, Lim SN, Yeh CT, Lin WR. COX5B-Mediated Bioenergetic Alterations Modulate Cell Growth and Anticancer Drug Susceptibility by Orchestrating Claudin-2 Expression in Colorectal Cancers. Biomedicines 2021; 10:60. [PMID: 35052740 PMCID: PMC8772867 DOI: 10.3390/biomedicines10010060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 11/23/2022] Open
Abstract
Oxidative phosphorylation (OXPHOS) consists of four enzyme complexes and ATP synthase, and is crucial for maintaining physiological tissue and cell growth by supporting the main bioenergy pool. Cytochrome c oxidase (COX) has been implicated as a primary regulatory site of OXPHOS. Recently, COX subunit 5B (COX5B) emerged as a potential biomarker associated with unfavorable prognosis by modulating cell behaviors in specific cancer types. However, its molecular mechanism remains unclear, particularly in colorectal cancers (CRCs). To understand the role of COX5B in CRCs, the expression and postoperative outcome associations using independent in-house patient cohorts were evaluated. A higher COX5B tumor/nontumor expression ratio was associated with unfavorable clinical outcomes (p = 0.001 and 0.011 for overall and disease-free survival, respectively. In cell-based experiments, the silencing of COX5B repressed cell growth and enhanced the susceptibility of CRCs cells to anticancer drugs. Finally, downstream effectors identified by RNA sequencing followed by RT-qPCR and functional compensation experiments revealed that the tight junction protein Claudin-2 (CLDN2) acts downstream of COX5B-mediated bioenergetic alterations in controlling cell growth and the sensitivity to anticancer drugs in CRCs cells. In conclusion, it was found that COX5B promoted cell growth and attenuated anticancer drugs susceptibility in CRCs cells by orchestrating CLDN2 expression, which may contribute to unfavorable postoperative outcomes of patients with CRCs.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan;
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| |
Collapse
|
20
|
Dadgar T, Ebrahimi N, Gholipour AR, Akbari M, Khani L, Ahmadi A, Hamblin MR. Targeting the metabolism of cancer stem cells by energy disruptor molecules. Crit Rev Oncol Hematol 2021; 169:103545. [PMID: 34838705 DOI: 10.1016/j.critrevonc.2021.103545] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/17/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified in various tumor types. CSCs are believed to contribute to tumor metastasis and resistance to conventional therapy. So targeting these cells could be an effective strategy to eliminate tumors and a promising new type of cancer treatment. Alterations in metabolism play an essential role in CSC biology and their resistance to treatment. The metabolic properties pathways in CSCs are different from normal cells, and to some extent, are different from regular tumor cells. Interestingly, CSCs can use other nutrients for their metabolism and growth. The different metabolism causes increased sensitivity of CSCs to agents that disrupt cellular homeostasis. Compounds that interfere with the central metabolic pathways are known as energy disruptors and can reduce CSC survival. This review highlights the differences between regular cancer cells and CSC metabolism and discusses the action mechanisms of energy disruptors at the cellular and molecular levels.
Collapse
Affiliation(s)
- Tahere Dadgar
- Department of Biology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Nasim Ebrahimi
- Division of Genetics, Department of Cell and Molecular & Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | - Amir Reza Gholipour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Akbari
- Department of Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Khani
- Department of Immunology, School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Amirhossein Ahmadi
- Department of Biological Science and Technology, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, 75169, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
21
|
Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci J, Méneyrol J, Paillasse MR, Alet N. EVT-701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti-tumor activity in models of solid cancers. Pharmacol Res Perspect 2021; 9:e00854. [PMID: 34478236 PMCID: PMC8415080 DOI: 10.1002/prp2.854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022] Open
Abstract
Targeting the first protein complex of the mitochondrial electron transport chain (MC1) in cancer has become an attractive therapeutic approach in the recent years, given the metabolic vulnerabilities of cancer cells. The anticancer effect exerted by the pleiotropic drug metformin and the associated reduction in hypoxia-inducible factor 1α (HIF-1α) levels putatively mediated by MC1 inhibition led to the development of HIF-1α inhibitors, such as BAY87-2243, with a more specific MC1 targeting. However, the development of BAY87-2243 was stopped early in phase 1 due to dose-independent emesis and thus there is still no clinical proof of concept for the approach. Given the importance of mitochondrial metabolism during cancer progression, there is still a strong therapeutic need to develop specific and safe MC1 inhibitors. We recently reported the synthesis of compounds with a novel chemotype and potent action on HIF-1α degradation and MC1 inhibition. We describe here the selectivity, safety profile and anti-cancer activity in solid tumors of lead compound EVT-701. In addition, using murine models of lung cancer and of Non-Hodgkin's B cell lymphoma we demonstrated that EVT-701 reduced tumor growth and lymph node invasion when used as a single agent therapy. LKB1 deficiency in lung cancer was identified as a potential indicator of accrued sensitivity to EVT-701, allowing stratification and selection of patients in clinical trials. Altogether these results support further evaluation of EVT-701 alone or in combination in preclinical models and eventually in patients.
Collapse
Affiliation(s)
| | | | | | - Johanna Chiche
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | - Jean‐Ehrland Ricci
- C3MINSERMUniversité Côte d'Azur, Equipe labellisée Ligue Contre le CancerNiceFrance
| | | | | | | |
Collapse
|
22
|
Wang S, Chang X, Zhang J, Li J, Wang N, Yang B, Pan B, Zheng Y, Wang X, Ou H, Wang Z. Ursolic Acid Inhibits Breast Cancer Metastasis by Suppressing Glycolytic Metabolism via Activating SP1/Caveolin-1 Signaling. Front Oncol 2021; 11:745584. [PMID: 34568078 PMCID: PMC8457520 DOI: 10.3389/fonc.2021.745584] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/23/2021] [Indexed: 01/29/2023] Open
Abstract
Breast cancer remains the most common malignancy and the leading causality of cancer-associated mortality among women worldwide. With proven efficacy, Oldenlandia diffusa has been extensively applied in breast cancer treatment in Traditional Chinese Medicine (TCM) for thousands of years. However, the bioactive compounds of Oldenlandia diffusa accounting for its anti-breast cancer activity and the underlying biological mechanisms remain to be uncovered. Herein, bioactivity-guided fractionation suggested ursolic acid as the strongest anti-breast cancer compound in Oldenlandia diffusa. Ursolic acid treatment dramatically suppressed the proliferation and promoted mitochondrial-mediated apoptosis in breast cancer cells while brought little cytotoxicities in nonmalignant mammary epithelial cells in vitro. Meanwhile, ursolic acid dramatically impaired both the glycolytic metabolism and mitochondrial respiration function of breast cancer cells. Further investigations demonstrated that ursolic acid may impair the glycolytic metabolism of breast cancer cells by activating Caveolin-1 (Cav-1) signaling, as Cav-1 knockdown could partially abrogate the suppressive effect of ursolic acid on that. Mechanistically, ursolic acid could activate SP1-mediated CAV1 transcription by promoting SP1 expression as well as its binding with CAV1 promoter region. More meaningfully, ursolic acid administration could dramatically suppress the growth and metastasis of breast cancer in both the zebrafish and mouse xenotransplantation models of breast cancer in vivo without any detectable hepatotoxicity, nephrotoxicity or hematotoxicity. This study not only provides preclinical evidence supporting the application of ursolic acid as a promising candidate drug for breast cancer treatment but also sheds novel light on Cav-1 as a druggable target for glycolytic modulation of breast cancer.
