1
|
Daga N, Servaas NH, Kisand K, Moonen D, Arnold C, Reyes-Palomares A, Kaleviste E, Kingo K, Kuuse R, Ulst K, Steinmetz L, Peterson P, Nakic N, Zaugg JB. Integration of genetic and chromatin modification data pinpoints autoimmune-specific remodeling of enhancer landscape in CD4 + T cells. Cell Rep 2024; 43:114810. [PMID: 39388354 DOI: 10.1016/j.celrep.2024.114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/16/2024] [Accepted: 09/16/2024] [Indexed: 10/12/2024] Open
Abstract
CD4+ T cells play a crucial role in adaptive immune responses and have been implicated in the pathogenesis of autoimmune diseases (ADs). Despite numerous studies, the molecular mechanisms underlying T cell dysregulation in ADs remain incompletely understood. Here, we used chromatin immunoprecipitation (ChIP)-sequencing of active chromatin and transcriptomic data from CD4+ T cells of healthy donors and patients with systemic lupus erythematosus (SLE), psoriasis, juvenile idiopathic arthritis (JIA), and Graves' disease to investigate the role of enhancers in AD pathogenesis. By generating enhancer-based gene regulatory networks (eGRNs), we identified disease-specific dysregulated pathways and potential downstream target genes of enhancers harboring AD-associated single-nucleotide polymorphisms (SNPs), which we also validated using chromatin-capture (HiC) data and CRISPR interference (CRISPRi) in primary CD4+ T cells. Our results suggest that alterations in the regulatory landscapes of CD4+ T cells, including enhancers, contribute to the development of ADs and provide a basis for developing new therapeutic approaches.
Collapse
Affiliation(s)
- Neha Daga
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Nila H Servaas
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Dewi Moonen
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Christian Arnold
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Armando Reyes-Palomares
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Epp Kaleviste
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Külli Kingo
- Department of Dermatology and Venerology, Faculty of Medicine, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia and Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Reet Kuuse
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Katrin Ulst
- Department of Internal Medicine, Tartu University Hospital, Tartu, Estonia
| | - Lars Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany; Department of Genetics, Stanford University, Stanford, CA, USA
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Nikolina Nakic
- Functional Genomics, Medicinal Science and Technology, GSK R&D, Stevenage, UK
| | - Judith B Zaugg
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
2
|
朱 梦, 王 剑. [Conbercept reverses TGF-β 2-induced epithelial-mesenchymal transition in human lens epithelial cells by regulating the TGF-β/Smad signaling pathway]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:1459-1466. [PMID: 39276041 PMCID: PMC11378053 DOI: 10.12122/j.issn.1673-4254.2024.08.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 09/16/2024]
Abstract
OBJECTIVE To investigate the mechanism by which conbercept reverses transforming growth factor-β2 (TGF-β2)-induced epithelial-mesenchymal transition (EMT) in human lens epithelial cells (HLECs). METHODS Cultured HLEC SRA01/04 cells were treated with TGF-β2, conbercept, or both, and the changes in cell proliferation, apoptosis, and migration were observed using MTT assay, flow cytometry, scratch assay, and Transwell assay. Western blotting and qRT-PCR were used to detect the changes in the expression of EMT-related epithelial cell markers (E-Cadherin, α-SMA, and Snail), extracellular matrix components, and genes related to the TGF-β/Smad signaling pathway. RESULTS Conbercept significantly reduced TGF-β2-induced EMT of SRA01/04 cells, decreased the expression levels of mesenchymal and extracellular matrix markers α-SMA, Snail, collagen I, collagen IV, and FN1, and upregulated the protein and mRNA expressions of E-cadherin (P <0.05). Transwell assay showed significantly lower cell migration ability in TGF-β2+conbercept group than in TGF-β2 group (P <0.05). Conbercept also inhibited the increase in Smad2/3 phosphorylation levels in HLEC-SRA01/04 cells with TGF-β2-induced EMT (P <0.01). CONCLUSION Conbercept inhibits TGF-β2 induced EMT by downregulating the expression of pSmad2/3 in TGF-β/Smad signaling pathway, indicating a potential therapeutic strategy against visual loss induced by posterior capsule opacification.
Collapse
Affiliation(s)
| | - 剑锋 王
- 王剑锋,主任医师,副教授,硕士生导师,E-mail:
| |
Collapse
|
3
|
Duduyemi BM, Kwakye T, Sallah L. Kaiso Expression in Triple Negative Breast Cancer in a Tertiary Hospital in Ghana. Niger Med J 2024; 65:354-366. [PMID: 39022573 PMCID: PMC11249483 DOI: 10.60787/nmj-v65i3-429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Background Breast cancer has produced more lost disability-adjusted life years (DALYs) than any other type of cancer. The prevalence of the disease, especially triple negative breast cancer (TNBC) in Africa is on the rise, with poor survival rates. With the great advancements in treatments of breast cancers, that of TNBC is still a challenge due to its narrowed treatment options and poor disease prognosis. This research seeks to explore the expression of kaiso in Ghanaian breast cancer and how they may modulate clinicopathological features, and disease prognosis. Methodology A cross-sectional retrospective study was conducted on formalin-fixed paraffin-embedded (FFPE) breast cancer tissues retrieved from the archives of the pathology unit of Komfo Anokye Teaching Hospital (KATH). Immunohistochemistry assessment was performed on haematoxylin and eosin-stained slides selected for tissue microarray construction. Data were analysed using SPSS version 28 and Microsoft excel 2013. Results 55.3% of the cases tested negative to progesterone receptor (PR), oestrogen receptor (ER), and human epidermal growth receptor 2 (HER2). There were significant associations between menopausal status and molecular subtype (p=0.010), Kaiso expression and histological diagnoses (<0.001) and Kaiso against lymphovascular invasion (0.050). However, there were no significant associations between Kaiso localization and the clinicopathological features although 63.9% of the expression was seen in the nucleus. Conclusion The study indicates that Kaiso is highly expressed in Ghanaian TNBC and likely associated with worse outcomes in aggressive tumour types.
Collapse
Affiliation(s)
| | - Thelma Kwakye
- Department of Physiology, Kwame Nkrumah University of Science and Technology, Ghana
| | - Lorraine Sallah
- Department of Physiology, Kwame Nkrumah University of Science and Technology, Ghana
| |
Collapse
|
4
|
Barra J, Crosbourne I, Roberge CL, Bossardi-Ramos R, Warren JSA, Matteson K, Wang L, Jourd'heuil F, Borisov SM, Bresnahan E, Bravo-Cordero JJ, Dmitriev RI, Jourd'heuil D, Adam AP, Lamar JM, Corr DT, Barroso MM. DMT1-dependent endosome-mitochondria interactions regulate mitochondrial iron translocation and metastatic outgrowth. Oncogene 2024; 43:650-667. [PMID: 38184712 PMCID: PMC10890933 DOI: 10.1038/s41388-023-02933-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 01/08/2024]
Abstract
Transient early endosome (EE)-mitochondria interactions can mediate mitochondrial iron translocation, but the associated mechanisms are still elusive. We showed that Divalent Metal Transporter 1 (DMT1) sustains mitochondrial iron translocation via EE-mitochondria interactions in triple-negative MDA-MB-231, but not in luminal A T47D breast cancer cells. DMT1 silencing increases labile iron pool (LIP) levels and activates PINK1/Parkin-dependent mitophagy in MDA-MB-231 cells. Mitochondrial bioenergetics and the iron-associated protein profile were altered by DMT1 silencing and rescued by DMT1 re-expression. Transcriptomic profiles upon DMT1 silencing are strikingly different between 2D and 3D culture conditions, suggesting that the environment context is crucial for the DMT1 knockout phenotype observed in MDA-MB-231 cells. Lastly, in vivo lung metastasis assay revealed that DMT1 silencing promoted the outgrowth of lung metastatic nodules in both human and murine models of triple-negative breast cancer cells. These findings reveal a DMT1-dependent pathway connecting EE-mitochondria interactions to mitochondrial iron translocation and metastatic fitness of breast cancer cells.
