1
|
Parsons L, Chen A, Bertus B, Beatty C, Stashower J, Tomboc P, Brooke S, Zinn Z. Topical Trametinib for Agminated Spitz Nevi Harboring HRAS Mutation. Pediatr Dermatol 2025. [PMID: 39971340 DOI: 10.1111/pde.15903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/02/2025] [Accepted: 02/09/2025] [Indexed: 02/21/2025]
Abstract
The treatment of agminated Spitz nevi can be challenging due to the potential for disfigurement in cosmetically sensitive areas. We report the case of a pediatric patient with progressive agminated Spitz nevi arising from a nevus spilus on the face with an associated pathogenic HRAS p.G13R mutation revealed on next-generation sequencing (NGS). The patient was treated with compounded topical trametinib 1% cream and demonstrated significant clinical improvement following 12 weeks of twice-daily treatment. Our case highlights the potential role of MEK inhibition as a targeted, non-surgical treatment for HRAS-mutated agminated Spitz nevi and adds to the growing understanding of their genetic etiology.
Collapse
Affiliation(s)
- Lauren Parsons
- West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Alice Chen
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Brooke Bertus
- Department of Dermatology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Colleen Beatty
- Department of Dermatology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Julian Stashower
- Department of Dermatology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Patrick Tomboc
- Department of Pediatrics- Pediatric Blood & Cancer Center, West Virginia University, Morgantown, West Virginia, USA
| | - Sebastian Brooke
- Division of Plastic Surgery, West Virginia University, Morgantown, West Virginia, USA
| | - Zachary Zinn
- Department of Dermatology, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| |
Collapse
|
2
|
Jeon HM, Noh HS, Jeon MG, Park JH, Lee YS, Seo G, Cheon YH, Kim M, Han MK, Park JY, Lee SI. The HRAS-binding C2 domain of PLCη2 suppresses tumor-like synoviocytes and experimental arthritis in rheumatoid arthritis. Exp Mol Med 2025; 57:335-348. [PMID: 39894825 PMCID: PMC11873285 DOI: 10.1038/s12276-025-01393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025] Open
Abstract
Fibroblast-like synoviocytes (FLSs), which are stromal cells that play key roles in rheumatoid arthritis (RA) pathophysiology, are characterized by a tumor-like phenotype and immunostimulatory actions. C2 domains in various proteins play roles in intracellular signaling and altering cellular characteristics, and some C2 domain-containing proteins exacerbate or alleviate certain malignant or inflammatory diseases. However, the roles of C2 domains in regulating the functions of RA FLSs remain unclear. Here we performed functional C2 domainomics with 144 C2 domain-containing viral vectors and identified the C2 domain of PLCη2 as a key regulator of RA FLSs. In mice, overexpressing PLCη2 or only its C2 domain PLCη2 (PLCη2_C2) diminished the proliferation, migration, invasion and inflammatory responses of RA FLSs, mitigating RA pathology; the absence of PLCη2 amplified these proinflammatory and destructive processes in RA FLSs in vivo. Mechanistically, PLCη2 and PLCη2_C2 participate in the pathological signaling of RA FLSs in a calcium-independent manner through protein-protein interactions. Specifically, PLCη2_C2 disrupted HRAS-RAF1 interactions, suppressing downstream signaling pathways, including the NF-κB, JAK-STAT and MAPK pathways. Collectively, these findings establish PLCη2 and PLCη2_C2 as novel inhibitory regulators in RA, suggesting promising therapeutic avenues for addressing FLS-driven disease mechanisms.
Collapse
Affiliation(s)
- Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hae Sook Noh
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Min-Gyu Jeon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Jin-Ho Park
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Young-Sun Lee
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea
| | - Gyunghwa Seo
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea
| | - Yun-Hong Cheon
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Mingyo Kim
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, South Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, South Korea.
| | - Sang-Il Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Medical Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea.
| |
Collapse
|
3
|
Lim ES, Lee SE, Park MJ, Han DH, Lee HB, Ryu B, Kim EY, Park SP. Piperine improves the quality of porcine oocytes by reducing oxidative stress. Free Radic Biol Med 2024; 213:1-10. [PMID: 38159890 DOI: 10.1016/j.freeradbiomed.2023.12.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/08/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Oxidative stress caused by light and high temperature arises during in vitro maturation (IVM), resulting in low-quality embryos compared with those obtained in vivo. To overcome this problem, we investigated the influence of piperine (PIP) treatment during maturation of porcine oocytes on subsequent embryo development in vitro. Porcine oocytes were cultured in IVM medium supplemented with 0, 50, 100, 200, or 400 μM PIP. After parthenogenetic activation, the blastocyst (BL) formation was significantly higher and the apoptosis rate was significantly lower using 200 μM PIP-treated oocytes (200 PIP). In the 200 PIP group, the level of reactive oxygen species at the metaphase II stage was decreased, accompanied by an increased level of glutathione and increased expression of antioxidant processes (Nrf2, CAT, HO-1, SOD1, and SOD2). Consistently, chromosome misalignment and aberrant spindle organization were alleviated and phosphorylated p44/42 mitogen-activated protein kinase activity was increased in the 200 PIP group. Expression of development-related (CDX2, NANOG, POU5F1, and SOX2), anti-apoptotic (BCL2L1 and BIRC5), and pro-apoptotic (BAK, FAS, and CASP3) processes was altered in the 200 PIP group. Ultimately, embryo development was improved in the 200 PIP group following somatic cell nuclear transfer. These findings suggest that PIP improves the quality of porcine oocytes by reducing oxidative stress, which inevitably arises via IVM. In-depth mechanistic studies of porcine oocytes will improve the efficiencies of assisted reproductive technologies.