Collapse
Affiliation(s)
- Shengqi Wang
- Section of Science and Technology, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xu Chang
- Department of Mammary Disease, Panyu Hospital of Chinese Medicine, Guangzhou, China
| | - Juping Zhang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Neng Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,The Research Center for Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Yang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bo Pan
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yifeng Zheng
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hesheng Ou
- Section of Science and Technology, Guangxi International Zhuang Medicine Hospital, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhiyu Wang
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Academy of Chinese Medical Sciences, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.,The Research Center of Integrative Cancer Medicine, Discipline of Integrated Chinese and Western Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
23
|
Bai Z, Ye Y, Ye X, Yuan B, Tang Y, Wei J, Jin M, Wang G, Li X. Leptin promotes glycolytic metabolism to induce dendritic cells activation via STAT3-HK2 pathway. Immunol Lett 2021; 239:88-95. [PMID: 34480980 DOI: 10.1016/j.imlet.2021.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022]
Abstract
Leptin is over-secreted in many autoimmune diseases, which can promote dendritic cells (DCs) maturation and up-regulate the expression of inflammatory cytokines, but the underlying mechanisms are not fully elucidated. Considering the major role of leptin in maintaining energy balance and the significant role of glycolysis in DCs activation, our study aims to investigate whether leptin promotes the activation of DCs via glycolysis and its underlying mechanisms. We demonstrated that leptin promoted the activation of DCs, including up-regulating the expression of co-stimulatory molecules and inflammatory cytokines, enhancing the proliferation and T helper 17 (Th17) cell ratio in peripheral blood mononuclear cells (PBMC) co-cultured with leptin-stimulated DCs. Leptin also enhanced DCs glycolysis with increased glucose consumption, lactate production, and the expression of hexokinase 2 (HK2). In addition, the activation of DCs stimulated by leptin could be inhibited by the glycolysis inhibitor 2-deoxy-d-glucose (2-DG). To explore the signaling pathways involved in leptin-induced HK2 expression, we observed that the inhibitors of STAT3 (NSC74859) could repress the enhancement of HK2 triggered by leptin stimulation. Therefore, our results indicated that leptin promoted glycolytic metabolism to induce DCs activation via STAT3-HK2 pathway.
Collapse
Affiliation(s)
- Ziran Bai
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yunshan Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Xiaokang Ye
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Bo Yuan
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Yawei Tang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Jing Wei
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Minli Jin
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China
| | - Guan Wang
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| | - Xia Li
- Department of Immunology, College of Basic Medical Science, Dalian Medical University, Liaoning, China.
| |
Collapse
|
24
|
He J, Yamamoto M, Sumiyama K, Konagaya Y, Terai K, Matsuda M, Sato S. Two-photon AMPK and ATP imaging reveals the bias between rods and cones in glycolysis utility. FASEB J 2021; 35:e21880. [PMID: 34449091 DOI: 10.1096/fj.202101121r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/08/2021] [Accepted: 08/11/2021] [Indexed: 12/15/2022]
Abstract
In vertebrates, retinal rod and cone photoreceptor cells rely significantly on glycolysis. Lactate released from photoreceptor cells fuels neighboring retinal pigment epithelium cells and Müller glial cells through oxidative phosphorylation. To understand this highly heterogeneous metabolic environment around photoreceptor cells, single-cell analysis is needed. Here, we visualized cellular AMP-activated protein kinase (AMPK) activity and ATP levels in the retina by two-photon microscopy. Transgenic mice expressing a hyBRET-AMPK biosensor were used for measuring the AMPK activity. GO-ATeam2 transgenic mice were used for measuring the ATP level. Temporal metabolic responses were successfully detected in the live retinal explants upon drug perfusion. A glycolysis inhibitor, 2-deoxy-d-glucose (2-DG), activated AMPK and reduced ATP. These effects were clearly stronger in rods than in cones. Notably, rod AMPK and ATP started to recover at 30 min from the onset of 2-DG perfusion. Consistent with these findings, ex vivo electroretinogram recordings showed a transient slowdown in rod dim flash responses during a 60-min 2-DG perfusion, whereas cone responses were not affected. Based on these results, we propose that cones surrounded by highly glycolytic rods become less dependent on glycolysis, and rods also become less dependent on glycolysis within 60 min upon the glycolysis inhibition.
Collapse
Affiliation(s)
- Jiazhou He
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Masamichi Yamamoto
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Kenta Sumiyama
- Laboratory for Mouse Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Osaka, Japan
| | - Yumi Konagaya
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Michiyuki Matsuda
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan.,Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Shinya Sato
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Yang Z, Li G, Zhao Y, Zhang L, Yuan X, Meng L, Liu H, Han Y, Jia L, Zhang S. Molecular Insights into the Recruiting Between UCP2 and DDX5/UBAP2L in the Metabolic Plasticity of Non-Small-Cell Lung Cancer. J Chem Inf Model 2021; 61:3978-3987. [PMID: 34308648 DOI: 10.1021/acs.jcim.1c00138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial uncoupling protein 2 (UCP2) is distributed in tumor cells with a link to the support of systemic metabolic deregulation, and the downregulation of UCP2 has been unveiled as a biomarker of oncogenesis and chemoresistance in non-small-cell lung cancer (NSCLC) cells. However, the underlying mechanism of how UCP2 cooperates with other proteins in this metabolic reprogramming remains largely unsolved. We employed a combined computational and experimental strategy to explore into the recruiting of DDX5 with other proteins, and we unraveled the underlying structural mechanisms. We found that recruiting by ATP-dependent RNA helicase DDX5 (DDX5)/ubiquitin-associated protein 2-like (UBAP2L) might help UCP2 to play the pathological roles in NSCLC cells. According to the view of thermodynamics in physics, UCP2 tends to recruit DDX5 rather than UBAP2L, as shown by the ensemble-based docking, molecular dynamics simulations and molecular mechanics generalized Born surface area (MM/GBSA) approach. Cellular immunofluorescence assays further demonstrated that UCP2 associate with DDX5, and the recruiting of DDX5 with UCP2 at least partially contribute to the metabolic plasticity of NSCLCs via the AKT/mTOR pathway. Our study proposed an efficient way for detecting the protein-protein association via the experimentally validated molecular simulation. Our results shed light on the functional annotation of UCP and DDX family proteins in dysregulated metabolism, and the identification of candidate therapeutic targets for NSCLC.
Collapse
Affiliation(s)
- Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Guoyin Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466000, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaohui Yuan
- Institute of Biomedicine, Jinan University, Guangzhou 510632, China
| | - Lingjie Meng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
- Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an 710049, China
| | - Huadong Liu
- School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yong Han
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Lintao Jia
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
26
|
Mukerjee S, Saeedan AS, Ansari MN, Singh M. Polyunsaturated Fatty Acids Mediated Regulation of Membrane Biochemistry and Tumor Cell Membrane Integrity. MEMBRANES 2021; 11:479. [PMID: 34203433 PMCID: PMC8304949 DOI: 10.3390/membranes11070479] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/05/2021] [Accepted: 06/24/2021] [Indexed: 12/25/2022]
Abstract
Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P-L-P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P-L-P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.
