1
|
Guo J, Xue S, Wang X, Wang L, Wen SY. Emerging insights on the role of Elovl6 in human diseases: Therapeutic challenges and opportunities. Life Sci 2025; 361:123308. [PMID: 39675554 DOI: 10.1016/j.lfs.2024.123308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/19/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
ELOVL6, elongation-of-very-long-chain-fatty acids 6, a crucial enzyme in lipid metabolism, primarily responsible for the elongation of carbon chains of C12-C16 saturated fatty acids. It plays a significant role in various human diseases, particularly those associated with metabolic disorders related to fatty acid synthesis, such as insulin resistance, non-alcoholic fatty liver disease, cancer, and cardiovascular diseases. Emerging research also links ELOVL6 to kidney diseases, neurological conditions such as epilepsy, and pulmonary fibrosis. The enzyme's expression is regulated by various factors including diet, oxidative stress, and circadian rhythms. For instance, a high-carbohydrate diet can promote an increase in ELOVL6 expression. This abnormality leads to an accumulation of long-chain fatty acids and lipid deposition, ultimately resulting in pathological consequences across multiple systems in the body. As a biological target, ELOVL6 holds promise for diagnostic and therapeutic applications, with future research expected to uncover its mechanisms and therapeutic potential, paving the way for novel interventions in multiple disease areas. Here, the expression regulation and function of ELOVL6 in various human diseases are reviewed. This review underscores ELOVL6 as a significant therapeutic target for human diseases, with its potential for diagnostic and therapeutic applications anticipated to drive future research and enable innovative interventions in various pathological conditions.
Collapse
Affiliation(s)
- Jiao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Shulan Xue
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xiaohui Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Li Wang
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
2
|
Zwara A, Hellmann A, Czapiewska M, Korczynska J, Sztendel A, Mika A. The influence of cancer on the reprogramming of lipid metabolism in healthy thyroid tissues of patients with papillary thyroid carcinoma. Endocrine 2025; 87:273-280. [PMID: 39145825 PMCID: PMC11739254 DOI: 10.1007/s12020-024-03993-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Over the years we observed changes in the metabolism of glucose, amino acids, fatty acids (FA) and nucleotides in cancer cells in order to maintain their viability and proliferate. Moreover, as the latest data show, cancer also forces a complete change in the behavior of other tissues. For instance, fat-filled adipocytes are often found in the vicinity of invasive solid human tumors. We investigated the effects of papillary thyroid carcinoma (PTC) on the lipid metabolism of healthy tissue distant from the tumor. METHOD Thyroid tissue was collected from female patients immediately after surgical removal of the entire thyroid gland. Blood samples were collected from PTC patients and healthy volunteers. Real-time PCR assays were performed to analyze the expression of lipogenic genes and a broad panel of FA was determined using the gas chromatography-mass spectrometry method. RESULTS The concentration of lipids was higher in paratumor tissue than in healthy thyroid tissue (p = 0.005). The lipogenic genes tested were significantly increased in paratumor tissue compared to healthy tissue, especially enzymes related to the synthesis of very long-chain saturated and polyunsaturated FAs (VLCSFAs and PUFAs, respectively) (p < 0.001). The FA profile also showed increased levels of C22-C26, VLCSFAs and almost all PUFAs in paratumor tissue (p < 0.05). CONCLUSION Our study suggests that a restructuring of lipid metabolism occurs in the adjacent healthy thyroid gland and that the metabolism of VLCSFAs and PUFAs is higher in the paratumor tissue than in the distant tissue of the healthy thyroid gland.
Collapse
Affiliation(s)
- Agata Zwara
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of General, Endocrine and Transplant Surgery, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland.
| | - Monika Czapiewska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Justyna Korczynska
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Alicja Sztendel
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Adriana Mika
- Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Gdańsk, Poland
- Department of Pharmaceutical Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| |
Collapse
|
3
|
Mah CY, Nguyen ADT, Niijima T, Helm M, Dehairs J, Ryan FJ, Ryan N, Quek LE, Hoy AJ, Don AS, Mills IG, Swinnen JV, Lynn DJ, Nassar ZD, Butler LM. Peroxisomal β-oxidation enzyme, DECR2, regulates lipid metabolism and promotes treatment resistance in advanced prostate cancer. Br J Cancer 2024; 130:741-754. [PMID: 38216720 PMCID: PMC10912652 DOI: 10.1038/s41416-023-02557-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
BACKGROUND Peroxisomes are central metabolic organelles that have key roles in fatty acid homoeostasis. As prostate cancer (PCa) is particularly reliant on fatty acid metabolism, we explored the contribution of peroxisomal β-oxidation (perFAO) to PCa viability and therapy response. METHODS Bioinformatic analysis was performed on clinical transcriptomic datasets to identify the perFAO enzyme, 2,4-dienoyl CoA reductase 2 (DECR2) as a target gene of interest. Impact of DECR2 and perFAO inhibition via thioridazine was examined in vitro, in vivo, and in clinical prostate tumours cultured ex vivo. Transcriptomic and lipidomic profiling was used to determine the functional consequences of DECR2 inhibition in PCa. RESULTS DECR2 is upregulated in clinical PCa, most notably in metastatic castrate-resistant PCa (CRPC). Depletion of DECR2 significantly suppressed proliferation, migration, and 3D growth of a range of CRPC and therapy-resistant PCa cell lines, and inhibited LNCaP tumour growth and proliferation in vivo. DECR2 influences cell cycle progression and lipid metabolism to support tumour cell proliferation. Further, co-targeting of perFAO and standard-of-care androgen receptor inhibition enhanced suppression of PCa cell proliferation. CONCLUSION Our findings support a focus on perFAO, specifically DECR2, as a promising therapeutic target for CRPC and as a novel strategy to overcome lethal treatment resistance.