Collapse
Affiliation(s)
- Eun-Seo Lim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Seung-Eun Lee
- Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Cronex Co., 110 Hwangtalli-gil, Gangnae-myeon, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 28174, South Korea
| | - Min-Jee Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Dong-Hun Han
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Han-Bi Lee
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Bokyeong Ryu
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea
| | - Eun-Young Kim
- Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea
| | - Se-Pill Park
- Stem Cell Research Center, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Department of Bio Medical Informatics, College of Applied Life Sciences, Jeju National University, 102 Jejudaehak-ro, Jeju, Jeju Special Self-Governing Province, 63243, South Korea; Mirae Cell Bio, 1502 isbiz-tower 147, Seongsui-ro, Seongdong-gu, Seoul, 04795, South Korea.
| |
Collapse
|
4
|
Zheng X, Chen L, Chen T, Cao M, Zhang B, Yuan C, Zhao Z, Li C, Zhou X. The Mechanisms of BDNF Promoting the Proliferation of Porcine Follicular Granulosa Cells: Role of miR-127 and Involvement of the MAPK-ERK1/2 Pathway. Animals (Basel) 2023; 13:ani13061115. [PMID: 36978655 PMCID: PMC10044701 DOI: 10.3390/ani13061115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
As a member of the neurotrophic family, brain-derived neurotrophic factor (BDNF) provides a key link in the physiological process of mammalian ovarian follicle development, in addition to its functions in the nervous system. The emphasis of this study lay in the impact of BDNF on the proliferation of porcine follicular granulosa cells (GCs) in vitro. BDNF and tyrosine kinase B (TrkB, receptor of BDNF) were detected in porcine follicular GCs. Additionally, cell viability significantly increased during the culture of porcine GCs with BDNF (100 ng/mL) in vitro. However, BDNF knockdown in GCs decreased cell viability and S-phase cells proportion-and BDNF simultaneously regulated the expression of genes linked with cell proliferation (CCND1, p21 and Bcl2) and apoptosis (Bax). Then, the results of the receptor blocking experiment showed that BDNF promoted GC proliferation via TrkB. The high-throughput sequencing showed that BDNF also regulated the expression profiles of miRNAs in GCs. The differential expression profiles were obtained by miRNA sequencing after BDNF (100 ng/mL) treatment with GCs. The sequencing results showed that, after BDNF treatment, 72 significant differentially-expressed miRNAs were detected-5 of which were related to cell process and proliferation signaling pathways confirmed by RT-PCR. Furthermore, studies showed that BDNF promoted GCs' proliferation by increasing the expression of CCND1, downregulating miR-127 and activating the ERK1/2 signal pathway. Moreover, BDNF indirectly activated the ERK1/2 signal pathway by downregulating miR-127. In conclusion, BDNF promoted porcine GC proliferation by increasing CCND1 expression, downregulating miR-127 and stimulating the MAPK-ERK1/2 signaling cascade.
Collapse
Affiliation(s)
- Xue Zheng
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
- College of Biological and Pharmaceutical Engineering, Jilin Agricultural Science and Technology University, Jilin 132101, China
| | - Lu Chen
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Tong Chen
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Maosheng Cao
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Boqi Zhang
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chenfeng Yuan
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Zijiao Zhao
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Chunjin Li
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| | - Xu Zhou
- Laboratory for Regulation of Reproduction, College of Animal Sciences, Jilin University, Changchun 130062, China
| |
Collapse
|
5
|
Liu J, Zhou Z, Jiang Y, Lin Y, Yang Y, Tian C, Liu J, Lin H, Huang B. EPHA3 Could Be a Novel Prognosis Biomarker and Correlates with Immune Infiltrates in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15030621. [PMID: 36765579 PMCID: PMC9913674 DOI: 10.3390/cancers15030621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/02/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To assess the mechanism of EPH receptor A3 (EPHA3) and its potential value for immunotherapy in BLCA. MATERIALS AND METHODS The Cancer Genome Atlas (TCGA) bladder cancer (BLCA) database and the Gene Expression Omnibus (GEO) database were used for assessing whether EHPA3 could be used to predict BLCA prognosis. This work carried out in vitro and in vivo assays for exploring how EPHA3 affected the biological behaviors. The downstream pathway was explored using a Western blotting technique. The CIBERSORT, ESTIMATE, TIMER, and TIDE tools were used to predict the immunotherapy value of EPHA3 in BLCA. RESULTS EPHA3 was poorly expressed in BLCA (p < 0.05), its high expression is related to a good survival prognosis (p = 0.027 and p = 0.0275), and it has a good predictive ability for the histologic grade and status of BLCA (area under curve = 0.787 and 0.904). Overexpressed EPHA3 could inhibit BLCA cell biological behaviors, and it be associated with the downregulation of the Ras/pERK1/2 pathway. EPHA3 was correlated with several immune-infiltrating cells and the corresponding marker genes. CONCLUSIONS EPHA3 could be regarded as an acceptable anti-cancer biomarker in BLCA. EPHA3 plays an inhibiting role in BLCA, and it could be the candidate immunotherapeutic target for BLCA.