Collapse
Affiliation(s)
- Souvik Mukerjee
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India;
| | - Abdulaziz S. Saeedan
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Mohd. Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Manjari Singh
- Department of Pharmaceutical Sciences, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
27
|
Holloway RW, Marignani PA. Targeting mTOR and Glycolysis in HER2-Positive Breast Cancer. Cancers (Basel) 2021; 13:2922. [PMID: 34208071 PMCID: PMC8230691 DOI: 10.3390/cancers13122922] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022] Open
Abstract
Up to one third of all breast cancers are classified as the aggressive HER2-positive subtype, which is associated with a higher risk of recurrence compared to HER2-negative breast cancers. The HER2 hyperactivity associated with this subtype drives tumor growth by up-regulation of mechanistic target of rapamycin (mTOR) pathway activity and a metabolic shift to glycolysis. Although inhibitors targeting the HER2 receptor have been successful in treating HER2-positive breast cancer, anti-HER2 therapy is associated with a high risk of recurrence and drug resistance due to stimulation of the PI3K-Akt-mTOR signaling pathway and glycolysis. Combination therapies against HER2 with inhibition of mTOR improve clinical outcomes compared to HER2 inhibition alone. Here, we review the role of the HER2 receptor, mTOR pathway, and glycolysis in HER2-positive breast cancer, along with signaling mechanisms and the efficacy of treatment strategies of HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada;
| |
Collapse
|
28
|
Babak MV, Chong KR, Rapta P, Zannikou M, Tang HM, Reichert L, Chang MR, Kushnarev V, Heffeter P, Meier‐Menches SM, Lim ZC, Yap JY, Casini A, Balyasnikova IV, Ang WH. Interfering with Metabolic Profile of Triple‐Negative Breast Cancers Using Rationally Designed Metformin Prodrugs. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Maria V. Babak
- Drug Discovery Lab Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue 999077 Hong Kong SAR P. R. China
| | - Kai Ren Chong
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| | - Peter Rapta
- Institute of Physical Chemistry and Chemistry Physics Slovak Technical University of Technology Radlinského 9 82137 Bratislava Slovak Republic
| | - Markella Zannikou
- Department of Neurological Surgery The Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Hui Min Tang
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| | - Lisa Reichert
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| | - Meng Rui Chang
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| | - Vladimir Kushnarev
- FSBI “National Medical Research Center of Oncology, named after N.N Petrov” Ministry of Healthcare of the Russian Federation 68 Leningradskaya Street, Pesochny 197758 St Petersburg Russian Federation
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center Department of Medicine I Medical University of Vienna Borschkegasse 8a 1090 Vienna Austria
| | | | - Zhi Chiaw Lim
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| | - Jian Yu Yap
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| | - Angela Casini
- Department of Chemistry Technical University of Munich Lichtenbergstr. 4 85748 Garching, München Germany
| | - Irina V. Balyasnikova
- Department of Neurological Surgery The Feinberg School of Medicine Northwestern University Chicago IL 60611 USA
| | - Wee Han Ang
- Department of Chemistry National University of Singapore 3 Science Drive 2 117543 Singapore Singapore
| |
Collapse
|
29
|
Babak MV, Chong KR, Rapta P, Zannikou M, Tang HM, Reichert L, Chang MR, Kushnarev V, Heffeter P, Meier-Menches SM, Lim ZC, Yap JY, Casini A, Balyasnikova IV, Ang WH. Interfering with Metabolic Profile of Triple-Negative Breast Cancers Using Rationally Designed Metformin Prodrugs. Angew Chem Int Ed Engl 2021; 60:13405-13413. [PMID: 33755286 DOI: 10.1002/anie.202102266] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, characterized by an aberrant metabolic phenotype with high metastatic capacity, resulting in poor patient prognoses and low survival rates. We designed a series of novel AuIII cyclometalated prodrugs of energy-disrupting Type II antidiabetic drugs namely, metformin and phenformin. Prodrug activation and release of the metformin ligand was achieved by tuning the cyclometalated AuIII fragment. The lead complex 3met was 6000-fold more cytotoxic compared to uncoordinated metformin and significantly reduced tumor burden in mice with aggressive breast cancers with lymphocytic infiltration into tumor tissues. These effects was ascribed to 3met interfering with energy production in TNBCs and inhibiting associated pro-survival responses to induce deadly metabolic catastrophe.
Collapse
Affiliation(s)
- Maria V Babak
- Drug Discovery Lab, Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, 999077, Hong Kong SAR, P. R. China
| | - Kai Ren Chong
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Peter Rapta
- Institute of Physical Chemistry and Chemistry Physics, Slovak Technical University of Technology, Radlinského 9, 82137, Bratislava, Slovak Republic
| | - Markella Zannikou
- Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Hui Min Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Lisa Reichert
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Meng Rui Chang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Vladimir Kushnarev
- FSBI "National Medical Research Center of Oncology, named after N.N Petrov", Ministry of Healthcare of the Russian Federation, 68 Leningradskaya Street, Pesochny, 197758, St Petersburg, Russian Federation
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090, Vienna, Austria
| | - Samuel M Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Zhi Chiaw Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Jian Yu Yap
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| | - Angela Casini
- Department of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, München, Germany
| | - Irina V Balyasnikova
- Department of Neurological Surgery, The Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, 117543, Singapore, Singapore
| |
Collapse
|
30
|
Stochino-Loi E, Major AL, Gillon TER, Ayoubi JM, Feki A, Bouquet de Joliniere J. Metformin, the Rise of a New Medical Therapy for Endometriosis? A Systematic Review of the Literature. Front Med (Lausanne) 2021; 8:581311. [PMID: 34046415 PMCID: PMC8144644 DOI: 10.3389/fmed.2021.581311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Medical treatments for endometriosis aim to control pain symptoms and stop progression of endometriotic lesions. However, their adverse effects and their contraceptive effect in women who desire pregnancy, limit their long terms use. Although there is only one study investigating the effects of metformin on women with endometriosis, metformin seems to have a unique therapeutic potential. It may be a helpful anti-inflammatory and antiproliferative agent in the treatment of endometriosis. As such metformin may be more beneficial thanks to the lack of serious side effects.
Collapse
Affiliation(s)
- Emanuela Stochino-Loi
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Attila L Major
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland.,Femina Gynecology Center, Geneva, Switzerland
| | - Tessa E R Gillon
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Jean-Marc Ayoubi
- Department of Obstetrics and Gynecology, Foch Hospital, University of West Paris, Suresnes, France
| | - Anis Feki
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| | - Jean Bouquet de Joliniere
- Department of Obstetrics and Gynecology, Cantonal Hospital, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
31
|
Cytotoxic activity of high dose ascorbic acid is enhanced by 2-deoxy-d-glucose in glycolytic melanoma cells. Biochem Biophys Res Commun 2021; 546:90-96. [PMID: 33578294 DOI: 10.1016/j.bbrc.2021.01.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 11/22/2022]
Abstract
Although, numerous in vitro studies showed that cancer cells are killed after exposure to pharmacological doses of ascorbic acid (AA), significant clinical data proving the efficacy of AA is still absent. A hallmark of most tumor cells is an altered glucose metabolism characterized by an upregulation of glycolysis despite normoxic conditions (Warburg effect). Since pyruvate is capable of detoxifying hydrogen peroxide (H2O2), the alleged mediator of AA-induced toxicity, it seems likely that enhanced glycolysis and subsequent higher pyruvate formation might be an explanation for the attenuated effect of pharmacological AA in vivo. Therefore, inhibition of glycolysis might be a promising approach to enhance the anticancer effect of AA by diminishing the generation of pyruvate. Considering the altered metabolism of cancer cells, we examined the cytotoxic potential of 2-DG and/or AA using SRB assay in two different cell lines: a glycolytic human melanoma (451Lu) and a non-glycolytic breast cancer (MCF-7) cell line. Inhibition of glycolysis increased AA cytotoxicity in 451Lu cells, whereas same treatment had a marginal effect on MCF-7 cells. We also investigated the influence of glycolysis inhibition on H2O2 generation. H2O2 concentrations were higher in presence of 451Lu cells when pretreated with 2-DG, but not in MCF-7 cells. Treatment with 10 mM 2-DG decreased pyruvate and lactate concentrations in both cell lines in a concentration-dependent manner. In summary, 2-DG enhances the cytotoxic effect of AA in glycolytic 451Lu cells by increasing AA-induced H2O2 concentration. This result indicates that lower pyruvate levels, as a result of glycolysis inhibition, may be responsible for the enhanced effect of 2-DG on AA toxicity. Further experiments are needed to clarify the underlying mechanism and the potential use in cancer therapy.