Collapse
Affiliation(s)
- Chui Yan Mah
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - An Dieu Trang Nguyen
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Takuto Niijima
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
| | - Madison Helm
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Jonas Dehairs
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium
| | - Feargal J Ryan
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Natalie Ryan
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| | - Lake-Ee Quek
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew J Hoy
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- School of Medical Sciences, Charles Perkins Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Ian G Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Johannes V Swinnen
- Department of Oncology, Laboratory of Lipid Metabolism and Cancer, KU Leuven, Leuven, Belgium
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA, Australia
| | - Zeyad D Nassar
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| | - Lisa M Butler
- South Australian Immunogenomics Cancer Institute and Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA, Australia.
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
| |
Collapse
|
4
|
Minami JK, Morrow D, Bayley NA, Fernandez EG, Salinas JJ, Tse C, Zhu H, Su B, Plawat R, Jones A, Sammarco A, Liau LM, Graeber TG, Williams KJ, Cloughesy TF, Dixon SJ, Bensinger SJ, Nathanson DA. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 2023; 41:1048-1060.e9. [PMID: 37236196 PMCID: PMC10330677 DOI: 10.1016/j.ccell.2023.05.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Malignant tumors exhibit heterogeneous metabolic reprogramming, hindering the identification of translatable vulnerabilities for metabolism-targeted therapy. How molecular alterations in tumors promote metabolic diversity and distinct targetable dependencies remains poorly defined. Here we create a resource consisting of lipidomic, transcriptomic, and genomic data from 156 molecularly diverse glioblastoma (GBM) tumors and derivative models. Through integrated analysis of the GBM lipidome with molecular datasets, we identify CDKN2A deletion remodels the GBM lipidome, notably redistributing oxidizable polyunsaturated fatty acids into distinct lipid compartments. Consequently, CDKN2A-deleted GBMs display higher lipid peroxidation, selectively priming tumors for ferroptosis. Together, this study presents a molecular and lipidomic resource of clinical and preclinical GBM specimens, which we leverage to detect a therapeutically exploitable link between a recurring molecular lesion and altered lipid metabolism in GBM.
Collapse
Affiliation(s)
- Jenna K Minami
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Danielle Morrow
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Elizabeth G Fernandez
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jennifer J Salinas
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Henan Zhu
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Baolong Su
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rhea Plawat
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Anthony Jones
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Alessandro Sammarco
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linda M Liau
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Kevin J Williams
- UCLA Lipidomics Core, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy F Cloughesy
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; UCLA Lipidomics Core, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, University of California Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
Istiqamah N, Matsuzaka T, Shimizu M, Motomura K, Ohno H, Hasebe S, Sharma R, Okajima Y, Matsuda E, Han SI, Mizunoe Y, Osaki Y, Aita Y, Suzuki H, Sone H, Takeuchi Y, Sekiya M, Yahagi N, Nakagawa Y, Shimano H. Identification of key microRNAs regulating ELOVL6 and glioblastoma tumorigenesis. BBA ADVANCES 2023; 3:100078. [PMID: 37082255 PMCID: PMC10074970 DOI: 10.1016/j.bbadva.2023.100078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ELOVL fatty acid elongase 6 (ELOVL6) controls cellular fatty acid (FA) composition by catalyzing the elongation of palmitate (C16:0) to stearate (C18:0) and palmitoleate (C16:1n-7) to vaccinate (C18:1n-7). Although the transcriptional regulation of ELOVL6 has been well studied, the post-transcriptional regulation of ELOVL6 is not fully understood. Therefore, this study aims to evaluate the role of microRNAs (miRNAs) in regulating human ELOVL6. Bioinformatic analysis identified five putative miRNAs: miR-135b-5p, miR-135a-5p, miR-125a-5p, miR-125b-5p, and miR-22-3p, which potentially bind ELOVL6 3'-untranslated region (UTR). Results from dual-luciferase assays revealed that these miRNAs downregulate ELOVL6 by directly interacting with the 3'-UTR of ELOVL6 mRNA. Moreover, miR-135b-5p and miR-135a-5p suppress cell proliferation and migration in glioblastoma multiforme cells by inhibiting ELOVL6 at the mRNA and protein levels. Taken together, our results provide novel regulatory mechanisms for ELOVL6 at the post-transcriptional level and identify potential candidates for the treatment of patients with glioblastoma multiforme.