Collapse
Affiliation(s)
- Junpeng Liu
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Zewen Zhou
- Department of Urology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Yifan Jiang
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Yuzhao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Yunzhi Yang
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Chongjiang Tian
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
| | - Jinwen Liu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Hao Lin
- Department of Urology, The Second Affiliated Hospital of Shantou University, Medical College, Shantou 515041, China
- Correspondence: (H.L.); (B.H.); Tel.: +86-1355649460 (H.L.); +86-13539885017 (B.H.)
| | - Bin Huang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
- Correspondence: (H.L.); (B.H.); Tel.: +86-1355649460 (H.L.); +86-13539885017 (B.H.)
| |
Collapse
|
6
|
Yang XC, Wu XL, Li WH, Wu XJ, Shen QY, Li YX, Peng S, Hua JL. OCT6 inhibits differentiation of porcine-induced pluripotent stem cells through MAPK and PI3K signaling regulation. Zool Res 2022; 43:911-922. [PMID: 36052561 PMCID: PMC9700490 DOI: 10.24272/j.issn.2095-8137.2022.220] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/01/2022] [Indexed: 08/18/2023] Open
Abstract
As a transcription factor of the Pit-Oct-Unc (POU) domain family, octamer-binding transcription factor 6 ( OCT6) participates in various aspects of stem cell development and differentiation. At present, however, its role in porcine-induced pluripotent stem cells (piPSCs) remains unclear. Here, we explored the function of OCT6 in piPSCs. We found that piPSCs overexpressing OCT6 maintained colony morphology and pluripotency under differentiation conditions, with a similar gene expression pattern to that of non-differentiated piPSCs. Functional analysis revealed that OCT6 attenuated the adverse effects of extracellular signal-regulated kinase (ERK) signaling pathway inhibition on piPSC pluripotency by activating phosphatidylinositol 3-kinase-protein kinase B (PI3K-AKT) signaling activity. Our research sheds new light on the mechanism by which OCT6 promotes PSC maintenance.
Collapse
Affiliation(s)
- Xin-Chun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Long Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Wen-Hao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiao-Jie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Qiao-Yan Shen
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yun-Xiang Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Sha Peng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jin-Lian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A & F University, Yangling, Shaanxi 712100, China. E-mail:
| |
Collapse
|
7
|
TTYH3 Modulates Bladder Cancer Proliferation and Metastasis via FGFR1/H-Ras/A-Raf/MEK/ERK Pathway. Int J Mol Sci 2022; 23:ijms231810496. [PMID: 36142409 PMCID: PMC9501546 DOI: 10.3390/ijms231810496] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/31/2022] [Accepted: 09/07/2022] [Indexed: 12/09/2022] Open
Abstract
Tweety family member 3 (TTYH3) is a calcium-activated chloride channel with a non-pore-forming structure that controls cell volume and signal transduction. We investigated the role of TTYH3 as a cancer-promoting factor in bladder cancer. The mRNA expression of TTYH3 in bladder cancer patients was investigated using various bioinformatics databases. The results demonstrated that the increasingly greater expression of TTYH3 increasingly worsened the prognosis of patients with bladder cancer. TTYH3 knockdown bladder cancer cell lines were constructed by their various cancer properties measured. TTYH3 knockdown significantly reduced cell proliferation and sphere formation. Cell migration and invasion were also significantly reduced in knockdown bladder cancer cells, compared to normal bladder cancer cells. The knockdown of TTYH3 led to the downregulation of H-Ras/A-Raf/MEK/ERK signaling by inhibiting fibroblast growth factor receptor 1 (FGFR1) phosphorylation. This signaling pathway also attenuated the expression of c-Jun and c-Fos. The findings implicate TTYH3 as a potential factor regulating the properties of bladder cancer and as a therapeutic target.