Collapse
|
32
|
Rozier R, Paul R, Madji Hounoum B, Villa E, Mhaidly R, Chiche J, Verhoeyen E, Marchetti S, Vandenberghe A, Raucoules M, Carles M, Ricci JE. Pharmacological preconditioning protects from ischemia/reperfusion-induced apoptosis by modulating Bcl-xL expression through a ROS-dependent mechanism. FEBS J 2021; 288:3547-3569. [PMID: 33340237 DOI: 10.1111/febs.15675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Myocardial ischemia/reperfusion (I/R) injury is a frequent perioperative threat, with numerous strategies developed to limit and/or prevent it. One interesting axis of research is the anesthetic preconditioning (APc) agent's hypothesis (such as sevoflurane, SEV). However, APc's mode of action is still poorly understood and volatile anesthetics used as preconditioning agents are often not well suited in clinical practice. Here, in vitro using H9C2 cells lines (in myeloblast state or differentiated toward cardiomyocytes) and in vivo in mice, we identified that SEV-induced APc is mediated by a mild induction of reactive oxygen species (ROS) that activates Akt and induces the expression of the anti-apoptotic protein B-cell lymphoma-extra large (Bcl-xL), therefore protecting cardiomyocytes from I/R-induced death. Furthermore, we extended these results to human cardiomyocytes (derived from induced pluripotent stem - IPS - cells). Importantly, we demonstrated that this protective signaling pathway induced by SEV could be stimulated using the antidiabetic agent metformin (MET), suggesting the preconditioning properties of MET. Altogether, our study identified a signaling pathway allowing APc of cardiac injuries as well as a rational for the use of MET as a pharmacological preconditioning agent to prevent I/R injuries.
Collapse
Affiliation(s)
- Romain Rozier
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rachel Paul
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Blandine Madji Hounoum
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Elodie Villa
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rana Mhaidly
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Johanna Chiche
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Els Verhoeyen
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Sandrine Marchetti
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Ashaina Vandenberghe
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Marc Raucoules
- Anesthésie Réanimation, Centre Hospitalier Universitaire, Nice, France
| | - Michel Carles
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France.,Anesthésie Réanimation, Centre Hospitalier Universitaire, Nice, France.,Réanimation, Faculté des Antilles, Centre Hospitalier Universitaire, Guadeloupe, France
| | - Jean-Ehrland Ricci
- INSERM, C3M, Université Côte d'Azur, Nice, France.,Equipe labellisée Ligue Contre le Cancer, Nice, France
| |
Collapse
|
33
|
Metabolomic Analysis to Elucidate Mechanisms of Sunitinib Resistance in Renal Cell Carcinoma. Metabolites 2020; 11:metabo11010001. [PMID: 33374949 PMCID: PMC7821950 DOI: 10.3390/metabo11010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolomics analysis possibly identifies new therapeutic targets in treatment resistance by measuring changes in metabolites accompanying cancer progression. We previously conducted a global metabolomics (G-Met) study of renal cell carcinoma (RCC) and identified metabolites that may be involved in sunitinib resistance in RCC. Here, we aimed to elucidate possible mechanisms of sunitinib resistance in RCC through intracellular metabolites. We established sunitinib-resistant and control RCC cell lines from tumor tissues of RCC cell (786-O)-injected mice. We also quantified characteristic metabolites identified in our G-Met study to compare intracellular metabolism between the two cell lines using liquid chromatography-mass spectrometry. The established sunitinib-resistant RCC cell line demonstrated significantly desuppressed protein kinase B (Akt) and mesenchymal-to-epithelial transition (MET) phosphorylation compared with the control RCC cell line under sunitinib exposure. Among identified metabolites, glutamine, glutamic acid, and α-KG (involved in glutamine uptake into the tricarboxylic acid (TCA) cycle for energy metabolism); fructose 6-phosphate, D-sedoheptulose 7-phosphate, and glucose 1-phosphate (involved in increased glycolysis and its intermediate metabolites); and glutathione and myoinositol (antioxidant effects) were significantly increased in the sunitinib-resistant RCC cell line. Particularly, glutamine transporter (SLC1A5) expression was significantly increased in sunitinib-resistant RCC cells compared with control cells. In this study, we demonstrated energy metabolism with glutamine uptake and glycolysis upregulation, as well as antioxidant activity, was also associated with sunitinib resistance in RCC cells.
Collapse
|
34
|
Maeda Y, Kikuchi R, Kawagoe J, Tsuji T, Koyama N, Yamaguchi K, Nakamura H, Aoshiba K. Anti-cancer strategy targeting the energy metabolism of tumor cells surviving a low-nutrient acidic microenvironment. Mol Metab 2020; 42:101093. [PMID: 33007425 PMCID: PMC7578269 DOI: 10.1016/j.molmet.2020.101093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Tumor cells experience hypoxia, acidosis, and hypoglycemia. Metabolic adaptation to glucose shortage is essential to maintain tumor cells' survival because of their high glucose requirement. This study evaluated the hypothesis that acidosis might promote tumor survival during glucose shortage and if so, explored a novel drug targeting metabolic vulnerability to glucose shortage. METHODS Cell survival and bioenergetics metabolism were assessed in lung cancer cell lines. Our in-house small-molecule compounds were screened to identify those that kill cancer cells under low-glucose conditions. Cytotoxicity against non-cancerous cells was also assessed. Tumor growth was evaluated in vivo using a mouse engraft model. RESULTS Acidosis limited the cellular consumption of glucose and ATP, causing tumor cells to enter a metabolically dormant but energetically economic state, which promoted tumor cell survival during glucose deficiency. We identified ESI-09, a previously known exchange protein directly activated by cAMP (EAPC) inhibitor, as an anti-cancer compound that inhibited cancer cells under low-glucose conditions even when associated with acidosis. Bioenergetic studies showed that independent of EPAC inhibition, ESI-09 was a safer mitochondrial uncoupler than a classical uncoupler and created a futile cycle of mitochondrial respiration, leading to decreased ATP production, increased ATP dissipation, and fuel scavenging. Accordingly, ESI-09 exhibited more cytotoxic effects under low-glucose conditions than under normal glucose conditions. ESI-09 was also more effective than actively proliferating cells on quiescent glucose-restricted cells. Cisplatin showed opposite effects. ESI-09 inhibited tumor growth in lung cancer engraft mice. CONCLUSIONS This study highlights the acidosis-induced promotion of tumor survival during glucose shortage and demonstrates that ESI-09 is a novel potent anti-cancer mitochondrial uncoupler that targets a metabolic vulnerability to glucose shortage even when associated with acidosis. The higher cytotoxicity under lower-than-normal glucose conditions suggests that ESI-09 is safer than conventional chemotherapy, can target the metabolic vulnerability of tumor cells to low-glucose stress, and is applicable to many cancer cell types.
Collapse
Affiliation(s)
- Yuki Maeda
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Ryota Kikuchi
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Junichiro Kawagoe
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan; Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Takao Tsuji
- Department of Medicine, Otsuki Municipal Hospital, 1255 Hanasaki, Otsuki-chou, Otsuki-shi, Yamanashi, 401-0015, Japan
| | - Nobuyuki Koyama
- Department of Clinical Oncology, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazuhiro Yamaguchi
- Department of Respiratory Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo, 160-0023, Japan
| | - Hiroyuki Nakamura
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan
| | - Kazutetsu Aoshiba
- Department of Respiratory Medicine, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuou, Ami-machi, Inashiki-gun, Ibaraki, 300-0395, Japan.