Collapse
Affiliation(s)
- Jonathan Barra
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Isaiah Crosbourne
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Cassandra L Roberge
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Ramon Bossardi-Ramos
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Janine S A Warren
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Kailie Matteson
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ling Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, 13902, USA
| | - Frances Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Sergey M Borisov
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology Stremayrgasse 9, 8010, Graz, Austria
| | - Erin Bresnahan
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jose Javier Bravo-Cordero
- Department of Medicine, Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ruslan I Dmitriev
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medical and Health Sciences, Ghent University, C. Heymanslaan 10, 9000, Ghent, Belgium
| | - David Jourd'heuil
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - Alejandro P Adam
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Margarida M Barroso
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, 12208, USA.
| |
Collapse
|
5
|
Qu Z, Liu Q, Kong X, Wang X, Wang Z, Wang J, Fang Y. A Systematic Study on Zinc-Related Metabolism in Breast Cancer. Nutrients 2023; 15:nu15071703. [PMID: 37049543 PMCID: PMC10096741 DOI: 10.3390/nu15071703] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/21/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Breast cancer has become the most common cancer worldwide. Despite the major advances made in the past few decades in the treatment of breast cancer using a combination of chemotherapy, endocrine therapy, and immunotherapy, the genesis, treatment, recurrence, and metastasis of this disease continue to pose significant difficulties. New treatment approaches are therefore urgently required. Zinc is an important trace element that is involved in regulating various enzymatic, metabolic, and cellular processes in the human body. Several studies have shown that abnormal zinc homeostasis can lead to the onset and progression of various diseases, including breast cancer. This review highlights the role played by zinc transporters in pathogenesis, apoptosis, signal transduction, and potential clinical applications in breast cancer. Additionally, the translation of the clinical applications of zinc and associated molecules in breast cancer, as well as the recent developments in the zinc-related drug targets for breast cancer treatment, is discussed. These developments offer novel insights into understanding the concepts and approaches that could be used for the diagnosis and management of breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Fang
- Correspondence: (J.W.); (Y.F.)
| |
Collapse
|
6
|
Bocian A, Kędzierawski P, Kopczyński J, Wabik O, Wawruszak A, Kiełbus M, Miziak P, Stepulak A. Kaiso Protein Expression Correlates with Overall Survival in TNBC Patients. J Clin Med 2023; 12:jcm12010370. [PMID: 36615173 PMCID: PMC9821773 DOI: 10.3390/jcm12010370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are histologically heterogenic invasive carcinomas of no specific type that lack distinctive histological characteristics. The prognosis for women with TNBC is poor. Regardless of the applied treatments, recurrences and deaths are observed 3-5 years after the diagnosis. Thus, new diagnostic markers and targets for personalized treatment are needed. The subject of our study-the Kaiso transcription factor has been found to correlate with the invasion and progression of breast cancer. The publicly available TCGA breast cancer cohort containing Illumina HiSeq RNAseq and clinical data was explored in the study. Additionally, Kaiso protein expression was assessed in formalin-fixed and paraffin-embedded tissue archive specimens using the tissue microarray technique. In this retrospective study, Kaiso protein expression (nuclear localization) was compared with several clinical factors in the cohort of 103 patients with TNBC with long follow-up time. In univariate and multivariate analysis, high Kaiso protein but not mRNA expression was correlated with better overall survival and disease-free survival, as well as with premenopausal age. The use of radiotherapy was correlated with better disease-free survival (DFS) and overall survival (OS). However, given the heterogeneity of TNBC and context-dependent molecular diversity of Kaiso signaling in cancer progression, these results must be taken with caution and require further studies.
Collapse
Affiliation(s)
- Artur Bocian
- Oncological Surgery Clinic, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Piotr Kędzierawski
- Collegium Medicum, Jan Kochanowski University, 25-317 Kielce, Poland
- Radiotherapy Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Janusz Kopczyński
- Pathology Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Olga Wabik
- Pathology Department, The Holycross Cancer Centre, 25-734 Kielce, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-814-486-350
| | - Michał Kiełbus
- Department of Experimental Hematooncology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Paulina Miziak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
7
|
Salam H, Ahmed S, Bari MF, Bukhari U, Haider G, Najeeb S, Mughal N. Association of Kaiso and partner proteins in oral squamous cell carcinoma. J Taibah Univ Med Sci 2022; 18:802-811. [PMID: 36852243 PMCID: PMC9957818 DOI: 10.1016/j.jtumed.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 12/31/2022] Open
Abstract
Objectives 1. Identification of protein expression and subcellular localization of E-cadherin (E-cad), p120 catenin (P120ctn), and Kaiso in oral cancer (OC). 2. To study the protein expression of cyclin D1 and c-Myc (Kaiso targets) and determine their relationship with the expression and localization of Kaiso. Methods Histological grading was performed in accordance with Broder's criteria. Expression and localization data for E-cad, p120ctn, Kaiso, cyclin D1, and c-Myc were acquired using immunohistochemistry. Data were analyzed using SPSS version 21. The chi-square test was used to measure the statistical significance of associations, with p < 0.05 as statistically significant. Results Of 47 OC cases, 36% showed low E-cad expression and 34% showed low p120ctn. Low Kaiso expression was recognized in 78% of tumor specimens. Aberrant cytoplasmic localization of p120ctn was seen in 80.8% cases. Cytoplasmic Kaiso localization was appreciated in 87% of tumor tissues, whereas 29.7% lacked any nuclear Kaiso. Kaiso expression was significantly associated with the expression of cyclin D1 but not with c-Myc. Conclusion The present study identified a change in the localization of Kaiso in OC. The significance of this in relation to OC and tumor prognosis needs to be investigated with further studies using larger sample sizes and more sensitive molecular tools.
Collapse
Key Words
- AJ, Adherens junction
- BTB/POZ, Broad complex
- ChIP, Chromatin immunoprecipitation
- DDRRL, Dow Diagnostic Research and Reference Laboratory
- DNA, Deoxyribonucleic acid
- DUHS, Dow University of Health Sciences
- E-cad, E-cadherin
- E-cadherin
- FFPE, Formalin-fixed paraffin embedded
- H&E, Hematoxylin and eosin
- HPV, Human papilloma virus
- IHC, Immunohistochemistry
- KBS, Kaiso-binding site
- Kaiso protein
- MBP, Methyl CpG DNA-binding proteins
- OC, Oral cancer
- Oral squamous cell carcinoma
- SES, Socioeconomic status
- TNM, Tumor
- Tramtrack, and Bric a brac/poxvirus and zinc finger
- ZBTB33 protein
- ZF, Zinc finger
- c-Myc, Cellular Myc proteins
- node, metastasis
- p120ctn, p120-catenin
- qPCR, Quantitative polymerase chain reaction
Collapse
Affiliation(s)
- Hira Salam
- Department of Oral Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Pakistan,Corresponding address: Department of Oral Pathology, Dr Ishrat-ul-Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Ojha campus, Pakistan.
| | - Shaheen Ahmed
- Department of Oral Surgery, Dow International Dental College, Dow University of Health Sciences, Pakistan
| | - Muhammad Furqan Bari
- Department of Pathology, Dr. Ishrat-ul-Ibad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi
| | - Uzma Bukhari
- Department of Pathology, Dow International Medical College, Dow University of Health Sciences, Pakistan
| | - Ghulam Haider
- Department of Biological and Biomedical Sciences, Agha Khan University, Pakistan
| | - Shariq Najeeb
- Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada,Department of Evidence Synthesis, Evidentia Dental Research, Calgary, Alberta, Canada
| | - Nouman Mughal
- Department of Surgery, Agha Khan University, Pakistan
| |
Collapse
|
8
|
Lessey LR, Robinson SC, Chaudhary R, Daniel JM. Adherens junction proteins on the move—From the membrane to the nucleus in intestinal diseases. Front Cell Dev Biol 2022; 10:998373. [PMID: 36274850 PMCID: PMC9581404 DOI: 10.3389/fcell.2022.998373] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
The function and structure of the mammalian epithelial cell layer is maintained by distinct intercellular adhesion complexes including adherens junctions (AJs), tight junctions, and desmosomes. The AJ is most integral for stabilizing cell-cell adhesion and conserving the structural integrity of epithelial tissues. AJs are comprised of the transmembrane protein E-cadherin and cytoplasmic catenin cofactors (α, β, γ, and p120-catenin). One organ where malfunction of AJ is a major contributor to disease states is the mammalian intestine. In the intestine, cell-cell adhesion complexes work synergistically to maintain structural integrity and homeostasis of the epithelium and prevent its malfunction. Consequently, when AJ integrity is compromised in the intestinal epithelium, the ensuing homeostatic disruption leads to diseases such as inflammatory bowel disease and colorectal carcinoma. In addition to their function at the plasma membrane, protein components of AJs also have nuclear functions and are thus implicated in regulating gene expression and intracellular signaling. Within the nucleus, AJ proteins have been shown to interact with transcription factors such as TCF/LEF and Kaiso (ZBTB33), which converge on the canonical Wnt signaling pathway. The multifaceted nature of AJ proteins highlights their complexity in modulating homeostasis and emphasizes the importance of their subcellular localization and expression in the mammalian intestine. In this review, we summarize the nuclear roles of AJ proteins in intestinal tissues; their interactions with transcription factors and how this leads to crosstalk with canonical Wnt signaling; and how nuclear AJ proteins are implicated in intestinal homeostasis and disease.