Collapse
|
8
|
Wurtzel JGT, Lazar S, Sikder S, Cai KQ, Astsaturov I, Weyrich AS, Rowley JW, Goldfinger LE. Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLoS One 2021; 16:e0261633. [PMID: 34936674 PMCID: PMC8694476 DOI: 10.1371/journal.pone.0261633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
We investigated the contributions of platelet microRNAs (miRNAs) to the rate of growth and regulation of gene expression in primary ectopic tumors using mouse models. We previously identified an inhibitory role for platelets in solid tumor growth, mediated by tumor infiltration of platelet microvesicles (microparticles) which are enriched in platelet-derived miRNAs. To investigate the specific roles of platelet miRNAs in tumor growth models, we implanted pancreatic ductal adenocarcinoma cells as a bolus into mice with megakaryocyte-/platelet-specific depletion of mature miRNAs. We observed an ~50% increase in the rate of growth of ectopic primary tumors in these mice compared to controls including at early stages, associated with reduced apoptosis in the tumors, in particular in tumor cells associated with platelet microvesicles-which were depleted of platelet-enriched miRNAs-demonstrating a specific role for platelet miRNAs in modulation of primary tumor growth. Differential expression RNA sequencing of tumor cells isolated from advanced primary tumors revealed a broad cohort of mRNAs modulated in the tumor cells as a function of host platelet miRNAs. Altered genes comprised 548 up-regulated transcripts and 43 down-regulated transcripts, mostly mRNAs altogether spanning a variety of growth signaling pathways-notably pathways related to epithelial-mesenchymal transition-in tumor cells from platelet miRNA-deleted mice compared with those from control mice. Tumors in platelet miRNA-depleted mice showed more sarcomatoid growth and more advanced tumor grade, indicating roles for host platelet miRNAs in tumor plasticity. We further validated increased protein expression of selected genes associated with increased cognate mRNAs in the tumors due to platelet miRNA depletion in the host animals, providing proof of principle of widespread effects of platelet miRNAs on tumor cell functional gene expression in primary tumors in vivo. Together, these data demonstrate that platelet-derived miRNAs modulate solid tumor growth in vivo by broad-spectrum restructuring of the tumor cell transcriptome.
Collapse
Affiliation(s)
- Jeremy G. T. Wurtzel
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sophia Lazar
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Sonali Sikder
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Kathy Q. Cai
- Cancer Biology Program and Histopathology Facility, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Igor Astsaturov
- Molecular Therapeutics Program and The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Andrew S. Weyrich
- Molecular Medicine Program, Pathology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Jesse W. Rowley
- Molecular Medicine Program, Pulmonary Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence E. Goldfinger
- Division of Hematology, Department of Medicine, Cardeza Center for Hemostasis, Thrombosis, and Vascular Biology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States of America
| |
Collapse
|
9
|
Research on the Mechanism of Guizhi to Treat Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking Technology. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8141075. [PMID: 34873575 PMCID: PMC8643239 DOI: 10.1155/2021/8141075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022]
Abstract
Objective Nephrotic syndrome (NS) is a common glomerular disease caused by a variety of causes and is the second most common kidney disease. Guizhi is the key drug of Wulingsan in the treatment of NS. However, the action mechanism remains unclear. In this study, network pharmacology and molecular docking were used to explore the underlying molecular mechanism of Guizhi in treating NS. Methods The active components and targets of Guizhi were screened by the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), Hitpick, SEA, and Swiss Target Prediction database. The targets related to NS were obtained from the DisGeNET, GeneCards, and OMIM database, and the intersected targets were obtained by Venny2.1.0. Then, active component-target network was constructed using Cytoscape software. And the protein-protein interaction (PPI) network was drawn through the String database and Cytoscape software. Next, Gene Ontology (GO) and pathway enrichment analyses of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed by DAVID database. And overall network was constructed through Cytoscape. Finally, molecular docking was conducted using Autodock Vina. Results According to the screening criteria, a total of 8 active compounds and 317 potential targets of Guizhi were chosen. Through the online database, 2125 NS-related targets were identified, and 93 overlapping targets were obtained. In active component-target network, beta-sitosterol, sitosterol, cinnamaldehyde, and peroxyergosterol were the important active components. In PPI network, VEGFA, MAPK3, SRC, PTGS2, and MAPK8 were the core targets. GO and KEGG analyses showed that the main pathways of Guizhi in treating NS involved VEGF, Toll-like receptor, and MAPK signaling pathway. In molecular docking, the active compounds of Guizhi had good affinity with the core targets. Conclusions In this study, we preliminarily predicted the main active components, targets, and signaling pathways of Guizhi to treat NS, which could provide new ideas for further research on the protective mechanism and clinical application of Guizhi against NS.