Collapse
Affiliation(s)
- Nurani Istiqamah
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- Corresponding authors.
| | - Momo Shimizu
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kaori Motomura
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroshi Ohno
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shiho Hasebe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Rahul Sharma
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuka Okajima
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Erika Matsuda
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Song-Iee Han
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuhei Mizunoe
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Osaki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuichi Aita
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hiroaki Suzuki
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirohito Sone
- Department of Internal Medicine, Faculty of Medicine, Niigata University, Niigata, Japan
| | - Yoshinori Takeuchi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motohiro Sekiya
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Naoya Yahagi
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshimi Nakagawa
- Division of Complex Biosystem Research, Department of Research and Development, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo, Japan
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Corresponding authors.
| |
Collapse
|
6
|
Yoshida K, Morishima Y, Ano S, Sakurai H, Kuramoto K, Tsunoda Y, Yazaki K, Nakajima M, Sherpa MT, Matsuyama M, Kiwamoto T, Matsuno Y, Ishii Y, Hayashi A, Matsuzaka T, Shimano H, Hizawa N. ELOVL6 deficiency aggravates allergic airway inflammation through the ceramide-S1P pathway in mice. J Allergy Clin Immunol 2022; 151:1067-1080.e9. [PMID: 36592705 DOI: 10.1016/j.jaci.2022.12.808] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Elongation of very-long-chain fatty acids protein 6 (ELOVL6), an enzyme regulating elongation of saturated and monounsaturated fatty acids with C12 to C16 to those with C18, has been recently indicated to affect various immune and inflammatory responses; however, the precise process by which ELOVL6-related lipid dysregulation affects allergic airway inflammation is unclear. OBJECTIVES This study sought to evaluate the biological roles of ELOVL6 in allergic airway responses and investigate whether regulating lipid composition in the airways could be an alternative treatment for asthma. METHODS Expressions of ELOVL6 and other isoforms were examined in the airways of patients who are severely asthmatic and in mouse models of asthma. Wild-type and ELOVL6-deficient (Elovl6-/-) mice were analyzed for ovalbumin-induced, and also for house dust mite-induced, allergic airway inflammation by cell biological and biochemical approaches. RESULTS ELOVL6 expression was downregulated in the bronchial epithelium of patients who are severely asthmatic compared with controls. In asthmatic mice, ELOVL6 deficiency led to enhanced airway inflammation in which lymphocyte egress from lymph nodes was increased, and both type 2 and non-type 2 immune responses were upregulated. Lipidomic profiling revealed that the levels of palmitic acid, ceramides, and sphingosine-1-phosphate were higher in the lungs of ovalbumin-immunized Elovl6-/- mice compared with those of wild-type mice, while the aggravated airway inflammation was ameliorated by treatment with fumonisin B1 or DL-threo-dihydrosphingosine, inhibitors of ceramide synthase and sphingosine kinase, respectively. CONCLUSIONS This study illustrates a crucial role for ELOVL6 in controlling allergic airway inflammation via regulation of fatty acid composition and ceramide-sphingosine-1-phosphate biosynthesis and indicates that ELOVL6 may be a novel therapeutic target for asthma.
Collapse
Affiliation(s)
- Kazufumi Yoshida
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuko Morishima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Satoshi Ano
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; Department of Respiratory Medicine, National Hospital Organization Kasumigaura Medical Center, Tsuchiura, Ibaraki, Japan
| | - Hirofumi Sakurai
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kenya Kuramoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiya Tsunoda
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kai Yazaki
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masayuki Nakajima
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mingma Thering Sherpa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Masashi Matsuyama
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Takumi Kiwamoto
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yosuke Matsuno
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yukio Ishii
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akio Hayashi
- Exploratory Research Laboratories, Minase Research Institute, Ono Pharmaceutical Co Ltd, Mishima, Osaka, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Takashi Matsuzaka
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Hitoshi Shimano
- Department of Endocrinology and Metabolism, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan; AMED-CREST, Japan Agency for Medical Research and Development (AMED), Chiyoda, Tokyo, Japan
| | - Nobuyuki Hizawa
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Suresh Babu V, Dudeja G, SA D, Bisht A, Shetty R, Heymans S, Guha N, Ghosh A. Lack of Retinoblastoma Protein Shifts Tumor Metabolism from Glycolysis to OXPHOS and Allows the Use of Alternate Fuels. Cells 2022; 11:cells11203182. [PMID: 36291051 PMCID: PMC9600484 DOI: 10.3390/cells11203182] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022] Open
Abstract
Mutations in the RB1 locus leading to a loss of functional Rb protein cause intraocular tumors, which uniquely affect children worldwide. These tumors demonstrate rapid proliferation, which has recently been shown to be associated with an altered metabolic signature. We found that retinoblastoma tumors and in-vitro models lack Hexokinase 1 (HK1) and exhibit elevated fatty acid oxidation. We show that ectopic expression of RB1 induces HK1 protein in Rb null cells, and both RB1 and HK1 can mediate a metabolic switch from OXPHOS to glycolysis with increased pyruvate levels, reduced ATP production and reduced mitochondrial mass. Further, cells lacking Rb or HK1 can flexibly utilize glutamine and fatty acids to enhance oxidative phosphorylation-dependent ATP generation, as revealed by metabolic and biochemical assays. Thus, loss of Rb and HK1 in retinoblastoma reprograms tumor metabolic circuits to enhance the glucose-independent TCA (tricarboxylic acid) cycle and the intermediate NAD+/NADH ratios, with a subsequent increase in fatty-acid derived L-carnitine to enhance mitochondrial OXPHOS for ATP production instead of glycolysis dependence. We also demonstrate that modulation of the Rb-regulated transcription factor E2F2 does not result in any of these metabolic perturbations. In conclusion, we demonstrate RB1 or HK1 as critical regulators of the cellular bioenergetic profile and identify the altered tumor metabolism as a potential therapeutic target for cancers lacking functional Rb protein.