| |
Collapse
|
35
|
Dembitz V, Lalic H, Kodvanj I, Tomic B, Batinic J, Dubravcic K, Batinic D, Bedalov A, Visnjic D. 5-aminoimidazole-4-carboxamide ribonucleoside induces differentiation in a subset of primary acute myeloid leukemia blasts. BMC Cancer 2020; 20:1090. [PMID: 33176741 PMCID: PMC7657321 DOI: 10.1186/s12885-020-07533-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/11/2023] Open
Abstract
Background All-trans retinoic acid (ATRA)-based treatment of acute promyelocytic leukemia (APL) is the most successful pharmacological treatment of acute myeloid leukemia (AML). Recent development of inhibitors of mutated isocitrate dehydrogenase and dihydroorotate dehydrogenase (DHODH) has revived interest in differentiation therapy of non-APL AML. Our previous studies demonstrated that 5-aminoimidazole-4-carboxamide ribonucleoside (AICAr) induced differentiation of monocytic cell lines by activating the ATR/Chk1 via pyrimidine depletion. In the present study, the effects of AICAr on the viability and differentiation of primary AML blasts isolated from bone marrow of patients with non-APL AML were tested and compared with the effects of DHODH inhibitor brequinar and ATRA. Methods Bone marrow samples were obtained from 35 patients and leukemia blasts were cultured ex vivo. The cell viability was assessed by MTT assay and AML cell differentiation was determined by flow cytometry and morphological analyses. RNA sequencing and partial data analysis were conducted using ClusterProfiler package. Statistical analysis was performed using GraphPad Prism 6.0. Results AICAr is capable of triggering differentiation in samples of bone marrow blasts cultured ex vivo that were resistant to ATRA. AICAr-induced differentiation correlates with proliferation and sensitivity to DHODH inhibition. RNA-seq data obtained in primary AML blasts confirmed that AICAr treatment induced downregulation of pyrimidine metabolism pathways together with an upregulation of gene set involved in hematopoietic cell lineage. Conclusion AICAr induces differentiation in a subset of primary non-APL AML blasts, and these effects correlate with sensitivity to a well-known, potent DHODH inhibitor. Supplementary information Supplementary information accompanies this paper at 10.1186/s12885-020-07533-6.
Collapse
Affiliation(s)
- Vilma Dembitz
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Hrvoje Lalic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Ivan Kodvanj
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Barbara Tomic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia.,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Josip Batinic
- Division of Hematology, Department of Internal Medicine, University Hospital Center Zagreb, Zagreb, Croatia
| | - Klara Dubravcic
- Department of Laboratory Immunology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Drago Batinic
- Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Laboratory Immunology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dora Visnjic
- Croatian Institute for Brain Research, University of Zagreb School of Medicine, 10 000, Zagreb, Croatia. .,Department of Physiology, University of Zagreb School of Medicine, Zagreb, Croatia.
| |
Collapse
|
36
|
Circumventing the Crabtree effect: forcing oxidative phosphorylation (OXPHOS) via galactose medium increases sensitivity of HepG2 cells to the purine derivative kinetin riboside. Apoptosis 2020; 25:835-852. [PMID: 32955614 PMCID: PMC7679298 DOI: 10.1007/s10495-020-01637-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 12/26/2022]
Abstract
Small-molecule compound-based therapies have provided new insights into cancer treatment against mitochondrial impairment. N6-furfuryladenosine (kinetin riboside, KR) is a purine derivative and an anticancer agent that selectively affects the molecular pathways crucial for cell growth and apoptosis by interfering with mitochondrial functions and thus might be a potential mitotoxicant. Metabolism of cancer cells is predominantly based on the Crabtree effect that relies on glucose-induced inhibition of cell respiration and thus on oxidative phosphorylation (OXPHOS), which supports the survival of cancer cells in metabolic stress conditions. The simplest way to circumvent this phenomenon is to replace glucose with galactose in the culture environment. Consequently, cells become more sensitive to mitochondrial perturbations caused by mitotoxicants. In the present study, we evaluated several cellular parameters and investigated the effect of KR on mitochondrial functions in HepG2 cells forced to rely mainly on OXPHOS. We showed that KR in the galactose environment is a more potent apoptosis-inducing agent. KR decreases the mitochondrial membrane potential, reduces glutathione level, depletes cellular ATP, and induces reactive oxygen species (ROS) production in the OXPHOS state, leading to the loss of cell viability. Taken together, these results demonstrate that KR directly acts on the mitochondria to limit their function and that the sensitivity of cells is dependent on their ability to cope with energetic stress.
Collapse
|
37
|
Chu YD, Lin WR, Lin YH, Kuo WH, Tseng CJ, Lim SN, Huang YL, Huang SC, Wu TJ, Lin KH, Yeh CT. COX5B-Mediated Bioenergetic Alteration Regulates Tumor Growth and Migration by Modulating AMPK-UHMK1-ERK Cascade in Hepatoma. Cancers (Basel) 2020; 12:1646. [PMID: 32580279 PMCID: PMC7352820 DOI: 10.3390/cancers12061646] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/19/2020] [Indexed: 01/27/2023] Open
Abstract
The oxidative phosphorylation machinery in mitochondria, which generates the main bioenergy pool in cells, includes four enzyme complexes for electron transport and ATP synthase. Among them, the cytochrome c oxidase (COX), which constitutes the fourth complex, has been suggested as the major regulatory site. Recently, abnormalities in COX were linked to tumor progression in several cancers. However, it remains unclear whether COX and its subunits play a role in tumor progression of hepatoma. To search for the key regulatory factor(s) in COX for hepatoma development, in silico analysis using public transcriptomic database followed by validation for postoperative outcome associations using independent in-house patient cohorts was performed. In which, COX5B was highly expressed in hepatoma and associated with unfavorable postoperative prognosis. In addressing the role of COX5B in hepatoma, the loss- and gain-of-function experiments for COX5B were conducted. Consequently, COX5B expression was associated with increased hepatoma cell proliferation, migration and xenograft growth. Downstream effectors searched by cDNA microarray analysis identified UHMK1, an oncogenic protein, which manifested a positively correlated expression level of COX5B. The COX5B-mediated regulatory event on UHMK1 expression was subsequently demonstrated as bioenergetic alteration-dependent activation of AMPK in hepatoma cells. Phosphoproteomic analysis uncovered activation of ERK- and stathmin-mediated pathways downstream of UHMK1. Finally, comprehensive phenotypic assays supported the impacts of COX5B-UHMK1-ERK axis on hepatoma cell growth and migration.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Wey-Ran Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
| | - Yang-Hsiang Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Wen-Hsin Kuo
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Chin-Ju Tseng
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
| | - Siew-Na Lim
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Yen-Lin Huang
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-L.H.); (S.-C.H.)
| | - Shih-Chiang Huang
- Department of Anatomic Pathology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-L.H.); (S.-C.H.)
| | - Ting-Jung Wu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Kwang-Huei Lin
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
| | - Chau-Ting Yeh
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (Y.-D.C.); (W.-R.L.); (Y.-H.L.); (W.-H.K.); (T.-J.W.); (K.-H.L.)
- Department of Hepatology and Gastroenterology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Internal Medicine, Chang Gung University College of Medicine, Taoyuan 333, Taiwan; (C.-J.T.); (S.-N.L.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
38
|
Caveolin-1 inhibits breast cancer stem cells via c-Myc-mediated metabolic reprogramming. Cell Death Dis 2020; 11:450. [PMID: 32528105 PMCID: PMC7290025 DOI: 10.1038/s41419-020-2667-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 05/24/2020] [Accepted: 05/26/2020] [Indexed: 12/31/2022]
Abstract
Breast cancer stem cells (BCSCs) are considered to be the root of breast cancer occurrence and progression. However, the characteristics and regulatory mechanisms of BCSCs metabolism have been poorly revealed, which hinders the development of metabolism-targeted treatment strategies for BCSCs elimination. Herein, we demonstrated that the downregulation of Caveolin-1 (Cav-1) usually occurred in BCSCs and was associated with a metabolic switch from mitochondrial respiration to aerobic glycolysis. Meanwhile, Cav-1 could inhibit the self-renewal capacity and aerobic glycolysis activity of BCSCs. Furthermore, Cav-1 loss was associated with accelerated mammary-ductal hyperplasia and mammary-tumor formation in transgenic mice, which was accompanied by enrichment and enhanced aerobic glycolysis activity of BCSCs. Mechanistically, Cav-1 could promote Von Hippel-Lindau (VHL)-mediated ubiquitination and degradation of c-Myc in BCSCs through the proteasome pathway. Notably, epithelial Cav-1 expression significantly correlated with a better overall survival and delayed onset age of breast cancer patients. Together, our work uncovers the characteristics and regulatory mechanisms of BCSCs metabolism and highlights Cav-1-targeted treatments as a promising strategy for BCSCs elimination.