Collapse
|
10
|
Yuan J, Ju Q, Zhu J, Jiang Y, Yang X, Liu X, Ma J, Sun C, Shi J. RASSF9 promotes NSCLC cell proliferation by activating the MEK/ERK axis. Cell Death Discov 2021; 7:199. [PMID: 34341331 PMCID: PMC8329231 DOI: 10.1038/s41420-021-00583-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
The RAS-associated domain family 9 (RASSF9), a RAS-associated domain family gene, is expressed in a variety of tissues. However, its roles in tumorigenesis, particularly in non-small cell lung cancer (NSCLC), are still not understood well. In the present study, we aimed to examine the potential roles of RASSF9 in NSCLC and the underlying mechanisms. Our data showed that RASSF9 expression was upregulated in NSCLC tissues and cell lines. Increased expression of RASSF9 promotes NSCLC cell proliferation. On the contrary, knockdown of RASSF9 represses cell proliferation. Moreover, the effects of RASSF9 on NSCLC cell proliferation were further confirmed in vivo by using a subcutaneous tumor model. Mechanistically, pharmacological intervention studies revealed that the MEK/ERK axis is targeted by RASSF9 for transducing its regulatory roles on NSCLC cell proliferation. Collectively, our data indicate that RASSF9 plays a key role in tumorigenesis of NSCLC by stimulating tumor cell proliferation, which relies on activation of the MEK/ERK axis. Thus, RASSF9 might be a druggable target for developing novel agents for treating NSCLC.
Collapse
Affiliation(s)
- Jun Yuan
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Qianqian Ju
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.,Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jun Zhu
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yun Jiang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Xuechao Yang
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoyu Liu
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jinyu Ma
- Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Cheng Sun
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China. .,Key Laboratory for Neuroregeneration of Jiangsu Province and Ministry of Education, Nantong University, Nantong, China. .,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China.
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, and Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China.
| |
Collapse
|
11
|
40 Years of RAS-A Historic Overview. Genes (Basel) 2021; 12:genes12050681. [PMID: 34062774 PMCID: PMC8147265 DOI: 10.3390/genes12050681] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
It has been over forty years since the isolation of the first human oncogene (HRAS), a crucial milestone in cancer research made possible through the combined efforts of a few selected research groups at the beginning of the 1980s. Those initial discoveries led to a quantitative leap in our understanding of cancer biology and set up the onset of the field of molecular oncology. The following four decades of RAS research have produced a huge pool of new knowledge about the RAS family of small GTPases, including how they regulate signaling pathways controlling many cellular physiological processes, or how oncogenic mutations trigger pathological conditions, including developmental syndromes or many cancer types. However, despite the extensive body of available basic knowledge, specific effective treatments for RAS-driven cancers are still lacking. Hopefully, recent advances involving the discovery of novel pockets on the RAS surface as well as highly specific small-molecule inhibitors able to block its interaction with effectors and/or activators may lead to the development of new, effective treatments for cancer. This review intends to provide a quick, summarized historical overview of the main milestones in RAS research spanning from the initial discovery of the viral RAS oncogenes in rodent tumors to the latest attempts at targeting RAS oncogenes in various human cancers.
Collapse
|
12
|
Shu L, Wang D, Saba NF, Chen ZG. A Historic Perspective and Overview of H-Ras Structure, Oncogenicity, and Targeting. Mol Cancer Ther 2021; 19:999-1007. [PMID: 32241873 DOI: 10.1158/1535-7163.mct-19-0660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/02/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
H-Ras is a unique isoform of the Ras GTPase family, one of the most prominently mutated oncogene families across the cancer landscape. Relative to other isoforms, though, mutations of H-Ras account for the smallest proportion of mutant Ras cancers. Yet, in recent years, there have been renewed efforts to study this isoform, especially as certain H-Ras-driven cancers, like those of the head and neck, have become more prominent. Important advances have therefore been made not only in the understanding of H-Ras structural biology but also in approaches designed to inhibit and impair its signaling activity. In this review, we outline historic and present initiatives to elucidate the mechanisms of H-Ras-dependent tumorigenesis as well as highlight ongoing developments in the quest to target this critical oncogene.
Collapse
Affiliation(s)
- Lihua Shu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
13
|
Rohwedder A, Knipp S, Roberts LD, Ladbury JE. Composition of receptor tyrosine kinase-mediated lipid micro-domains controlled by adaptor protein interaction. Sci Rep 2021; 11:6160. [PMID: 33731760 PMCID: PMC7969938 DOI: 10.1038/s41598-021-85578-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/03/2021] [Indexed: 11/25/2022] Open
Abstract
Receptor tyrosine kinases (RTKs) are highly regulated, single pass transmembrane proteins, fundamental to cellular function and survival. Aberrancies in regulation lead to corruption of signal transduction and a range of pathological outcomes. Although control mechanisms associated with the receptors and their ligands are well understood, little is known with respect to the impact of lipid/lipid and lipid/protein interactions in the proximal plasma membrane environment. Given that the transmembrane regions of RTKs change in response to extracellular ligand binding, the lipid interactions have important consequences in influencing signal transduction. Fibroblast growth factor receptor 2 (FGFR2) is a highly regulated RTK, including under basal conditions. Binding of the adaptor protein, growth factor receptor-bound protein 2 (GRB2) to FGFR2 prevents full activation and recruitment of downstream signalling effector proteins in the absence of extracellular stimulation. Here we demonstrate that the FGFR2-GRB2 complex is sustained in a defined lipid environment. Dissociation of GRB2 from this complex due to ligand binding, or reduced GRB2 expression, facilitates the dispersion of FGFR2 into detergent-resistant membrane (DRM) micro-domains. This modification of the plasma membrane proximal to FGFR2 provides a further regulatory checkpoint which controls receptor degradation, recycling and recruitment of intracellular signalling proteins.