Collapse
|
9
|
Fleisher B, Werkman C, Jacobs B, Varkey J, Taha K, Ait-Oudhia S. KIFC1: A Reliable Prognostic Biomarker in Rb-positive Triple-negative Breast Cancer Patients Treated With Doxorubicin in Combination With Abemaciclib. CANCER DIAGNOSIS & PROGNOSIS 2022; 2:525-532. [PMID: 36060015 PMCID: PMC9425577 DOI: 10.21873/cdp.10137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND/AIM Triple-negative breast cancer (TNBC) prevalence and risk of relapse are greatest in African American (AA) patients. Doxorubicin (DOX) and abemaciclib (ABE) synergism in Rb-positive TNBC cells (MDA-MB-231), and antagonism in Rb-negative TNBC cells (MDA-MB-468) have been previously shown. Here, we assessed Kinesin-like protein 1 (KIFC1) as an ethnic-specific prognostic biomarker of the DOX+ABE combination for the Rb-status in TNBC. MATERIALS AND METHODS Literature search for TNBC prognostic biomarkers in the AA population was conducted. MDA-MB-231 and MDA-MB-468 cells were exposed over 72 h to four treatment arms: 1) control (medium without drug), 2) DOX at 50% inhibitory concentration in MDA-MB-231 (0.565 μM) and MDA-MB-468 (0.121 μM), 3) ABE alone (2 μM), and 4) DOX+ABE combination at their corresponding concentrations in each cell-line. KIFC1 protein expression and temporal changes were quantified in MDA-MB-231 cells using western blot. RESULTS KIFC1, Kaiso, and Annexin A2 are literature-identified AA-specific TNBC prognostic biomarkers. KIFC1 was found to be uncorrelated to other proposed biomarkers, suggesting it may predict risk independently of other TNBC biomarkers. In both cell lines, DOX alone did not significantly change KIFC1 expression relative to control. Conversely, ABE reduced KIFC1 expression in MDA-MB-231 but not in MDA-MB-468 cells. The combination DOX+ABE resulted in a greatest reduction in KIFC1 in MDA-MB-231 cells with a more rapid time-to-full inhibition of KIFC1 compared to ABE alone. CONCLUSION Change in KIFC1 expression is primarily driven by ABE in Rb-positive TNBC cells. DOX increases ABE speed to achieve a full inhibition of KIFC1 in Rb-positive, yet, without influencing its expression in Rb-negative TNBC cells.
Collapse
Affiliation(s)
- Brett Fleisher
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Carolin Werkman
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Brehanna Jacobs
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Justin Varkey
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Kareem Taha
- Center for Pharmacometrics and Systems Pharmacology, Department of Pharmaceutics, University of Florida, College of Pharmacy, Orlando, FL, U.S.A
| | - Sihem Ait-Oudhia
- Quantitative Pharmacology and Pharmacometrics (QP2), Merck & Co., Inc, Kenilworth, NJ, U.S.A
| |
Collapse
|
10
|
Tsou PS, Palisoc PJ, Ali M, Khanna D, Sawalha AH. Genome-Wide Reduction in Chromatin Accessibility and Unique Transcription Factor Footprints in Endothelial Cells and Fibroblasts in Scleroderma Skin. Arthritis Rheumatol 2021; 73:1501-1513. [PMID: 33586346 DOI: 10.1002/art.41694] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by widespread fibrosis and vascular complications. This study was undertaken to examine the chromatin landscape and transcription factor footprints in SSc, using an assay for genome-wide chromatin accessibility. METHODS Dermal endothelial cells (ECs) and fibroblasts were isolated from healthy controls and patients with diffuse cutaneous SSc (dcSSc). Assay for transposase-accessible chromatin with sequencing (ATAC-seq) was performed to assess genome-wide chromatin accessibility at a read depth of ~150 million reads per sample. Transcription factor footprinting and motif binding analysis were performed, followed by functional experiments. RESULTS Chromatin accessibility was significantly reduced in dcSSc patients compared to healthy controls. Differentially accessible chromatin loci were enriched in pathways and gene ontologies involved in the nervous system, cell membrane projections and cilia motility, nuclear and steroid receptors, and nitric oxide. In addition, chromatin binding of transcription factors SNAI2, ETV2, and ELF1 was significantly increased in dcSSc ECs, while recruitment of RUNX1 and RUNX2 was enriched in dcSSc fibroblasts. We found significant down-regulation of the neuronal gene NRXN1 and up-regulation of SNAI2 and ETV2 in dcSSc ECs. In dcSSc fibroblasts, down-regulation of the neuronal gene ENTPD1 and up-regulation of RUNX2 were confirmed. Further functional analysis revealed that ETV2 and NRXN1 dysregulation affected angiogenesis in ECs, while ENTPD1 enhanced profibrotic properties in dcSSc fibroblasts. CONCLUSION Our data identify the chromatin blueprint of dcSSc, and suggest that neuronal-related characteristics of SSc ECs and fibroblasts could be a culprit for dysregulated angiogenesis and enhanced fibrosis. Targeting the key pathways and transcription factors identified might present novel therapeutic approaches in SSc.
Collapse
|
11
|
Harish V, Haque E, Śmiech M, Taniguchi H, Jamieson S, Tewari D, Bishayee A. Xanthohumol for Human Malignancies: Chemistry, Pharmacokinetics and Molecular Targets. Int J Mol Sci 2021; 22:ijms22094478. [PMID: 33923053 PMCID: PMC8123270 DOI: 10.3390/ijms22094478] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022] Open
Abstract
Xanthohumol (XH) is an important prenylated flavonoid that is found within the inflorescence of Humulus lupulus L. (Hop plant). XH is an important ingredient in beer and is considered a significant bioactive agent due to its diverse medicinal applications, which include anti-inflammatory, antimicrobial, antioxidant, immunomodulatory, antiviral, antifungal, antigenotoxic, antiangiogenic, and antimalarial effects as well as strong anticancer activity towards various types of cancer cells. XH acts as a wide ranging chemopreventive and anticancer agent, and its isomer, 8-prenylnaringenin, is a phytoestrogen with strong estrogenic activity. The present review focuses on the bioactivity of XH on various types of cancers and its pharmacokinetics. In this paper, we first highlight, in brief, the history and use of hops and then the chemistry and structure–activity relationship of XH. Lastly, we focus on its prominent effects and mechanisms of action on various cancers and its possible use in cancer prevention and treatment. Considering the limited number of available reviews on this subject, our goal is to provide a complete and detailed understanding of the anticancer effects of XH against different cancers.