Collapse
|
39
|
Miranda-Gonçalves V, Lameirinhas A, Henrique R, Baltazar F, Jerónimo C. The metabolic landscape of urological cancers: New therapeutic perspectives. Cancer Lett 2020; 477:76-87. [PMID: 32142920 DOI: 10.1016/j.canlet.2020.02.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 01/03/2023]
Abstract
Deregulation of cell metabolism is an established cancer hallmark that contributes to tumor initiation and progression, as well as tumor heterogeneity. In solid tumors, alterations in different metabolic pathways, including glycolysis, pentose phosphate pathway, glutaminolysis and fatty acid metabolism, support the high proliferative rates and macromolecule biosynthesis of cancer cells. Despite advances in therapy, urothelial tumors still exhibit high recurrence and mortality rates, especially in advanced stages of disease. These tumors harbor gene mutations and expression patterns which play an important role in metabolic reprogramming. Taking into account the unique metabolic features underlying carcinogenesis in these cancers, new and promising therapeutic targets based on metabolic alterations must be considered. Furthermore, the combination of metabolic inhibitors with conventional targeted therapies may improve effectiveness of treatments. This review will summarize the metabolic alterations present in urological tumors and the results with metabolic inhibitors currently available.
Collapse
Affiliation(s)
- Vera Miranda-Gonçalves
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Ana Lameirinhas
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal.
| | - Rui Henrique
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal; Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072, Porto, Portugal.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; ICVS/3Bs-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - Carmen Jerónimo
- Cancer Biology & Epigenetics Group-Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072, Porto, Portugal; Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar- University of Porto (ICBAS-UP), 4050-313, Porto, Portugal.
| |
Collapse
|
40
|
Hersi F, Omar HA, Al-Qawasmeh RA, Ahmad Z, Jaber AM, Zaher DM, Al-Tel TH. Design and synthesis of new energy restriction mimetic agents: Potent anti-tumor activities of hybrid motifs of aminothiazoles and coumarins. Sci Rep 2020; 10:2893. [PMID: 32076009 PMCID: PMC7031302 DOI: 10.1038/s41598-020-59685-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/03/2020] [Indexed: 11/09/2022] Open
Abstract
The incidence of obesity-related diseases like diabetes, cardiovascular diseases, and different types of cancers shed light on the importance of dietary control as preventive and treatment measures. However, long-term dietary control is challenging to achieve in most individuals. The use of energy restriction mimetic agents (ERMAs) as an alternative approach to affect the energy machinery of cancer cells has emerged as a promising approach for cancer therapy. ERMAs limit the high need for energy in rapidly growing tumor cells, with their survival rate strongly dependent on the robust availability of energy. In this context, initial phenotypic screening of an in-house pilot compound library identified a new class of aminothiazole anchored on coumarin scaffold as potent anticancer lead drug candidates with potential activity as ERMA. The identified chemotypes were able to inhibit glucose uptake and increase ROS content in cancer cells. Compounds 9b, 9c, 9i, 11b, and 11c were highly active against colorectal cancer cell lines, HCT116 and HT-29, with half-maximal inhibitory concertation (IC50) range from 0.25 to 0.38 µM. Further biological evaluations of 9b and 9f using Western blotting, caspase activity, glucose uptake, ROS production, and NADPH/NADP levels revealed the ability of these lead drug candidates to induce cancer cell death via, at least in part, energy restriction. Moreover, the assessment of 9b and 9f synergistic activity with cisplatin showed promising outcomes. The current work highlights the significant potential of the lead compounds, 9b, and 9f as potential anticancer agents via targeting the cellular energy machinery in cancer cells.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Raed A Al-Qawasmeh
- Department of Chemistry, Faculty of Science, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Zainab Ahmad
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Areej M Jaber
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman, 11942, Jordan
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates.,College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates. .,College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
41
|
Petrasca A, Phelan JJ, Ansboro S, Veale DJ, Fearon U, Fletcher JM. Targeting bioenergetics prevents CD4 T cell–mediated activation of synovial fibroblasts in rheumatoid arthritis. Rheumatology (Oxford) 2020; 59:2816-2828. [DOI: 10.1093/rheumatology/kez682] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Indexed: 02/07/2023] Open
Abstract
Abstract
Objectives
We investigated the reciprocal relationship linking fibroblast-like synoviocytes (FLS) and T lymphocytes in the inflamed RA synovium and subsequently targeted cellular metabolic pathways in FLS to identify key molecular players in joint inflammation.
Methods
RA FLS were cultured with CD4 T cells or T cell conditioned medium (CD4CM); proliferation, expression of adhesion molecules and intracellular cytokines were examined by flow cytometry. FLS invasiveness and secreted cytokines were measured by transwell matrigel invasion chambers and ELISA, while metabolic profiles were determined by extracellular Seahorse flux analysis. Gene expression was quantified by real-time quantitative RT-PCR.
Results
Our results showed mutual activation between CD4 T cells and FLS, which resulted in increased proliferation and expression of intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 by both CD4 T cells and FLS. Furthermore, interaction between CD4 T cells and FLS resulted in an increased frequency of TNF-α+, IFN-γ+ and IL-17A+ CD4 T cells and augmented TNF-α, IFN-γ, IL-17A, IL-6, IL-8 and VEGF secretion. Moreover, CD4CM promoted invasiveness and boosted glycolysis in FLS while downregulating oxidative phosphorylation, effects paralleled by increased glucose transporters GLUT1 and GLUT3; key glycolytic enzymes GSK3A, HK2, LDHA and PFKFB3; angiogenic factor VEGF and MMP-3 and MMP-9. Importantly, these effects were reversed by the glycolytic inhibitor 2-DG and AMP analogue 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR).
Conclusion
This study demonstrates that CD4 T cells elicit an aggressive phenotype in FLS, which subsequently upregulate glycolysis to meet the increased metabolic demand. Accordingly, 2-DG and AICAR prevent this activation, suggesting that glycolytic manipulation could have clinical implications for RA treatment.
Collapse
Affiliation(s)
- Andreea Petrasca
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - James J Phelan
- School of Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sharon Ansboro
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Douglas J Veale
- Eular Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Ursula Fearon
- Molecular Rheumatology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
| | - Jean M Fletcher
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Eular Centre for Arthritis and Rheumatic Diseases, St. Vincent’s University Hospital, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
42
|
2-Deoxy-d-Glucose and Its Analogs: From Diagnostic to Therapeutic Agents. Int J Mol Sci 2019; 21:ijms21010234. [PMID: 31905745 PMCID: PMC6982256 DOI: 10.3390/ijms21010234] [Citation(s) in RCA: 329] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/23/2022] Open
Abstract
The ability of 2-deoxy-d-glucose (2-DG) to interfere with d-glucose metabolism demonstrates that nutrient and energy deprivation is an efficient tool to suppress cancer cell growth and survival. Acting as a d-glucose mimic, 2-DG inhibits glycolysis due to formation and intracellular accumulation of 2-deoxy-d-glucose-6-phosphate (2-DG6P), inhibiting the function of hexokinase and glucose-6-phosphate isomerase, and inducing cell death. In addition to glycolysis inhibition, other molecular processes are also affected by 2-DG. Attempts to improve 2-DG’s drug-like properties, its role as a potential adjuvant for other chemotherapeutics, and novel 2-DG analogs as promising new anticancer agents are discussed in this review.