Collapse
Affiliation(s)
- Arndt Rohwedder
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Sabine Knipp
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Lee D Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds, Leeds, LS29JT, UK
| | - John E Ladbury
- School of Molecular and Cellular Biology, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
14
|
Oh HH, Joo YE. Novel biomarkers for the diagnosis and prognosis of colorectal cancer. Intest Res 2020; 18:168-183. [PMID: 31766836 PMCID: PMC7206347 DOI: 10.5217/ir.2019.00080] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/05/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is among the most common malignancies and remains a major cause of cancer-related death worldwide. Despite recent advances in surgical and multimodal therapies, the overall survival of advanced CRC patients remains very low. Cancer progression, including invasion and metastasis, is a major cause of death among CRC patients. The underlying mechanisms of action resulting in cancer progression are beginning to unravel. The reported molecular and biochemical mechanisms that might contribute to the phenotypic changes in favor of carcinogenesis include apoptosis inhibition, enhanced tumor cell proliferation, increased invasiveness, cell adhesion perturbations, angiogenesis promotion, and immune surveillance inhibition. These events may contribute to the development and progression of cancer. A biomarker is a molecule that can be detected in tissue, blood, or stool samples to allow the identification of pathological conditions such as cancer. Thus, it would be beneficial to identify reliable and practical molecular biomarkers that aid in the diagnostic and therapeutic processes of CRC. Recent research has targeted the development of biomarkers that aid in the early diagnosis and prognostic stratification of CRC. Despite that, the identification of diagnostic, prognostic, and/or predictive biomarkers remains challenging, and previously identified biomarkers might be insufficient to be clinically applicable or offer high patient acceptability. Here, we discuss recent advances in the development of molecular biomarkers for their potential usefulness in early and less-invasive diagnosis, treatment, and follow-up of CRC.
Collapse
Affiliation(s)
- Hyung-Hoon Oh
- Department of Internal Medicine, 3rd Fleet Medical Corps, Republic of Korea Navy, Yeongam, Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
15
|
Vacante M, Borzì AM, Basile F, Biondi A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J Clin Cases 2018; 6:869-881. [PMID: 30568941 PMCID: PMC6288499 DOI: 10.12998/wjcc.v6.i15.869] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/30/2018] [Accepted: 11/07/2018] [Indexed: 02/05/2023] Open
Abstract
Colorectal cancer (CRC) is a major cause of cancer death worldwide. CRC has poor prognosis and there is a crucial need for new diagnostic and prognostic biomarkers to avoid CRC-related deaths. CRC can be considered a sporadic disease in most cases (75%-80%), but it has been suggested that crosstalk between gene mutations (i.e., mutations of BRAF, KRAS, and p53 as well as microsatellite instability) and epigenetic alterations (i.e., DNA methylation of CpG island promoter regions) could play a pivotal role in cancer development. A number of studies have focused on molecular testing to guide targeted and conventional treatments for patients with CRC, sometimes with contrasting results. Some of the most useful innovations in the management of CRC include the possibility to detect the absence of KRAS, BRAF, NRAS and PIK3CA gene mutations with the subsequent choice to administer targeted adjuvant therapy with anti-epidermal growth factor receptor antibodies. Moreover, CRC patients can benefit from tests for microsatellite instability and for the detection of loss of heterozygosity of chromosome 18q that can be helpful in guiding therapeutic decisions as regards the administration of 5-FU. The aim of this review was to summarize the most recent evidence on the possible use of genetic or epigenetic biomarkers for diagnosis, prognosis and response to therapy in CRC patients.