Collapse
Affiliation(s)
- Vancha Harish
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India;
| | - Effi Haque
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Magdalena Śmiech
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Hiroaki Taniguchi
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, 05-552 Jastrzebiec, Poland; (E.H.); (M.Ś.); (H.T.)
| | - Sarah Jamieson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Devesh Tewari
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144 411, Punjab, India
- Correspondence: (D.T.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (D.T.); or (A.B.)
| |
Collapse
|
12
|
Yan G, Dai M, Zhang C, Poulet S, Moamer A, Wang N, Boudreault J, Ali S, Lebrun JJ. TGFβ/cyclin D1/Smad-mediated inhibition of BMP4 promotes breast cancer stem cell self-renewal activity. Oncogenesis 2021; 10:21. [PMID: 33649296 PMCID: PMC7921419 DOI: 10.1038/s41389-021-00310-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/08/2021] [Accepted: 02/10/2021] [Indexed: 12/31/2022] Open
Abstract
Basal-like triple-negative breast cancers (TNBCs) display poor prognosis, have a high risk of tumor recurrence, and exhibit high resistance to drug treatments. The TNBC aggressive features are largely due to the high proportion of cancer stem cells present within these tumors. In this study, we investigated the interplay and networking pathways occurring between TGFβ family ligands in regulating stemness in TNBCs. We found that TGFβ stimulation of TNBCs resulted in enhanced tumorsphere formation efficiency and an increased proportion of the highly tumorigenic CD44high/CD24low cancer stem cell population. Analysis of the TGFβ transcriptome in TNBC cells revealed bone morphogenetic protein4 (BMP4) as a main TGFβ-repressed target in these tumor cells. We further found that BMP4 opposed TGFβ effects on stemness and potently decreased cancer stem cell numbers, thereby acting as a differentiation factor in TNBC. At the molecular level, we found that TGFβ inhibition of BMP4 gene expression is mediated through the Smad pathway and cyclin D1. In addition, we also found BMP4 to act as a pro-differentiation factor in normal mammary epithelial cells and promote mammary acinar formation in 3D cell culture assays. Finally, and consistent with our in vitro results, in silico patient data analysis defined BMP4 as a potential valuable prognosis marker for TNBC patients.
Collapse
Affiliation(s)
- Gang Yan
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Meiou Dai
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Chenjing Zhang
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada.,Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Sophie Poulet
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Alaa Moamer
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Ni Wang
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Julien Boudreault
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Suhad Ali
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- McGill University Health Center, Department of Medicine, Cancer Research Program, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
13
|
Tong W, Li J, Feng X, Wang C, Xu Y, He C, Xu W. Kaiso regulates osteoblast differentiation and mineralization via the Itga10/PI3K/AKT signaling pathway. Int J Mol Med 2021; 47:41. [PMID: 33576467 PMCID: PMC7891822 DOI: 10.3892/ijmm.2021.4874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/30/2020] [Indexed: 01/31/2023] Open
Abstract
Bone homeostasis is maintained by a dynamic balance between bone formation and bone resorption. The cellular activities of osteoblasts and osteoclasts are the primary factors that maintain this dynamic balance. The transcription factor Kaiso has been identified as a regulator of cell proliferation and differentiation in various cells. However, research into its role in bone homeostasis is currently lacking. In the present study, cell and animal experiments were conducted to investigate the role of Kaiso in bone homeostasis. The present study identified that Kaiso was downregulated during osteoblast differentiation in MC3T3-E1 cells. Gain- and loss-of-function studies in MC3T3-E1 cells demonstrated that Kaiso served a critical role in osteoblast differentiation in vitro. The findings were further confirmed in vivo. The results of the sequence analysis indicated that Kaiso influenced osteoblast differentiation and mineralization by regulating the PI3K/AKT signaling pathway. Moreover, integrin subunit α10 (Itga10) was identified as a direct target of Kaiso via chromatin immunoprecipitation and luciferase reporter assays. Collectively, these findings suggested that Kaiso regulated the differentiation of osteoblasts via the Itga10/PI3K/AKT pathway, which represents a therapeutic target for bone formation or bone resorption-related diseases.
Collapse
Affiliation(s)
- Wenwen Tong
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jia Li
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Xinzhe Feng
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chen Wang
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Yihong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Chongru He
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| | - Weidong Xu
- Department of Joint Bone Disease Surgery, Changhai Hospital, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
14
|
Sari E, Oztay F, Tasci AE. Vitamin D modulates E-cadherin turnover by regulating TGF-β and Wnt signalings during EMT-mediated myofibroblast differentiation in A459 cells. J Steroid Biochem Mol Biol 2020; 202:105723. [PMID: 32603782 DOI: 10.1016/j.jsbmb.2020.105723] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/07/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022]
Abstract
Vitamin D (VitD) has an anti-fibrotic effect on fibrotic lungs. It reduces epithelial-mesenchymal transition (EMT) on tumors. We aimed to investigate target proteins of VitD for the regression of EMT-mediated myofibroblast differentiation. A group of A549 cells were treated with 5 % cigarette smoke extract (CSE) and 5 %CSE + TGF-β (5 ng/ml) to induce EMT. The others were treated with 50 nM VitD 30 min before %5CSE and TGF-β treatments. All cells were collected at 24, 48 and 72 h following 5 %CSE and TGF-β administrations. The expression of p120ctn and NEDD9 proteins acted on E-cadherin turnover in addition to activations of TGF-β and Wnt pathways were examined in these cells and fibrotic human lungs. CSE and TGF-β induced EMT by reducing E-cadherin, p-VDR, SMAD7 and DKK1, increasing α-SMA, p120ctn, Kaiso, NEDD9 and stimulating TGF-β and Wnt/β-catenin signalings in A549 cells. VitD administration reversed these alterations and regressed EMT. Co-immunoprecipitation analysis revealed p-VDR interaction with β-catenin and Kaiso in fibrotic and non-fibrotic human lungs. VitD pre-treatments reduced TGF-β and Wnt/β-catenin signalings by increasing p-VDR, protected from E-cadherin degradation and led to the regression of EMT in A549 cells treated with CSE and TGF-β. Finally, VitD supplementation combined with anti-fibrotic therapeutics can be suggested for treatment of pulmonary fibrosis, which may be developed by smoking, in cases of VitD deficiency.
Collapse
Affiliation(s)
- Ezgi Sari
- Istanbul University, Faculty of Science, Department of Biology, 34134, Vezneciler, Istanbul, Turkey.
| | - Fusun Oztay
- Istanbul University, Faculty of Science, Department of Biology, 34134, Vezneciler, Istanbul, Turkey.
| | - Ahmet Erdal Tasci
- Lung Transplantation Center, Department of Thoracic Surgery, Kartal Kosuyolu High Speciality Educational and Research Hospital, Kartal, Istanbul, Turkey.
| |
Collapse
|
15
|
Curcumin Inhibits Proliferation and Epithelial-Mesenchymal Transition in Lens Epithelial Cells through Multiple Pathways. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6061894. [PMID: 32337261 PMCID: PMC7154973 DOI: 10.1155/2020/6061894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/23/2020] [Accepted: 03/04/2020] [Indexed: 01/11/2023]
Abstract
Background Posterior capsule opacification (PCO), a complication of extracapsular lens extraction surgery that causes visual impairment, is characterized by aberrant proliferation and epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs). Curcumin, exerting inhibitive effects on cell proliferation and EMT in cancer, serves as a possible antidote towards PCO. Methods Cellular proliferation of LECs after treatment of curcumin was measured with MTT assay and flow cytometry. The transcriptional and expressional levels of proteins related to proliferation and EMT of LECs were quantified by western blotting and real-time PCR. Results Curcumin was found to suppress the proliferation of LECs by inducing G2/M arrest via possible inhibition of cell cycle-related proteins including CDK1, cyclin B1, and CDC25C. It had also inactivated proliferation pathways involving ERK1/2 and Akt pathways in LECs. On the other hand, curcumin downregulated the EMT of LECs through blocking the TGF-β/Smad pathway and interfering Notch pathway which play important roles in PCO. Conclusions This study shows that curcumin could suppress the proliferation and EMT in LECs, and it might be a potential therapeutic protection against visual loss induced by PCO.
Collapse
|
16
|
Hercules SM, Hercules JC, Ansari A, Date SAJ, Skeete DHA, Smith Connell SP, Pond GR, Daniel JM. High triple-negative breast cancer prevalence and aggressive prognostic factors in Barbadian women with breast cancer. Cancer 2020; 126:2217-2224. [PMID: 32154924 DOI: 10.1002/cncr.32771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Women of African ancestry (WAA) are disproportionately affected by triple-negative breast cancer (TNBC), which remains one of the most clinically challenging breast cancer (BCa) subtypes. This study investigated the prevalence of TNBC and epidemiological trends for BCa in Barbados, a Caribbean island with a high percentage of African ancestry. METHODS Pathology reports for all BCa cases between 2007 and 2016 were collected from the sole hospital in Barbados and reviewed. The clinicopathological data collected included age, tumor grade, lymph node status, and hormone receptor status as determined by immunohistochemistry. BCa data for non-Hispanic white (NHW) and non-Hispanic black (NHB) American populations were accessed from the Surveillance, Epidemiology, and End Results database. RESULTS There were 1997 BCa cases in Barbados between 2007 and 2016 for an estimated incidence rate of 135.1 per 100,000 women in Barbados (standardized to the US population, where the standardized incidence rates for NHBs and NHWs were 141.4 and 152.6 per 100,000, respectively). Age-specific incidence rates in Barbados for this period were consistently higher in younger age groups (15-59 years) in comparison with NHWs and NHBs. Between 2010 and 2016 in Barbados, a TNBC prevalence of 25% was observed, whereas TNBC prevalences of 21% and 10% were observed in NHBs and NHWs, respectively. CONCLUSIONS The BCa incidence was higher in younger Barbadian women than NHWs and NHBs, and the TNBC prevalence was ~2.5 times higher than the prevalence in NHWs. This hints at a possible genetic predisposition and other socioeconomic factors that could explain the high TNBC prevalence and aggressive clinical course in WAA globally.