Collapse
|
43
|
Samuel SM, Varghese E, Kubatka P, Triggle CR, Büsselberg D. Metformin: The Answer to Cancer in a Flower? Current Knowledge and Future Prospects of Metformin as an Anti-Cancer Agent in Breast Cancer. Biomolecules 2019; 9:E846. [PMID: 31835318 PMCID: PMC6995629 DOI: 10.3390/biom9120846] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/25/2022] Open
Abstract
Interest has grown in studying the possible use of well-known anti-diabetic drugs as anti-cancer agents individually or in combination with, frequently used, chemotherapeutic agents and/or radiation, owing to the fact that diabetes heightens the risk, incidence, and rapid progression of cancers, including breast cancer, in an individual. In this regard, metformin (1, 1-dimethylbiguanide), well known as 'Glucophage' among diabetics, was reported to be cancer preventive while also being a potent anti-proliferative and anti-cancer agent. While meta-analysis studies reported a lower risk and incidence of breast cancer among diabetic individuals on a metformin treatment regimen, several in vitro, pre-clinical, and clinical studies reported the efficacy of using metformin individually as an anti-cancer/anti-tumor agent or in combination with chemotherapeutic drugs or radiation in the treatment of different forms of breast cancer. However, unanswered questions remain with regards to areas such as cancer treatment specific therapeutic dosing of metformin, specificity to cancer cells at high concentrations, resistance to metformin therapy, efficacy of combinatory therapeutic approaches, post-therapeutic relapse of the disease, and efficacy in cancer prevention in non-diabetic individuals. In the current article, we discuss the biology of metformin and its molecular mechanism of action, the existing cellular, pre-clinical, and clinical studies that have tested the anti-tumor potential of metformin as a potential anti-cancer/anti-tumor agent in breast cancer therapy, and outline the future prospects and directions for a better understanding and re-purposing of metformin as an anti-cancer drug in the treatment of breast cancer.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Elizabeth Varghese
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia;
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| |
Collapse
|
44
|
Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants (Basel) 2019; 8:antiox8120603. [PMID: 31795465 PMCID: PMC6943435 DOI: 10.3390/antiox8120603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling is a hallmark of cancer, however little has been unravelled in its role in chemoresistance, which is a major hurdle to cancer control. Lung cancer is a leading cause of death by cancer, mainly due to the diagnosis at an advanced stage and to the development of resistance to therapy. Targeted therapeutic agents combined with comprehensive drugs are commonly used to treat lung cancer. However, resistance mechanisms are difficult to avoid. In this review, we will address some of those therapeutic regimens, resistance mechanisms that are eventually developed by lung cancer cells, metabolic alterations that have already been described in lung cancer and putative new therapeutic strategies, and the integration of conventional drugs and genetic and metabolic-targeted therapies. The oxidative stress is pivotal in this whole network. A better understanding of cancer cell metabolism and molecular adaptations underlying resistance mechanisms will provide clues to design new therapeutic strategies, including the combination of chemotherapeutic and targeted agents, considering metabolic intervenients. As cancer cells undergo a constant metabolic adaptive drift, therapeutic regimens must constantly adapt.
Collapse
|
45
|
Liu Z, Wu Y, Zhang Y, Yuan M, Li X, Gao J, Zhang S, Xing C, Qin H, Zhao H, Zhao Z. TIGAR Promotes Tumorigenesis and Protects Tumor Cells From Oxidative and Metabolic Stresses in Gastric Cancer. Front Oncol 2019; 9:1258. [PMID: 31799200 PMCID: PMC6878961 DOI: 10.3389/fonc.2019.01258] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/31/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer cells adopt glycolysis to facilitate the generation of biosynthetic substrates demanded by cell proliferation and growth, and to adapt to stress conditions such as excessive reactive oxygen species (ROS) accumulation. TIGAR (TP53-induced glycolysis and apoptosis regulator) is a fructose-2,6-bisphosphatase that is regulated by p53. TIGAR functions to inhibit glycolysis and promote antioxidative activities, which assists the generation of NADPH to maintain the levels of GSH and thus reduces intracellular ROS. However, the functions of TIGAR in gastric cancer (GC) remain unclear. TIGAR expression levels were detected by immunoblotting and immunohistochemistry in gastric cancer samples, along with four established cell lines of GC. The functions of TIGAR were determined by utilizing shRNA-mediated knockdown experiments. The NADPH/NADP+ ratio, ROS, mitochondrial ATP production, and phosphorus oxygen ratios were determined in TIGAR-depleted cells. Xenograft experiment was conducted with BALB/c nude mice. TIGAR was up-regulated compared with corresponding non-cancerous tissues in primary GCs. TIGAR knockdown significantly reduced cell proliferation and increased apoptosis. TIGAR protected cancer cells from oxidative stress-caused damages, but also glycolysis defects. TIGAR also increased the production of NADPH in gastric cancer cells. TIGAR knockdown led to increased ROS production, elevated mitochondrial ATP production, and phosphorus oxygen ratios. The prognosis of high TIGAR expression patients was significantly poorer than those with low TIGAR expression. Taken together, TIGAR exhibits oncogenic features in GC, which can be evaluated as a target for intervention in the treatment of GC.
Collapse
Affiliation(s)
- Zhenhua Liu
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Wu
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yingqiu Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Menglang Yuan
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuelu Li
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jiyue Gao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shanni Zhang
- Department of Anesthesia, Dalian Maternal and Child Health Care Hospital, Dalian, China
| | - Chengjuan Xing
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huamin Qin
- Department of Pathology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Hongbo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zuowei Zhao
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
46
|
Tsuganezawa K, Sekimata K, Nakagawa Y, Utata R, Nakamura K, Ogawa N, Koyama H, Shirouzu M, Fukami T, Kita K, Tanaka A. Identification of small molecule inhibitors of human COQ7. Bioorg Med Chem 2019; 28:115182. [PMID: 31753803 DOI: 10.1016/j.bmc.2019.115182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/29/2022]
Abstract
Given that the associated clinical manifestations of ubiquinone (UQ, or coenzyme Q) deficiency diseases are highly heterogeneous and complicated, effective new research tools for UQ homeostasis studies are awaited. We set out to develop human COQ7 inhibitors that interfere with UQ synthesis. Systematic structure-activity relationship development starting from a screening hit compound led to the identification of highly potent COQ7 inhibitors that did not disturb physiological cell growth of human normal culture cells. These new COQ7 inhibitors may serve as useful tools for studying the balance between UQ supplementation pathways: de novo UQ synthesis and extracellular UQ uptake.
Collapse
Affiliation(s)
- Keiko Tsuganezawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Katsuhiko Sekimata
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yukari Nakagawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Rei Utata
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Kana Nakamura
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Naoko Ogawa
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Hiroo Koyama
- RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Mikako Shirouzu
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | - Takehiro Fukami
- RIKEN Program for Drug Discovery and Medical Technology Platforms, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kiyoshi Kita
- School of Tropical Medicine and Global Health, Nagasaki University, 1-12-4, Sakamoto, Nagasaki 852-8523, Japan
| | - Akiko Tanaka
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan; RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan.
| |
Collapse
|
47
|
Xu S, Herschman HR. A Tumor Agnostic Therapeutic Strategy for Hexokinase 1-Null/Hexokinase 2-Positive Cancers. Cancer Res 2019; 79:5907-5914. [PMID: 31434645 DOI: 10.1158/0008-5472.can-19-1789] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 11/16/2022]
Abstract
Since Warburg's observation that most cancers exhibit elevated glycolysis, decades of research have attempted to reduce tumor glucose utilization as a therapeutic approach. Hexokinase (HK) activity is the first glycolytic enzymatic step; despite many attempts to inhibit HK activity, none has reached clinical application. Identification of HK isoforms, and recognition that most tissues express only HK1 while most tumors express HK1 and HK2, stimulated reducing HK2 activity as a therapeutic option. However, studies using HK2 shRNA and isogenic HK1+HK2- and HK1+HK2+ tumor cell pairs demonstrated that tumors expressing only HK1, while exhibiting reduced glucose consumption, progressed in vivo as well as tumors expressing both HK1 and HK2. However, HK1-HK2+ tumor subpopulations exist among many cancers. shRNA HK2 suppression in HK1-HK2+ liver cancer cells reduced xenograft tumor progression, in contrast to HK1+HK2+ cells. HK2 inhibition, and partial inhibition of both oxidative phosphorylation and fatty acid oxidation using HK2 shRNA and small-molecule drugs, prevented human liver HK1-HK2+ cancer xenograft progression. Using human multiple myeloma xenografts and mouse allogeneic models to identify potential clinical translational agents, triple therapies that include antisense HK2 oligonucleotides, metformin, and perhexiline prevent progression. These results suggest an agnostic approach for HK1-HK2+ cancers, regardless of tissue origin.