Collapse
Affiliation(s)
- Vishnu Suresh Babu
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Gagan Dudeja
- Retinoblastoma Service, Narayana Nethralaya, Bangalore 560099, India
| | - Deepak SA
- Agilent Technologies India Pvt Ltd., Bangalore 560048, India
| | - Anadi Bisht
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India
| | - Rohit Shetty
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India
| | - Stephane Heymans
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Herestraat 49, Bus 911, 3000 Leuven, Belgium
- Correspondence: (S.H.); (N.G.); (A.G.); Tel.: +31-0433882949 (S.H.); +91-8040614256 (N.G.); +91-8066660712 (A.G.)
| | - Nilanjan Guha
- Agilent Technologies India Pvt Ltd., Bangalore 560048, India
- Correspondence: (S.H.); (N.G.); (A.G.); Tel.: +31-0433882949 (S.H.); +91-8040614256 (N.G.); +91-8066660712 (A.G.)
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore 560099, India
- Correspondence: (S.H.); (N.G.); (A.G.); Tel.: +31-0433882949 (S.H.); +91-8040614256 (N.G.); +91-8066660712 (A.G.)
| |
Collapse
|
8
|
Dual role of pseudogene TMEM198B in promoting lipid metabolism and immune escape of glioma cells. Oncogene 2022; 41:4512-4523. [PMID: 36038663 DOI: 10.1038/s41388-022-02445-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Dysregulation of pseudogenes, enhancement of fatty acid synthesis and formation of immunosuppressive microenvironment are important factors that promote the malignant progression of glioma. It is of great significance to search for the molecular mechanism of interaction between the three and then perform targeted interference for improving the treatment of glioma. In this study, we found that pseudogene transmembrane protein 198B (TMEM198B) was highly expressed in glioma tissues and cell lines, and it could promote malignant progression of glioma by regulating lipid metabolism reprogramming and remodeling immune microenvironment. Applying the experimental methods of gene interference, lipidomics and immunology, we further confirmed that TMEM198B promoted PLAG1 like zinc finger 2 (PLAGL2) expression by mediating tri-methylation of histone H3 on lysine 4 (H3K4me3) of PLAGL2 through binding to SET domain containing 1B (SETD1B). Increased PLAGL2 could transcriptional activate ATP citrate lyase (ACLY) and ELOVL fatty acid elongase 6 (ELOVL6) expression, and then influenced the biological behaviors of glioma cells via enhancing the de novo lipogenesis and fatty acid acyl chain elongation. At the same time, TMEM198B promoted macrophages lipid accumulation and intensification of fatty acid oxidation (FAO) through glioma-derived exosomes (GDEs), further induced macrophages to M2 polarization, which subsequently facilitated immune escape of glioma cells. In conclusion, our present study clarifies that the TMEM198B/PLAGL2/ACLY/ELOVL6 pathway conducts crucial regulatory effects on the malignant progression of glioma, which provides novel targets and new ideas for molecular targeted therapy and immunotherapy of glioma.
Collapse
|
9
|
Targeting lipid metabolism in the treatment of ovarian cancer. Oncotarget 2022; 13:768-783. [PMID: 35634242 PMCID: PMC9132258 DOI: 10.18632/oncotarget.28241] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 05/07/2022] [Indexed: 11/25/2022] Open
Abstract
Cancer cells undergo alterations in lipid metabolism to support their high energy needs, tumorigenesis and evade an anti-tumor immune response. Alterations in fatty acid production are controlled by multiple enzymes, chiefly Acetyl CoA Carboxylase, ATP-Citrate Lyase, Fatty Acid Synthase, and Stearoyl CoA Desaturase 1. Ovarian cancer (OC) is a common gynecological malignancy with a high rate of aggressive carcinoma progression and drug resistance. The accumulation of unsaturated fatty acids in ovarian cancer supports cell growth, increased cancer cell migration, and worse patient outcomes. Ovarian cancer cells also expand their lipid stores via increased uptake of lipids using fatty acid translocases, fatty acid-binding proteins, and low-density lipoprotein receptors. Furthermore, increased lipogenesis and lipid uptake promote chemotherapy resistance and dampen the adaptive immune response needed to eliminate tumors. In this review, we discuss the role of lipid synthesis and metabolism in driving tumorigenesis and drug resistance in ovarian cancer conferring poor prognosis and outcomes in patients. We also cover some aspects of how lipids fuel ovarian cancer stem cells, and how these metabolic alterations in intracellular lipid content could potentially serve as biomarkers of ovarian cancer.