Collapse
Affiliation(s)
- Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,African Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| | - Jevon C Hercules
- Department of Mathematics, University of the West Indies at Mona, Kingston, Jamaica
| | - Amna Ansari
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Stephanie A J Date
- African Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,Faculty of Medical Sciences, University of the West Indies at Cave Hill, Bridgetown, Barbados
| | - Desiree H A Skeete
- African Caribbean Cancer Consortium, Philadelphia, Pennsylvania.,Faculty of Medical Sciences, University of the West Indies at Cave Hill, Bridgetown, Barbados.,Department of Pathology, Queen Elizabeth Hospital, Bridgetown, Barbados
| | - Suzanne P Smith Connell
- Faculty of Medical Sciences, University of the West Indies at Cave Hill, Bridgetown, Barbados.,Department of Radiation Oncology, Queen Elizabeth Hospital, Bridgetown, Barbados
| | - Gregory R Pond
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada.,Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, Ontario, Canada.,African Caribbean Cancer Consortium, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Zheng Q, Gao J, Yin P, Wang W, Wang B, Li Y, Zhao C. CD155 contributes to the mesenchymal phenotype of triple-negative breast cancer. Cancer Sci 2020; 111:383-394. [PMID: 31830330 PMCID: PMC7004517 DOI: 10.1111/cas.14276] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/19/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
Patients with triple-negative breast cancer (TNBC) lack molecular targets and have an unfavorable outcome. CD155 is overexpressed in human cancers, but whether it plays a role in TNBC is unexplored. Here we found that CD155 was enriched in both TNBC cell lines and tumor tissues. High CD155 expression was related to poor prognosis of breast cancer patients. CD155 was associated with a mesenchymal phenotype. CD155 knockdown induced a mesenchymal-epithelial transition in TNBC cells, and suppressed TNBC cell migration, invasion and metastasis in vitro and in vivo. Mechanistically, CD155 cross-talked with oncogenic IL-6/Stat3 and TGF-β/Smad3 pathways. Moreover, CD155 knockdown inhibited TNBC cell growth and survival. Taken together, these data indicate that CD155 contributes to the aggressive behavior of TNBC; targeting CD155 may be beneficial to these patients.
Collapse
Affiliation(s)
- Qianqian Zheng
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Jian Gao
- Center of Laboratory Technology and Experimental Medicine, China Medical University, Shenyang, China
| | - Ping Yin
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Wang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Yan Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Chenghai Zhao
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
18
|
Del Pilar Chantada-Vázquez M, López AC, Vence MG, Vázquez-Estévez S, Acea-Nebril B, Calatayud DG, Jardiel T, Bravo SB, Núñez C. Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers. J Proteomics 2019; 212:103581. [PMID: 31731051 DOI: 10.1016/j.jprot.2019.103581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
Nowadays, there are no targeted therapeutic modalities for triple negative breast cancer (TNBC). This disease is associated with poor prognosis and worst clinical outcome because of the aggressive nature of the tumor, delayed diagnosis, and non-specific symptoms in the early stages. Therefore, identification of novel specific TNBC serum biomarkers for screening and therapeutic purposes remains an urgent clinical requirement. New user-friendly and cheap methods for biomarker identification are needed, and nanotechnology offers new opportunities. When dispersed in blood, nanoparticles (NPs) are covered by a protein shell termed "protein corona" (PC). While alterations in protein patterns are challeging to detect by conventional blood analyses, PC acts as a "nano-concentrator" of serum proteins with affinity for NPs' surface. So, the characterization of PC could allow the detection of otherwise undetectable changes in protein concentration at an early stage of the disease or after chemotherapy or surgery. To explore this research idea, serum samples from 8 triple negative breast cancer (TNBC) patients and 8 patients without malignancy were allowed to interact with gold nanoparticles (AuNPs: 10.02 ± 0.91 nm), silver nanoparticles (AgNPs: 9.73 ± 1.70 nm) and magnetic nanoparticles (MNPs: (9.30 ± 0.67 nm). Here, in order to identify biomarker candidates in serum of TNBC patients, these nanomaterials were combined with electrophoretic separation (SDS-PAGE) to performed qualitative and quantitative comparisons of the serum proteomes of TNBC patients (n = 8) and healthy controls (n = 8) by liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis. The results were validated through a sequential window acquisition of all theoretical mass spectra (SWATH) analysis, performed in total serum samples (patients and controls) using this approach as a multiple reaction monitoring (MRM) analysis. SIGNIFICANCE: It is well known that several proteins presented in human serum are important biomarkers for the diagnosis or prognosis of different diseases, as triple negative breast cancer (TNBC). Determining how nanomaterials as gold nanoparticles (AuNPs: 10.02 ± 0.91 nm), silver nanoparticles (AgNPs: 9.73 ± 1.70 nm) and magnetic nanoparticles (MNPs: (9.30 ± 0.67 nm) interact with human serum will assist not only in understanding their effects on the biological system (biocompability and toxicity), but also to obtain information for developing novel nanomaterials with high specificity and selectivity towards proteins with an important biological function (prognostic and diagnostic protein biomarkers).
Collapse
Affiliation(s)
| | - Antonio Castro López
- Breast Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - María García Vence
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - Benigno Acea-Nebril
- Department of Surgery, Breast Unit, Complexo Hospitalario Universitario A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | - David G Calatayud
- Department of Electroceramics, Instituto de Cerámica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Teresa Jardiel
- Department of Electroceramics, Instituto de Cerámica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain.
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain.
| |
Collapse
|
19
|
Robinson SC, Chaudhary R, Jiménez-Saiz R, Rayner LGA, Bayer L, Jordana M, Daniel JM. Kaiso-induced intestinal inflammation is preceded by diminished E-cadherin expression and intestinal integrity. PLoS One 2019; 14:e0217220. [PMID: 31199830 PMCID: PMC6568390 DOI: 10.1371/journal.pone.0217220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/07/2019] [Indexed: 01/08/2023] Open
Abstract
Chronic intestinal inflammation contributes to pathologies such as inflammatory bowel disease (IBD) and colon cancer. While the precise etiology remains controversial, IBD is believed to manifest as a result of various factors. We previously reported that intestinal-specific overexpression of the transcription factor Kaiso results in an intestinal inflammatory response; however, the cause of this inflammation is unknown. To elucidate the underlying mechanism(s) of the Kaiso-mediated intestinal inflammatory phenotype, we evaluated two independent transgenic mouse lines that express varying levels of Kaiso (KaisoTg). Histological analyses of KaisoTg mice revealed intestinal damage including thickening of the mucosa, intestinal “lesions” and crypt abscesses, which are reminiscent of IBD pathology. Additionally, higher Kaiso levels induced intestinal neutrophilia as early as 12 weeks, which worsened as the mice aged. Notably, the Kaiso-induced intestinal inflammation correlated with a leaky intestinal barrier and mis-regulation of E-cadherin expression and localization. Interestingly, Kaiso overexpression resulted in reduced proliferation but enhanced migration of intestinal epithelial cells prior to the onset of inflammation. Collectively, these data suggest that Kaiso plays a role in regulating intestinal epithelial cell integrity and function, dysregulation of which contributes to a chronic inflammatory phenotype as mice age.