Collapse
Affiliation(s)
- Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California. .,Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Molecular Biology Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
48
|
Dembitz V, Tomic B, Kodvanj I, Simon JA, Bedalov A, Visnjic D. The ribonucleoside AICAr induces differentiation of myeloid leukemia by activating the ATR/Chk1 via pyrimidine depletion. J Biol Chem 2019; 294:15257-15270. [PMID: 31431503 PMCID: PMC6802504 DOI: 10.1074/jbc.ra119.009396] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/16/2019] [Indexed: 12/17/2022] Open
Abstract
Metabolic pathways play important roles in proliferation and differentiation of malignant cells. 5-Aminoimidazole-4-carboxamide ribonucleoside (AICAr), a precursor in purine biosynthesis and a well-established activator of AMP-activated protein kinase (AMPK), induces widespread metabolic alterations and is commonly used for dissecting the role of metabolism in cancer. We have previously reported that AICAr promotes differentiation and inhibits proliferation of myeloid leukemia cells. Here, using metabolic assays, immunoblotting, flow cytometry analyses, and siRNA-mediated gene silencing in leukemia cell lines, we show that AICAr-mediated differentiation was independent of the known metabolic effects of AMPK, including glucose consumption, but instead depends on the activation of the DNA damage–associated enzyme checkpoint kinase 1 (Chk1) induced by pyrimidine depletion. LC/MS/MS metabolomics analysis revealed that AICAr increases orotate levels and decreases uridine monophosphate (UMP) levels, consistent with inhibition of UMP synthesis at a step downstream of dihydroorotate dehydrogenase (DHODH). AICAr and the DHODH inhibitor brequinar had similar effects on differentiation markers and S-phase arrest, and genetic or pharmacological Chk1 inactivation abrogated both of these effects. Our results delineate an AMPK-independent effect of AICAr on myeloid leukemia differentiation that involves perturbation of pyrimidine biosynthesis and activation of the DNA damage response network.
Collapse
Affiliation(s)
- Vilma Dembitz
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Barbara Tomic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Ivan Kodvanj
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Julian A Simon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Antonio Bedalov
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109
| | - Dora Visnjic
- Department of Physiology and Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| |
Collapse
|
49
|
Kaminski L, Torrino S, Dufies M, Djabari Z, Haider R, Roustan FR, Jaune E, Laurent K, Nottet N, Michiels JF, Gesson M, Rocchi S, Mazure NM, Durand M, Tanti JF, Ambrosetti D, Clavel S, Ben-Sahra I, Bost F. PGC1α Inhibits Polyamine Synthesis to Suppress Prostate Cancer Aggressiveness. Cancer Res 2019; 79:3268-3280. [PMID: 31064849 DOI: 10.1158/0008-5472.can-18-2043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 02/22/2019] [Accepted: 05/02/2019] [Indexed: 11/16/2022]
Abstract
Although tumorigenesis is dependent on the reprogramming of cellular metabolism, the metabolic pathways engaged in the formation of metastases remain largely unknown. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) plays a pleiotropic role in the control of cancer cell metabolism and has been associated with a good prognosis in prostate cancer. Here, we show that PGC1α represses the metastatic properties of prostate cancer cells via modulation of the polyamine biosynthesis pathway. Mechanistically, PGC1α inhibits the expression of c-MYC and ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme for polyamine synthesis. Analysis of in vivo metastases and clinical data from patients with prostate cancer support the proposition that the PGC1α/c-MYC/ODC1 axis regulates polyamine biosynthesis and prostate cancer aggressiveness. In conclusion, downregulation of PGC1α renders prostate cancer cells dependent on polyamine to promote metastasis. SIGNIFICANCE: These findings show that a major regulator of mitochondrial metabolism controls polyamine synthesis and prostate cancer aggressiveness, with potential applications in therapy and identification of new biomarkers.
Collapse
Affiliation(s)
| | | | - Maeva Dufies
- Biomedical Department, Centre Scientifique de Monaco, Principality of Monaco
| | - Zied Djabari
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Romain Haider
- Université Côte d'Azur, Inserm U1065, C3M, France.,Department of Urology, Hôpital Pasteur 2, CHU Nice, Université Côte d'Azur, France
| | - François-René Roustan
- Université Côte d'Azur, Inserm U1065, C3M, France.,Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | - Emilie Jaune
- Université Côte d'Azur, Inserm U1065, C3M, France
| | | | | | | | - Maeva Gesson
- Université Côte d'Azur, Inserm U1065, C3M, France
| | | | | | - Matthieu Durand
- Department of Urology, Hôpital Pasteur 2, CHU Nice, Université Côte d'Azur, France
| | | | - Damien Ambrosetti
- Department of Pathology, Hôpital Pasteur 2, CHU Nice, Université Côte d'Azur, France
| | | | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, Illinois
| | | |
Collapse
|
50
|
Hall DT, Griss T, Ma JF, Sanchez BJ, Sadek J, Tremblay AMK, Mubaid S, Omer A, Ford RJ, Bedard N, Pause A, Wing SS, Di Marco S, Steinberg GR, Jones RG, Gallouzi IE. The AMPK agonist 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), but not metformin, prevents inflammation-associated cachectic muscle wasting. EMBO Mol Med 2019; 10:emmm.201708307. [PMID: 29844217 PMCID: PMC6034131 DOI: 10.15252/emmm.201708307] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of AMPK has been associated with pro-atrophic signaling in muscle. However, AMPK also has anti-inflammatory effects, suggesting that in cachexia, a syndrome of inflammatory-driven muscle wasting, AMPK activation could be beneficial. Here we show that the AMPK agonist AICAR suppresses IFNγ/TNFα-induced atrophy, while the mitochondrial inhibitor metformin does not. IFNγ/TNFα impair mitochondrial oxidative respiration in myotubes and promote a metabolic shift to aerobic glycolysis, similarly to metformin. In contrast, AICAR partially restored metabolic function. The effects of AICAR were prevented by the AMPK inhibitor Compound C and were reproduced with A-769662, a specific AMPK activator. AICAR and A-769662 co-treatment was found to be synergistic, suggesting that the anti-cachectic effects of these drugs are mediated through AMPK activation. AICAR spared muscle mass in mouse models of cancer and LPS induced atrophy. Together, our findings suggest a dual function for AMPK during inflammation-driven atrophy, wherein it can play a protective role when activated exogenously early in disease progression, but may contribute to anabolic suppression and atrophy when activated later through mitochondrial dysfunction and subsequent metabolic stress.
Collapse
Affiliation(s)
- Derek T Hall
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Takla Griss
- Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Jennifer F Ma
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Brenda Janice Sanchez
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Jason Sadek
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Anne Marie K Tremblay
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Souad Mubaid
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Amr Omer
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Rebecca J Ford
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Nathalie Bedard
- Department of Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Arnim Pause
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Simon S Wing
- Department of Medicine, McGill University and the Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Sergio Di Marco
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Russell G Jones
- Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, McGill University, Montreal, QC, Canada .,Rosalind and Morris Goodman Cancer Centre, Montreal, QC, Canada.,Life Sciences Division, College of Sciences and Engineering, Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|