Collapse
|
10
|
Otake-Kasamoto Y, Kayama H, Kishikawa T, Shinzaki S, Tashiro T, Amano T, Tani M, Yoshihara T, Li B, Tani H, Liu L, Hayashi A, Okuzaki D, Motooka D, Nakamura S, Okada Y, Iijima H, Takeda K, Takehara T. Lysophosphatidylserines derived from microbiota in Crohn’s disease elicit pathological Th1 response. J Exp Med 2022; 219:213240. [PMID: 35608941 PMCID: PMC9134096 DOI: 10.1084/jem.20211291] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 03/17/2022] [Accepted: 05/02/2022] [Indexed: 12/31/2022] Open
Abstract
Microbiota alteration and IFN-γ–producing CD4+ T cell overactivation are implicated in Crohn’s disease (CD) pathogenesis. However, it remains unclear how dysbiosis enhances Th1 responses, leading to intestinal inflammation. Here, we identified key metabolites derived from dysbiotic microbiota that induce enhanced Th1 responses and exaggerate colitis in mouse models. Patients with CD showed elevated lysophosphatidylserine (LysoPS) concentration in their feces, accompanied by a higher relative abundance of microbiota possessing a gene encoding the phospholipid-hydrolyzing enzyme phospholipase A. LysoPS induced metabolic reprogramming, thereby eliciting aberrant effector responses in both human and mouse IFN-γ–producing CD4+ T cells. Administration of LysoPS into two mouse colitis models promoted large intestinal inflammation. LysoPS-induced aggravation of colitis was impaired in mice lacking P2ry10 and P2ry10b, and their CD4+ T cells were hyporesponsive to LysoPS. Thus, our findings elaborate on the mechanism by which metabolites elevated in patients with CD harboring dysbiotic microbiota promote Th1-mediated intestinal pathology.
Collapse
Affiliation(s)
- Yuriko Otake-Kasamoto
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Osaka, Japan
| | - Toshihiro Kishikawa
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Otorhinolaryngology—Head and Neck Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taku Tashiro
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takahiro Amano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Mizuki Tani
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Bo Li
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Haruka Tani
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Li Liu
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Akio Hayashi
- Discovery Technology Research Laboratories, Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | - Daisuke Okuzaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Daisuke Motooka
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Shota Nakamura
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Department of Infection Metagenomics, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Yukinori Okada
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Department of Statistical Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka, Japan
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Lee K, Yu H, Shouse S, Kong B, Lee J, Lee SH, Ko KS. RNA-Seq Reveals Different Gene Expression in Liver-Specific Prohibitin 1 Knock-Out Mice. Front Physiol 2021; 12:717911. [PMID: 34539442 PMCID: PMC8446661 DOI: 10.3389/fphys.2021.717911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022] Open
Abstract
Prohibitin 1 (PHB1) is an evolutionarily conserved and ubiquitously expressed protein that stabilizes mitochondrial chaperone. Our previous studies showed that liver-specific Phb1 deficiency induced liver injuries and aggravated lipopolysaccharide (LPS)-induced innate immune responses. In this study, we performed RNA-sequencing (RNA-seq) analysis with liver tissues to investigate global gene expression among liver-specific Phb1−/−, Phb1+/−, and WT mice, focusing on the differentially expressed (DE) genes between Phb1+/− and WT. When 78 DE genes were analyzed for biological functions, using ingenuity pathway analysis (IPA) tool, lipid metabolism-related genes, including insulin receptor (Insr), sterol regulatory element-binding transcription factor 1 (Srebf1), Srebf2, and SREBP cleavage-activating protein (Scap) appeared to be downregulated in liver-specific Phb1+/− compared with WT. Diseases and biofunctions analyses conducted by IPA verified that hepatic system diseases, including liver fibrosis, liver hyperplasia/hyperproliferation, and liver necrosis/cell death, which may be caused by hepatotoxicity, were highly associated with liver-specific Phb1 deficiency in mice. Interestingly, of liver disease-related 5 DE genes between Phb1+/− and WT, the mRNA expressions of forkhead box M1 (Foxm1) and TIMP inhibitor of metalloproteinase (Timp1) were matched with validation for RNA-seq in liver tissues and AML12 cells transfected with Phb1 siRNA. The results in this study provide additional insights into molecular mechanisms responsible for increasing susceptibility of liver injuries associated with hepatic Phb1.
Collapse
Affiliation(s)
- Kyuwon Lee
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Hyeonju Yu
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea
| | - Stephanie Shouse
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Byungwhi Kong
- Center of Excellence for Poultry Science, University of Arkansas System Division of Agriculture, Fayetteville, AR, United States
| | - Jihye Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Kwang Suk Ko
- Department of Nutritional Science and Food Management, College of Science and Industry Convergence, Ewha Womans University, Seoul, South Korea.,Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Beverly Hills, CA, United States
| |
Collapse
|
12
|
Linn P, Kohno S, Sheng J, Kulathunga N, Yu H, Zhang Z, Voon D, Watanabe Y, Takahashi C. Targeting RB1 Loss in Cancers. Cancers (Basel) 2021; 13:cancers13153737. [PMID: 34359636 PMCID: PMC8345210 DOI: 10.3390/cancers13153737] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Irreversible defects in RB1 tumor suppressor functions often predict poor outcomes in cancer patients. However, the RB1-defecient status can be a benefit as well for them, as it generates a variety of vulnerabilities induced through the upregulation of RB1 targets, relief from functional restrictions due to RB1 binding, presence of genes whose inactivation cause synthetic lethality with RB1 loss, or collateral synthetic lethality owing to simultaneous loss of neighboring genes. Abstract Retinoblastoma protein 1 (RB1) is encoded by a tumor suppressor gene that was discovered more than 30 years ago. Almost all mitogenic signals promote cell cycle progression by braking on the function of RB1 protein through mono- and subsequent hyper-phosphorylation mediated by cyclin-CDK complexes. The loss of RB1 function drives tumorigenesis in limited types of malignancies including retinoblastoma and small cell lung cancer. In a majority of human cancers, RB1 function is suppressed during tumor progression through various mechanisms. The latter gives rise to the acquisition of various phenotypes that confer malignant progression. The RB1-targeted molecules involved in such phenotypic changes are good quarries for cancer therapy. Indeed, a variety of novel therapies have been proposed to target RB1 loss. In particular, the inhibition of a number of mitotic kinases appeared to be synthetic lethal with RB1 deficiency. A recent study focusing on a neighboring gene that is often collaterally deleted together with RB1 revealed a pharmacologically targetable vulnerability in RB1-deficient cancers. Here we summarize current understanding on possible therapeutic approaches targeting functional or genomic aberration of RB1 in cancers.