Collapse
Affiliation(s)
| | - Roopali Chaudhary
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Rodrigo Jiménez-Saiz
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | | | - Luke Bayer
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Manel Jordana
- Department of Pathology & Molecular Medicine, McMaster Immunology Research Centre (MIRC), McMaster University, Hamilton, Ontario, Canada
| | - Juliet M. Daniel
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
20
|
Pierre CC, Hercules SM, Yates C, Daniel JM. Dancing from bottoms up - Roles of the POZ-ZF transcription factor Kaiso in Cancer. Biochim Biophys Acta Rev Cancer 2018; 1871:64-74. [PMID: 30419310 DOI: 10.1016/j.bbcan.2018.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/05/2018] [Accepted: 10/07/2018] [Indexed: 12/11/2022]
Abstract
The POZ-ZF transcription factor Kaiso was discovered two decades ago as a binding partner for p120ctn. Since its discovery, roles for Kaiso in diverse biological processes (epithelial-to-mesenchymal transition, apoptosis, inflammation) and several signalling pathways (Wnt/β-catenin, TGFβ, EGFR, Notch) have emerged. While Kaiso's biological role in normal tissues has yet to be fully elucidated, Kaiso has been increasingly implicated in multiple human cancers including colon, prostate, ovarian, lung, breast and chronic myeloid leukemia. In the majority of human cancers investigated to date, high Kaiso expression correlates with aggressive tumor characteristics including proliferation and metastasis, and/or poor prognosis. More recently, interest in Kaiso stems from its apparent correlation with racial disparities in breast and prostate cancer incidence and survival outcomes in people of African Ancestry. This review discusses Kaiso's role in various cancers, and Kaiso's potential for driving racial disparities in incidence and/or outcomes in people of African ancestry.
Collapse
Affiliation(s)
- Christina C Pierre
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Clayton Yates
- Department of Biology, Center for Cancer Research, Tuskegee University, Tuskegee, AL, USA
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
21
|
Identification of the Transcription Factor Relationships Associated with Androgen Deprivation Therapy Response and Metastatic Progression in Prostate Cancer. Cancers (Basel) 2018; 10:cancers10100379. [PMID: 30314329 PMCID: PMC6210624 DOI: 10.3390/cancers10100379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 11/17/2022] Open
Abstract
Background: Patients with locally advanced or recurrent prostate cancer typically undergo androgen deprivation therapy (ADT), but the benefits are often short-lived and the responses variable. ADT failure results in castration-resistant prostate cancer (CRPC), which inevitably leads to metastasis. We hypothesized that differences in tumor transcriptional programs may reflect differential responses to ADT and subsequent metastasis. Results: We performed whole transcriptome analysis of 20 patient-matched Pre-ADT biopsies and 20 Post-ADT prostatectomy specimens, and identified two subgroups of patients (high impact and low impact groups) that exhibited distinct transcriptional changes in response to ADT. We found that all patients lost the AR-dependent subtype (PCS2) transcriptional signatures. The high impact group maintained the more aggressive subtype (PCS1) signal, while the low impact group more resembled an AR-suppressed (PCS3) subtype. Computational analyses identified transcription factor coordinated groups (TFCGs) enriched in the high impact group network. Leveraging a large public dataset of over 800 metastatic and primary samples, we identified 33 TFCGs in common between the high impact group and metastatic lesions, including SOX4/FOXA2/GATA4, and a TFCG containing JUN, JUNB, JUND, FOS, FOSB, and FOSL1. The majority of metastatic TFCGs were subsets of larger TFCGs in the high impact group network, suggesting a refinement of critical TFCGs in prostate cancer progression. Conclusions: We have identified TFCGs associated with pronounced initial transcriptional response to ADT, aggressive signatures, and metastasis. Our findings suggest multiple new hypotheses that could lead to novel combination therapies to prevent the development of CRPC following ADT.
Collapse
|
22
|
Hudson NO, Buck-Koehntop BA. Zinc Finger Readers of Methylated DNA. Molecules 2018; 23:E2555. [PMID: 30301273 PMCID: PMC6222495 DOI: 10.3390/molecules23102555] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
DNA methylation is a prevalent epigenetic modification involved in regulating a number of essential cellular processes, including genomic accessibility and transcriptional outcomes. As such, aberrant alterations in global DNA methylation patterns have been associated with a growing number of disease conditions. Nevertheless, the full mechanisms by which DNA methylation information is interpreted and translated into genomic responses is not yet fully understood. Methyl-CpG binding proteins (MBPs) function as important mediators of this essential process by selectively reading DNA methylation signals and translating this information into down-stream cellular outcomes. The Cys₂His₂ zinc finger scaffold is one of the most abundant DNA binding motifs found within human transcription factors, yet only a few zinc finger containing proteins capable of conferring selectivity for mCpG over CpG sites have been characterized. This review summarizes our current structural understanding for the mechanisms by which the zinc finger MBPs evaluated to date read this essential epigenetic mark. Further, some of the biological implications for mCpG readout elicited by this family of MBPs are discussed.
Collapse
Affiliation(s)
- Nicholas O Hudson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
23
|
Shan Z, Wei Z, Shaikh ZA. Suppression of ferroportin expression by cadmium stimulates proliferation, EMT, and migration in triple-negative breast cancer cells. Toxicol Appl Pharmacol 2018; 356:36-43. [PMID: 30030096 DOI: 10.1016/j.taap.2018.07.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 06/29/2018] [Accepted: 07/16/2018] [Indexed: 01/17/2023]
Abstract
Cadmium (Cd) has been linked to a variety of cancers, including breast cancer; however, the molecular mechanism of its carcinogenic activity is not fully understood. To this end, the present study investigated the roles of ferroportin (FPN), a prognostic marker of breast cancer, in Cd-induced stimulation of cell proliferation and cell migration. Triple-negative MDA-MB-231 cells were treated with 1-3 μM Cd. The cells exhibited significant reduction in FPN expression and concomitant increase in iron concentration. Cells treated with Cd for 8 weeks displayed elevated proliferative and migratory activities which were inversely related with FPN expression. Reduced FPN expression also resulted in EMT as indicated by an increase in the expression of E-cadherin, and a decrease in the expression of N-cadherin, Twist and Slug. Further investigation revealed that Cd suppressed FPN expression at least partially by activating TGF-β, a known regulator of FPN expression. Taken together, these results indicate that Cd-induced stimulation of MDA-MB-231 cell proliferation, EMT, and migration is brought about by suppression of FPN expression and associated disruption of iron homeostasis.
Collapse
Affiliation(s)
- Zhongguo Shan
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zhengxi Wei
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zahir A Shaikh
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
24
|
Jiang CH, Sun TL, Xiang DX, Wei SS, Li WQ. Anticancer Activity and Mechanism of Xanthohumol: A Prenylated Flavonoid From Hops ( Humulus lupulus L.). Front Pharmacol 2018; 9:530. [PMID: 29872398 PMCID: PMC5972274 DOI: 10.3389/fphar.2018.00530] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/02/2018] [Indexed: 12/17/2022] Open
Abstract
It has been observed that many phytochemicals, frequently present in foods or beverages, show potent chemopreventive or therapeutic properties that selectively affect cancer cells. Numerous studies have demonstrated the anticancer activity of xanthohumol (Xn), a prenylated flavonoid isolated from hops (Humulus lupulus L.), with a concentration up to 0.96 mg/L in beer. This review aims to summarize the existing studies focusing on the anticancer activity of Xn and its effects on key signaling molecules. Furthermore, the limitations of current studies and challenges for the clinical use of Xn are discussed.
Collapse
Affiliation(s)
- Chuan-Hao Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tao-Li Sun
- Key Laboratory Breeding Base of Hu'nan Oriented Fundamental and Applied Research of Innovative Pharmaceutics, College of Pharmacy, Changsha Medical University, Changsha, China
| | - Da-Xiong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| | - Shan-Shan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wen-Qun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China.,Hunan Provincial Engineering Research Center of Translational Medicine and Innovative Drug, Changsha, China
| |
Collapse
|
25
|
Abisoye-Ogunniyan A, Lin H, Ghebremedhin A, Salam AB, Karanam B, Theodore S, Jones-Trich J, Davis M, Grizzle W, Wang H, Yates C. Transcriptional repressor Kaiso promotes epithelial to mesenchymal transition and metastasis in prostate cancer through direct regulation of miR-200c. Cancer Lett 2018; 431:1-10. [PMID: 29751044 DOI: 10.1016/j.canlet.2018.04.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 01/06/2023]
Abstract
The loss of miR-200 family, through DNA methylation, results in cancer cells undergoing an epithelial to mesenchymal transition (EMT), and metastasis. In this study, we established that the transcriptional repressor Kaiso directly binds methylated regions of the miR-200 family, and this is reversed with 5-aza treatment. sh-Kaiso PC-3 cells display increased miR-200-a/b/c, miR-141, and miR-429 expression, with miR-200c demonstrating the most significant increase. Interestingly, overexpression of EGFR or treatment with EGF decreases miR-200c expression and this is reversed after treatment with EGFR specific kinase inhibitor PD153035. However, EGF did not have a significant effect on miR-200c in sh-Kaiso DU-145 or PC-3 cell lines, suggesting Kaiso silences miR-200c through the activation of EGFR signaling. Overexpression of Kaiso in LNCaP cells results in decreased expression of miR-200-a/b/c, miR-141, and miR-429, along with increased expression of ZEB1, p-EGFR and total EGFR levels. Overexpression of miR200c in PC-3 cells results in decreased expression of EGFR, ZEB1, ERK1/2 and Kaiso. Additionally, sh-Kaiso PC-3 demonstrates reduced in vivo tumor formation and metastasis. Thus, our data suggests that EGFR signaling regulates the silencing of miR-200 family through Kaiso binding to methylated regions in the promoter.