Collapse
Affiliation(s)
- Marco Vacante
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Antonio Maria Borzì
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Francesco Basile
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| | - Antonio Biondi
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania 95123, Italy
| |
Collapse
|
16
|
Abstract
How do Ras isoforms attain oncogenic specificity at the membrane? Oncogenic KRas, HRas, and NRas (K-Ras, H-Ras, and N-Ras) differentially populate distinct cancers. How they selectively activate effectors and why is KRas4B the most prevalent are highly significant questions. Here, we consider determinants that may bias isoform-specific effector activation and signaling at the membrane. We merge functional data with a conformational view to provide mechanistic insight. Cell-specific expression levels, pathway cross-talk, and distinct interactions are the key, but conformational trends can modulate selectivity. There are two major pathways in oncogenic Ras-driven proliferation: MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. All membrane-anchored, proximally located, oncogenic Ras isoforms can promote Raf dimerization and fully activate MAPK signaling. So why the differential statistics of oncogenic isoforms in distinct cancers and what makes KRas so highly oncogenic? Many cell-specific factors may be at play, including higher KRAS mRNA levels. As a key factor, we suggest that because only KRas4B binds calmodulin, only KRas can fully activate PI3Kα/Akt signaling. We propose that full activation of both MAPK and PI3Kα/Akt proliferative pathways by oncogenic KRas4B-but not by HRas or NRas-may help explain why the KRas4B isoform is especially highly populated in certain cancers. We further discuss pharmacologic implications. Cancer Res; 78(3); 593-602. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland. .,Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
17
|
Nussinov R, Tsai CJ, Jang H. Oncogenic Ras Isoforms Signaling Specificity at the Membrane. Cancer Res 2018; 78:593-602. [PMID: 29273632 PMCID: PMC5811325 DOI: 10.1158/0008-5472.can-17-2727] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/13/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
Abstract
How do Ras isoforms attain oncogenic specificity at the membrane? Oncogenic KRas, HRas, and NRas (K-Ras, H-Ras, and N-Ras) differentially populate distinct cancers. How they selectively activate effectors and why is KRas4B the most prevalent are highly significant questions. Here, we consider determinants that may bias isoform-specific effector activation and signaling at the membrane. We merge functional data with a conformational view to provide mechanistic insight. Cell-specific expression levels, pathway cross-talk, and distinct interactions are the key, but conformational trends can modulate selectivity. There are two major pathways in oncogenic Ras-driven proliferation: MAPK (Raf/MEK/ERK) and PI3Kα/Akt/mTOR. All membrane-anchored, proximally located, oncogenic Ras isoforms can promote Raf dimerization and fully activate MAPK signaling. So why the differential statistics of oncogenic isoforms in distinct cancers and what makes KRas so highly oncogenic? Many cell-specific factors may be at play, including higher KRAS mRNA levels. As a key factor, we suggest that because only KRas4B binds calmodulin, only KRas can fully activate PI3Kα/Akt signaling. We propose that full activation of both MAPK and PI3Kα/Akt proliferative pathways by oncogenic KRas4B-but not by HRas or NRas-may help explain why the KRas4B isoform is especially highly populated in certain cancers. We further discuss pharmacologic implications. Cancer Res; 78(3); 593-602. ©2017 AACR.
Collapse
Affiliation(s)
- Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland.
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland
| |
Collapse
|
18
|
Shishina AK, Kovrigina EA, Galiakhmetov AR, Rathore R, Kovrigin EL. Study of Förster Resonance Energy Transfer to Lipid Domain Markers Ascertains Partitioning of Semisynthetic Lipidated N-Ras in Lipid Raft Nanodomains. Biochemistry 2018; 57:872-881. [PMID: 29280621 DOI: 10.1021/acs.biochem.7b01181] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cellular membranes are heterogeneous planar lipid bilayers displaying lateral phase separation with the nanometer-scale liquid-ordered phase (also known as "lipid rafts") surrounded by the liquid-disordered phase. Many membrane-associated proteins were found to permanently integrate into the lipid rafts, which is critical for their biological function. Isoforms H and N of Ras GTPase possess a unique ability to switch their lipid domain preference depending on the type of bound guanine nucleotide (GDP or GTP). This behavior, however, has never been demonstrated in vitro in model bilayers with recombinant proteins and therefore has been attributed to the action of binding of Ras to other proteins at the membrane surface. In this paper, we report the observation of the nucleotide-dependent switch of lipid domain preferences of the semisynthetic lipidated N-Ras in lipid raft vesicles in the absence of additional proteins. To detect segregation of Ras molecules in raft and disordered lipid domains, we measured Förster resonance energy transfer between the donor fluorophore, mant, attached to the protein-bound guanine nucleotides, and the acceptor, rhodamine-conjugated lipid, localized into the liquid-disordered domains. Herein, we established that N-Ras preferentially populated raft domains when bound to mant-GDP, while losing its preference for rafts when it was associated with a GTP mimic, mant-GppNHp. At the same time, the isolated lipidated C-terminal peptide of N-Ras was found to be localized outside of the liquid-ordered rafts, most likely in the bulk-disordered lipid. Substitution of the N-terminal G domain of N-Ras with a homologous G domain of H-Ras disrupted the nucleotide-dependent lipid domain switch.