Collapse
Affiliation(s)
- Paing Linn
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Yangon General Hospital, Yangon, Myanmar
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Jindan Sheng
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Nilakshi Kulathunga
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Hai Yu
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Zhiheng Zhang
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
| | - Dominic Voon
- Institute of Frontier Sciences Initiative, Kanazawa University, Kanazawa 920-1192, Japan;
| | | | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Japan; (P.L.); (S.K.); (J.S.); (N.K.); (H.Y.); (Z.Z.)
- Correspondence: ; Tel.: +81-76-264-6750; Fax: +81-76-234-4521
| |
Collapse
|
13
|
Shen D, Gao Y, Huang Q, Xuan Y, Yao Y, Gu L, Huang Y, Zhang Y, Li P, Fan Y, Tang L, Du S, Wu S, Wang H, Wang C, Gong H, Pang Y, Ma X, Wang B, Zhang X. E2F1 promotes proliferation and metastasis of clear cell renal cell carcinoma via activation of SREBP1-dependent fatty acid biosynthesis. Cancer Lett 2021; 514:48-62. [PMID: 34019961 DOI: 10.1016/j.canlet.2021.05.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 11/18/2022]
Abstract
Enhanced synthesis or uptake of lipids contributes to rapid cancer cell proliferation and tumor progression. In recent years, cell cycle regulators have been shown to be involved in the control of lipid synthesis, in addition to their classical function of controlling the cell cycle. Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is characterized by lipid-rich cytoplasmic deposition. However, the relationship between altered lipid metabolism and tumor progression in ccRCC is poorly understood. Here, we demonstrated that E2F transcription factor 1 (E2F1), in addition to its key role in regulating the cell cycle, induces extensive lipid accumulation and elevated levels of lipogenic enzymes in ccRCC cells by upregulating sterol regulatory element-binding protein 1 (SREBP1). E2F1 knockdown or SREBP1 suppression attenuated fatty acid (FA) de novo synthesis, cell proliferation and epithelial-mesenchymal transition (EMT) in ccRCC cells. Furthermore, overexpression of E2F1 promoted lipid storage, tumor growth and metastasis in a mouse xenograft model, whereas E2F1 downregulation or SREBP1 inhibition reversed these effects. In ccRCC patients, high levels of E2F1 and SREBP1 were associated with increased lipid accumulation and correlated with poor prognosis. Our results demonstrate that E2F1 can increase proliferation and metastasis through SREBP1-induced aberrant lipid metabolism, which is a novel critical signaling mechanism driving human ccRCC progression.
Collapse
Affiliation(s)
- Donglai Shen
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yu Gao
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Qingbo Huang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yundong Xuan
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yuanxin Yao
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Liangyou Gu
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China.
| | - Yan Huang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Yu Zhang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Pin Li
- Department of Pediatric Urology, Bayi Children's Hospital Affiliated to the Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100007, PR China.
| | - Yang Fan
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Lu Tang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Songliang Du
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China; School of Medicine, Nankai University, Tianjin, 300071, PR China.
| | - Shengpan Wu
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Hanfeng Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Chenfeng Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Huijie Gong
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| | - Yuewen Pang
- Department of Urology, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, PR China.
| | - Xin Ma
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Baojun Wang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| | - Xu Zhang
- Department of Urology, Chinese PLA General Hospita l, Beijing, 100853, PR China; State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital/Chinese PLA Medical School, Beijing, 100853, PR China.
| |
Collapse
|
14
|
Huber K, Mestres-Arenas A, Fajas L, Leal-Esteban LC. The multifaceted role of cell cycle regulators in the coordination of growth and metabolism. FEBS J 2020; 288:3813-3833. [PMID: 33030287 PMCID: PMC8359344 DOI: 10.1111/febs.15586] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Adapting to changes in nutrient availability and environmental conditions is a fundamental property of cells. This adaptation requires a multi‐directional coordination between metabolism, growth, and the cell cycle regulators (consisting of the family of cyclin‐dependent kinases (CDKs), their regulatory subunits known as cyclins, CDK inhibitors, the retinoblastoma family members, and the E2F transcription factors). Deciphering the mechanisms accountable for this coordination is crucial for understanding various patho‐physiological processes. While it is well established that metabolism and growth affect cell division, this review will focus on recent observations that demonstrate how cell cycle regulators coordinate metabolism, cell cycle progression, and growth. We will discuss how the cell cycle regulators directly regulate metabolic enzymes and pathways and summarize their involvement in the endolysosomal pathway and in the functions and dynamics of mitochondria.