Collapse
Affiliation(s)
| | - Huxian Lin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Anghesom Ghebremedhin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Ahmad Bin Salam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Shaniece Theodore
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | | | - Melissa Davis
- Department of Surgery, Henry Ford Medical Center, Detroit, MI, USA
| | - William Grizzle
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, 36088, USA.
| |
Collapse
|
26
|
Bassey-Archibong BI, Hercules SM, Rayner LGA, Skeete DHA, Smith Connell SP, Brain I, Daramola A, Banjo AAF, Byun JS, Gardner K, Dushoff J, Daniel JM. Kaiso is highly expressed in TNBC tissues of women of African ancestry compared to Caucasian women. Cancer Causes Control 2017; 28:1295-1304. [PMID: 28887687 PMCID: PMC5681979 DOI: 10.1007/s10552-017-0955-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 08/31/2017] [Indexed: 12/22/2022]
Abstract
Purpose Triple-negative breast cancer (TNBC) is most prevalent in young women of African ancestry (WAA) compared to women of other ethnicities. Recent studies found a correlation between high expression of the transcription factor Kaiso, TNBC aggressiveness, and ethnicity. However, little is known about Kaiso expression and localization patterns in TNBC tissues of WAA. Herein, we analyze Kaiso expression patterns in TNBC tissues of African (Nigerian), Caribbean (Barbados), African American (AA), and Caucasian American (CA) women. Methods Formalin-fixed and paraffin embedded (FFPE) TNBC tissue blocks from Nigeria and Barbados were utilized to construct a Nigerian/Barbadian tissue microarray (NB-TMA). This NB-TMA and a commercially available TMA comprising AA and CA TNBC tissues (AA-CA-YTMA) were subjected to immunohistochemistry to assess Kaiso expression and subcellular localization patterns, and correlate Kaiso expression with TNBC clinical features. Results Nigerian and Barbadian women in our study were diagnosed with TNBC at a younger age than AA and CA women. Nuclear and cytoplasmic Kaiso expression was observed in all tissues analyzed. Analysis of Kaiso expression in the NB-TMA and AA-CA-YTMA revealed that nuclear Kaiso H scores were significantly higher in Nigerian, Barbadian, and AA women compared with CA women. However, there was no statistically significant difference in nuclear Kaiso expression between Nigerian versus Barbadian women, or Barbadian versus AA women. Conclusions High levels of nuclear Kaiso expression were detected in patients with a higher degree of African heritage compared to their Caucasian counterparts, suggesting a role for Kaiso in TNBC racial disparity. Electronic supplementary material The online version of this article (doi:10.1007/s10552-017-0955-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Desiree H A Skeete
- Department of Pathology, Queen Elizabeth Hospital (QEH), Bridgetown, Barbados.,Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados
| | - Suzanne P Smith Connell
- Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus, Bridgetown, Barbados.,Department of Radiation Oncology, Queen Elizabeth Hospital (QEH), Bridgetown, Barbados
| | - Ian Brain
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Adetola Daramola
- Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Adekunbiola A F Banjo
- Department of Anatomic and Molecular Pathology, Lagos University Teaching Hospital (LUTH), Lagos, Nigeria
| | - Jung S Byun
- Genetics Branch, National Institute of Health, Bethesda, MD, USA
| | - Kevin Gardner
- Genetics Branch, National Institute of Health, Bethesda, MD, USA
| | - Jonathan Dushoff
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
27
|
Loss of Kaiso expression in breast cancer cells prevents intra-vascular invasion in the lung and secondary metastasis. PLoS One 2017; 12:e0183883. [PMID: 28880889 PMCID: PMC5589175 DOI: 10.1371/journal.pone.0183883] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/14/2017] [Indexed: 01/04/2023] Open
Abstract
The metastatic activity of breast carcinomas results from complex genetic changes in epithelial tumor cells and accounts for 90% of deaths in affected patients. Although the invasion of the local lymphatic vessels and veins by malignant breast tumor cells and their subsequent metastasis to the lung, has been recognized, the mechanisms behind the metastatic activity of breast tumor cells to other distal organs and the pathogenesis of metastatic cancer are not well understood. In this study, we utilized derivatives of the well-established and highly metastatic triple negative breast cancer (TNBC) cell line MDA-MB-231 (MDA-231) to study breast tumor metastasis in a mouse model. These MDA-231 derivatives had depleted expression of Kaiso, a POZ-ZF transcription factor that is highly expressed in malignant, triple negative breast cancers. We previously reported that Kaiso depletion attenuates the metastasis of xenografted MDA-231 cells. Herein, we describe the pathological features of the metastatic activity of parental (Kaisopositive) versus Kaisodepleted MDA-231 cells. Both Kaisopositive and Kaisodepleted MDA-231 cells metastasized from the original tumor in the mammary fat pad to the lung. However, while Kaisopositive cells formed large masses in the lung parenchyma, invaded large pulmonary blood vessels and formed secondary metastases and large tumors in the distal organs, Kaisodepleted cells metastasized only to the lung where they formed small metastatic lesions. Importantly, intravascular invasion and secondary metastases in distal organs were not observed in mice xenografted with Kaisodepleted cells. It thus appears that the lung may constitute a barrier for less invasive breast tumors such as the Kaisodepleted TNBC cells; this barrier may limit tumor growth and prevents Kaisodepleted TNBC cells from invading the pulmonary blood vessels and forming secondary metastases in distal organs.
Collapse
|
28
|
Robinson SC, Donaldson-Kabwe NS, Dvorkin-Gheva A, Longo J, He L, Daniel JM. The POZ-ZF transcription factor Znf131 is implicated as a regulator of Kaiso-mediated biological processes. Biochem Biophys Res Commun 2017; 493:416-421. [PMID: 28882591 DOI: 10.1016/j.bbrc.2017.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/03/2017] [Indexed: 12/14/2022]
Abstract
Znf131 belongs to the family of POZ-ZF transcription factors, but, in contrast to most other characterized POZ-ZF proteins that function as transcriptional repressors, Znf131 acts as a transcriptional activator. Znf131 heterodimerizes with the POZ-ZF protein Kaiso, which itself represses a subset of canonical Wnt target genes, including the cell cycle regulator Cyclin D1. Herein, we report a possible role for Znf131 in Kaiso-mediated processes. Notably, we found that Znf131 associates with several Kaiso target gene promoters, including that of CCND1. ChIP analysis revealed that Znf131 indirectly associates with the CCND1 promoter in HCT116 and MCF7 cells via a region that encompasses the previously characterized +69 Kaiso Binding Site, hinting that the Znf131/Kaiso heterodimer may co-regulate Cyclin D1 expression. We also demonstrate that Kaiso inhibits Znf131 expression, raising the possibility that Kaiso and Znf131 act to fine-tune target gene expression. Together, our findings implicate Znf131 as a co-regulator of Kaiso-mediated biological processes.