Collapse
Affiliation(s)
- Anna K Shishina
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Elizaveta A Kovrigina
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Azamat R Galiakhmetov
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Rajendra Rathore
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| | - Evgenii L Kovrigin
- Chemistry Department, Marquette University , P.O. Box 1881, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
19
|
Concepts and advances in cancer therapeutic vulnerabilities in RAS membrane targeting. Semin Cancer Biol 2017; 54:121-130. [PMID: 29203271 DOI: 10.1016/j.semcancer.2017.11.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 11/30/2017] [Indexed: 01/05/2023]
Abstract
For decades oncogenic RAS proteins were considered undruggable due to a lack of accessible binding pockets on the protein surfaces. Seminal early research in RAS biology uncovered the basic paradigm of post-translational isoprenylation of RAS polypeptides, typically with covalent attachment of a farnesyl group, leading to isoprenyl-mediated RAS anchorage at the plasma membrane and signal initiation at those sites. However, the failure of farnesyltransferase inhibitors to translate to the clinic stymied anti-RAS therapy development. Over the past ten years, a more complete picture has emerged of RAS protein maturation, intracellular trafficking, and location, positioning and retention in subdomains at the plasma membrane, with a corresponding expansion in our understanding of how these properties of RAS contribute to signal outputs. Each of these aspects of RAS regulation presents a potential vulnerability in RAS function that may be exploited for therapeutic targeting, and inhibitors have been identified or developed that interfere with RAS for nearly all of them. This review will summarize current understanding of RAS membrane targeting with a focus on highlighting development and outcomes of inhibitors at each step.
Collapse
|
20
|
Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood 2017; 130:567-580. [PMID: 28500171 DOI: 10.1182/blood-2016-11-751099] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/08/2017] [Indexed: 12/13/2022] Open
Abstract
Platelet-derived microparticles (PMPs) are associated with enhancement of metastasis and poor cancer outcomes. Circulating PMPs transfer platelet microRNAs (miRNAs) to vascular cells. Solid tumor vasculature is highly permeable, allowing the possibility of PMP-tumor cell interaction. Here, we show that PMPs infiltrate solid tumors in humans and mice and transfer platelet-derived RNA, including miRNAs, to tumor cells in vivo and in vitro, resulting in tumor cell apoptosis. MiR-24 was a major species in this transfer. PMP transfusion inhibited growth of both lung and colon carcinoma ectopic tumors, whereas blockade of miR-24 in tumor cells accelerated tumor growth in vivo, and prevented tumor growth inhibition by PMPs. Conversely, Par4-deleted mice, which had reduced circulating microparticles (MPs), supported accelerated tumor growth which was halted by PMP transfusion. PMP targeting was associated with tumor cell apoptosis in vivo. We identified direct RNA targets of platelet-derived miR-24 in tumor cells, which included mitochondrial mt-Nd2, and Snora75, a noncoding small nucleolar RNA. These RNAs were suppressed in PMP-treated tumor cells, resulting in mitochondrial dysfunction and growth inhibition, in an miR-24-dependent manner. Thus, platelet-derived miRNAs transfer in vivo to tumor cells in solid tumors via infiltrating MPs, regulate tumor cell gene expression, and modulate tumor progression. These findings provide novel insight into mechanisms of horizontal RNA transfer and add multiple layers to the regulatory roles of miRNAs and PMPs in tumor progression. Plasma MP-mediated transfer of regulatory RNAs and modulation of gene expression may be a common feature with important outcomes in contexts of enhanced vascular permeability.
Collapse
|
21
|
Goldfinger LE, Michael JV. Regulation of Ras signaling and function by plasma membrane microdomains. Biosci Trends 2017; 11:23-40. [PMID: 28179601 DOI: 10.5582/bst.2016.01220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Together H-, N- and KRAS mutations are major contributors to ~30% of all human cancers. Thus, Ras inhibition remains an important anti-cancer strategy. The molecular mechanisms of isotypic Ras oncogenesis are still not completely understood. Monopharmacological therapeutics have not been successful in the clinic. These disappointing outcomes have led to attempts to target elements downstream of Ras, mainly targeting either the Phosphatidylinositol 3-Kinase (PI3K) or Mitogen-Activated Protein Kinase (MAPK) pathways. While several such approaches are moderately effective, recent efforts have focused on preclinical evaluation of combination therapies to improve efficacies. This review will detail current understanding of the contributions of plasma membrane microdomain targeting of Ras to mitogenic and tumorigenic signaling and tumor progression. Moreover, this review will outline novel approaches to target Ras in cancers, including targeting schemes for new drug development, as well as putative re-purposing of drugs in current use to take advantage of blunting Ras signaling by interfering with Ras plasma membrane microdomain targeting and retention.
Collapse
Affiliation(s)
- Lawrence E Goldfinger
- Department of Anatomy & Cell Biology and The Sol Sherry Thrombosis Research Center, Lewis Katz School of Medicine at Temple University, and Cancer Biology Program, Fox Chase Cancer Center
| | | |
Collapse
|