Collapse
Affiliation(s)
- Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
15
|
Harsh S, Eleftherianos I. Tumor induction in Drosophila imaginal epithelia triggers modulation of fat body lipid droplets. Biochimie 2020; 179:65-68. [PMID: 32946989 DOI: 10.1016/j.biochi.2020.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 10/23/2022]
Abstract
Our understanding of cancer-specific metabolic changes is currently unclear. In recent years, the fruit fly Drosophila melanogaster with its powerful genetic tools has become an attractive model for studying both tumor autonomous and the systemic processes resulting from the tumor growth. Here we investigated the effect of tumorigenesis on the modulation of lipid droplets (LDs) in the larval fat bodies (mammalian equivalent of adipose tissue). We have overexpressed Notch signaling alone or in combination with the developmental regulator Myocyte enhancer factor 2 (Mef2) using wing-specific and eye-specific drivers, quantified the size of LDs in the fat body of the different tumor bearing larvae, and estimated the expression of genes associated with lipolysis and lipogenesis. We have found that hyperplastic and neoplastic tumor induced by overexpression of Notch and co-expression of Notch and Mef2 respectively triggers impaired lipid metabolism marked by increased size of fat body LDs. The impaired lipid metabolism in tumor carrying larvae is linked to the altered expression of genes that participate in lipolysis and lipogenesis. These findings reveal modulation of LDs as one of the host's specific response upon tumor initiation. This information could potentially uncover mechanisms for designing innovative approaches to modulate cancer growth.
Collapse
Affiliation(s)
- Sneh Harsh
- Infection and Innate Immunity Lab, Institute for Biomedical Sciences, Department of Biological Sciences, Science and Engineering Hall, 800 22nd St NW, The George Washington University, Washington, DC, 20052, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, Alexandria Center for Life Science, 450 East 29th Street, New York, NY, 10016, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Institute for Biomedical Sciences, Department of Biological Sciences, Science and Engineering Hall, 800 22nd St NW, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
16
|
Iwatani S, Iijima H, Otake Y, Amano T, Tani M, Yoshihara T, Tashiro T, Tsujii Y, Inoue T, Hayashi Y, Takeda K, Hayashi A, Fujita S, Shinzaki S, Takehara T. Novel mass spectrometry-based comprehensive lipidomic analysis of plasma from patients with inflammatory bowel disease. J Gastroenterol Hepatol 2020; 35:1355-1364. [PMID: 32285970 DOI: 10.1111/jgh.15067] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Lipids play important roles in inflammation and may be involved in the pathophysiology of inflammatory bowel disease (IBD). Here, we evaluated the characteristics of the plasma lipid profile in patients with IBD. METHODS Plasma samples were collected from 20 patients with Crohn's disease (CD), 20 patients with ulcerative colitis (UC), and 10 healthy volunteers (HVs) after overnight fasting. The subjects were men between 20 and 49 years of age with no history of hyperlipidemia. A total of 698 molecular species in 22 lipid classes were analyzed by ultra-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. RESULTS Lipid classes of lysophosphatidic acid, lysophosphatidylserine (LPS), phosphatidylserine (PS), and shingosine-1-phosphate (S1P) were significantly increased in UC patients compared with the HV. The LPS, PS, and S1P levels were significantly increased, while those of lysophosphatidylinositol and phosphatidylcholine were significantly decreased in CD patients compared with HV. Among PS species, the levels of PSacyl (PSa) 40:3, PSa 38:3, and PSa 42:4 were significantly higher in CD patients, both active and remissive stage, than in HV. The LPS 18:0 level was significantly higher in CD and UC patients compared with HV. PSa 40:3 and PSa 38:3 levels positively correlated with the Crohn's Disease Activity Index, erythrocyte sedimentation rate, and platelet count and negatively correlated with hemoglobin, hematocrit, and albumin levels in CD patients. CONCLUSION The lipid profile in IBD patients exhibits significant alterations, and PS levels are associated with clinical disease activity in CD patients.
Collapse
Affiliation(s)
- Shuko Iwatani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hideki Iijima
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuriko Otake
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Amano
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Mizuki Tani
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeo Yoshihara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taku Tashiro
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Tsujii
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takahiro Inoue
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Hayashi
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoshi Takeda
- Department of Immunoregulation, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akio Hayashi
- Research Center for Drug Discovery, Ono Pharmaceutical Company, Osaka, Japan
| | - Setsuko Fujita
- Research Center for Drug Discovery, Ono Pharmaceutical Company, Osaka, Japan
| | - Shinichiro Shinzaki
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
17
|
Butler LM, Perone Y, Dehairs J, Lupien LE, de Laat V, Talebi A, Loda M, Kinlaw WB, Swinnen JV. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv Drug Deliv Rev 2020; 159:245-293. [PMID: 32711004 PMCID: PMC7736102 DOI: 10.1016/j.addr.2020.07.013] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 02/06/2023]
Abstract
With the advent of effective tools to study lipids, including mass spectrometry-based lipidomics, lipids are emerging as central players in cancer biology. Lipids function as essential building blocks for membranes, serve as fuel to drive energy-demanding processes and play a key role as signaling molecules and as regulators of numerous cellular functions. Not unexpectedly, cancer cells, as well as other cell types in the tumor microenvironment, exploit various ways to acquire lipids and extensively rewire their metabolism as part of a plastic and context-dependent metabolic reprogramming that is driven by both oncogenic and environmental cues. The resulting changes in the fate and composition of lipids help cancer cells to thrive in a changing microenvironment by supporting key oncogenic functions and cancer hallmarks, including cellular energetics, promoting feedforward oncogenic signaling, resisting oxidative and other stresses, regulating intercellular communication and immune responses. Supported by the close connection between altered lipid metabolism and the pathogenic process, specific lipid profiles are emerging as unique disease biomarkers, with diagnostic, prognostic and predictive potential. Multiple preclinical studies illustrate the translational promise of exploiting lipid metabolism in cancer, and critically, have shown context dependent actionable vulnerabilities that can be rationally targeted, particularly in combinatorial approaches. Moreover, lipids themselves can be used as membrane disrupting agents or as key components of nanocarriers of various therapeutics. With a number of preclinical compounds and strategies that are approaching clinical trials, we are at the doorstep of exploiting a hitherto underappreciated hallmark of cancer and promising target in the oncologist's strategy to combat cancer.