Collapse
Affiliation(s)
| | | | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Joseph Longo
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Lloyd He
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
29
|
Feng J. Upregulation of MicroRNA-4262 Targets Kaiso (ZBTB33) to Inhibit the Proliferation and EMT of Cervical Cancer Cells. Oncol Res 2017; 26:1215-1225. [PMID: 28800784 PMCID: PMC7844826 DOI: 10.3727/096504017x15021536183526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
More and more studies have reported that dysregulation of microRNAs (miRNAs) leads to the proliferation and EMT of multiple cancers. Recently, several reports have demonstrated that dysregulation of miR-4262 occurs in numerous cancers. However, its role and precise mechanism in human cervical cancer (CC) have not been well clarified. Hence, this study aimed to explore the biological roles and precise mechanisms of miR-4262 in CC cell lines. The level of miR-4262 was found to be significantly decreased in CC tissues and cell lines. Moreover, decreased expression of miR-4262 was closely related to increased expression of Kaiso (ZBTB33), which belongs to the BTB/POZ family, in CC tissues and cell lines. The proliferation and EMT of CC cells were inhibited by a miR-4262 mimic. However, downregulation of miR-4262 enhanced the proliferation and EMT of CC cells. Next, bioinformatics analysis predicted that miR-4262 might directly target the Kaiso gene. Besides, luciferase reporter assay had confirmed this result. Moreover, introduction of Kaiso in CC cells partially blocked the effects of miR-4262 mimic. In conclusion, miR-4262 suppressed the proliferation and EMT of CC cells by directly downregulating Kaiso.
Collapse
Affiliation(s)
- Jing Feng
- Department of Gynecology, Cangzhou Central Hospital, Hebei, P.R. China
| |
Collapse
|
30
|
Robinson SC, Klobucar K, Pierre CC, Ansari A, Zhenilo S, Prokhortchouk E, Daniel JM. Kaiso differentially regulates components of the Notch signaling pathway in intestinal cells. Cell Commun Signal 2017. [PMID: 28637464 PMCID: PMC5480165 DOI: 10.1186/s12964-017-0178-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background In mammalian intestines, Notch signaling plays a critical role in mediating cell fate decisions; it promotes the absorptive (or enterocyte) cell fate, while concomitantly inhibiting the secretory cell fate (i.e. goblet, Paneth and enteroendocrine cells). We recently reported that intestinal-specific Kaiso overexpressing mice (KaisoTg) exhibited chronic intestinal inflammation and had increased numbers of all three secretory cell types, hinting that Kaiso might regulate Notch signaling in the gut. However, Kaiso’s precise role in Notch signaling and whether the KaisoTg secretory cell fate phenotype was linked to Kaiso-induced inflammation had yet to be elucidated. Methods Intestines from 3-month old Non-transgenic and KaisoTg mice were “Swiss” rolled and analysed for the expression of Notch1, Dll-1, Jagged-1, and secretory cell markers by immunohistochemistry and immunofluorescence. To evaluate inflammation, morphological analyses and myeloperoxidase assays were performed on intestines from 3-month old KaisoTg and control mice. Notch1, Dll-1 and Jagged-1 expression were also assessed in stable Kaiso-depleted colon cancer cells and isolated intestinal epithelial cells using real time PCR and western blotting. To assess Kaiso binding to the DLL1, JAG1 and NOTCH1 promoter regions, chromatin immunoprecipitation was performed on three colon cancer cell lines. Results Here we demonstrate that Kaiso promotes secretory cell hyperplasia independently of Kaiso-induced inflammation. Moreover, Kaiso regulates several components of the Notch signaling pathway in intestinal cells, namely, Dll-1, Jagged-1 and Notch1. Notably, we found that in KaisoTg mice intestines, Notch1 and Dll-1 expression are significantly reduced while Jagged-1 expression is increased. Chromatin immunoprecipitation experiments revealed that Kaiso associates with the DLL1 and JAG1 promoter regions in a methylation-dependent manner in colon carcinoma cell lines, suggesting that these Notch ligands are putative Kaiso target genes. Conclusion Here, we provide evidence that Kaiso’s effects on intestinal secretory cell fates precede the development of intestinal inflammation in KaisoTg mice. We also demonstrate that Kaiso inhibits the expression of Dll-1, which likely contributes to the secretory cell phenotype observed in our transgenic mice. In contrast, Kaiso promotes Jagged-1 expression, which may have implications in Notch-mediated colon cancer progression. Electronic supplementary material The online version of this article (doi:10.1186/s12964-017-0178-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shaiya C Robinson
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada
| | - Kristina Klobucar
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada.,Current address: Department of Biochemistry and Biomedical Sciences, Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, L8N 3Z5, ON, Canada
| | - Christina C Pierre
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada.,Current address: Department of Life Science, University of the West Indies at St. Augustine, St. Augustine, Trinidad and Tobago
| | - Amna Ansari
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada
| | - Svetlana Zhenilo
- Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation, 117312
| | - Egor Prokhortchouk
- Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation, 117312
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, L8S 4K1, ON, Canada.
| |
Collapse
|
31
|
Bassey-Archibong BI, Rayner LGA, Hercules SM, Aarts CW, Dvorkin-Gheva A, Bramson JL, Hassell JA, Daniel JM. Kaiso depletion attenuates the growth and survival of triple negative breast cancer cells. Cell Death Dis 2017; 8:e2689. [PMID: 28333150 PMCID: PMC5386582 DOI: 10.1038/cddis.2017.92] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 12/22/2022]
Abstract
Triple negative breast cancers (TNBC) are highly aggressive and lack specific targeted therapies. Recent studies have reported high expression of the transcription factor Kaiso in triple negative tumors, and this correlates with their increased aggressiveness. However, little is known about the clinical relevance of Kaiso in the growth and survival of TNBCs. Herein, we report that Kaiso depletion attenuates TNBC cell proliferation, and delays tumor onset in mice xenografted with the aggressive MDA-231 breast tumor cells. We further demonstrate that Kaiso depletion attenuates the survival of TNBC cells and increases their propensity for apoptotic-mediated cell death. Notably, Kaiso depletion downregulates BRCA1 expression in TNBC cells expressing mutant-p53 and we found that high Kaiso and BRCA1 expression correlates with a poor overall survival in breast cancer patients. Collectively, our findings reveal a role for Kaiso in the proliferation and survival of TNBC cells, and suggest a relevant role for Kaiso in the prognosis and treatment of TNBCs.
Collapse
Affiliation(s)
| | - Lyndsay G A Rayner
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Shawn M Hercules
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Craig W Aarts
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Jonathan L Bramson
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - John A Hassell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Juliet M Daniel
- Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
32
|
Pozner A, Terooatea TW, Buck-Koehntop BA. Cell-specific Kaiso (ZBTB33) Regulation of Cell Cycle through Cyclin D1 and Cyclin E1. J Biol Chem 2016; 291:24538-24550. [PMID: 27694442 DOI: 10.1074/jbc.m116.746370] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Indexed: 12/11/2022] Open
Abstract
The correlation between aberrant DNA methylation with cancer promotion and progression has prompted an interest in discerning the associated regulatory mechanisms. Kaiso (ZBTB33) is a specialized transcription factor that selectively recognizes methylated CpG-containing sites as well as a sequence-specific DNA target. Increasing reports link ZBTB33 overexpression and transcriptional activities with metastatic potential and poor prognosis in cancer, although there is little mechanistic insight into how cells harness ZBTB33 transcriptional capabilities to promote and progress disease. Here we report mechanistic details for how ZBTB33 mediates cell-specific cell cycle regulation. By utilizing ZBTB33 depletion and overexpression studies, it was determined that in HeLa cells ZBTB33 directly occupies the promoters of cyclin D1 and cyclin E1, inducing proliferation by promoting retinoblastoma phosphorylation and allowing for E2F transcriptional activity that accelerates G1- to S-phase transition. Conversely, in HEK293 cells ZBTB33 indirectly regulates cyclin E abundance resulting in reduced retinoblastoma phosphorylation, decreased E2F activity, and decelerated G1 transition. Thus, we identified a novel mechanism by which ZBTB33 mediates the cyclin D1/cyclin E1/RB1/E2F pathway, controlling passage through the G1 restriction point and accelerating cancer cell proliferation.
Collapse
Affiliation(s)
- Amir Pozner
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | - Tommy W Terooatea
- From the Department of Chemistry, University of Utah, Salt Lake City, Utah 84112
| | | |
Collapse
|
33
|
Abstract
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Collapse
Affiliation(s)
- Jayu Jen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China
| | - Yi-Ching Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China. .,Department of Basic Medical Sciences, College of Medicine, National Cheng Kung University, No.1, University Road, Tainan, 70101, Taiwan, Republic of China.
| |
Collapse
|