Collapse
Affiliation(s)
- Lisa M Butler
- Adelaide Medical School and Freemasons Foundation Centre for Men's Health, University of Adelaide, Adelaide, SA 5005, Australia; South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Ylenia Perone
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine, London, UK
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Leslie E Lupien
- Program in Experimental and Molecular Medicine, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 037560, USA
| | - Vincent de Laat
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Ali Talebi
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium
| | - Massimo Loda
- Pathology and Laboratory Medicine, Weill Cornell Medical College, Cornell University, New York, NY 10065, USA
| | - William B Kinlaw
- The Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, 1 Medical Center Drive, Lebanon, NH 03756, USA
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, KU Leuven Cancer Institute, 3000 Leuven, Belgium.
| |
Collapse
|
18
|
Kulathunga N, Kohno S, Linn P, Nishimoto Y, Horike SI, Zaraiskii MI, Kumar S, Muranaka H, Takahashi C. Peripubertal high-fat diet promotes c-Myc stabilization in mammary gland epithelium. Cancer Sci 2020; 111:2336-2348. [PMID: 32437590 PMCID: PMC7385354 DOI: 10.1111/cas.14492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Dietary fat consumption during accelerated stages of mammary gland development, such as peripubertal maturation or pregnancy, is known to increase the risk for breast cancer. However, the underlying molecular mechanisms are not fully understood. Here we examined the gene expression profile of mouse mammary epithelial cells (MMECs) on exposure to a high-fat diet (HFD) or control diet (CD). Trp53-/- female mice were fed with the experimental diets for 5 weeks during the peripubertal period (3-8 weeks of age). The treatment showed no significant difference in body weight between the HFD-fed mice and CD-fed mice. However, gene set enrichment analysis predicted a significant enrichment of c-Myc target genes in animals fed HFD. Furthermore, we detected enhanced activity and stabilization of c-Myc protein in MMECs exposed to a HFD. This was accompanied by augmented c-Myc phosphorylation at S62 with a concomitant increase in ERK phosphorylation. Moreover, MMECs derived from HFD-fed Trp53-/- mouse showed increased colony- and sphere-forming potential that was dependent on c-Myc. Further, oleic acid, a major fatty acid constituent of the HFD, and TAK-875, an agonist to G protein-coupled receptor 40 (a receptor for oleic acid), enhanced c-Myc stabilization and MMEC proliferation. Overall, our data indicate that HFD influences MMECs by stabilizing an oncoprotein, pointing to a novel mechanism underlying dietary fat-mediated mammary carcinogenesis.
Collapse
Affiliation(s)
- Nilakshi Kulathunga
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Susumu Kohno
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Paing Linn
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Yuuki Nishimoto
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Shin-Ichi Horike
- Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Mikhail I Zaraiskii
- Pavlov First St. Petersburg State Medical University, St. Petersburg, Russia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Hayato Muranaka
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan.,Samuel Oschin Cancer Center, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Chiaki Takahashi
- Division of Oncology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
19
|
Hoque S, Kondo Y, Sakata N, Yamada Y, Fukaura M, Higashi T, Motoyama K, Arima H, Higaki K, Hayashi A, Komiya T, Ishitsuka Y, Irie T. Differential Effects of 2-Hydroxypropyl-Cyclodextrins on Lipid Accumulation in Npc1-Null Cells. Int J Mol Sci 2020; 21:ijms21030898. [PMID: 32019132 PMCID: PMC7038050 DOI: 10.3390/ijms21030898] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 02/05/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder characterized by abnormal accumulation of free cholesterol and sphingolipids in lysosomes. The iminosugar miglustat, which inhibits hexosylceramide synthesis, is used for NPC treatment, and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), a cyclic oligosaccharide derivative, is being developed to treat NPC. Moreover, therapeutic potential of 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) was shown in NPC models, although its mechanism of action remains unclear. Here, we investigated the effects of HP-β-CD, HP-γ-CD, and their homolog 2-hydroxypropyl-α-cyclodextrin (HP-α-CD) on lipid accumulation in Npc1-null Chinese hamster ovary (CHO) cells compared with those of miglustat. HP-β-CD and HP-γ-CD, unlike HP-α-CD, reduced intracellular free cholesterol levels and normalized the lysosome changes in Npc1-null cells but not in wild-type CHO cells. In contrast, miglustat did not normalize intracellular free cholesterol accumulation or lysosome changes in Npc1-null cells. However, miglustat decreased the levels of hexosylceramide and tended to increase those of sphingomyelins in line with its action as a glucosylceramide synthase inhibitor in both Npc1-null and wild-type CHO cells. Interestingly, HP-β-CD and HP-γ-CD, unlike HP-α-CD, reduced sphingomyelins in Npc1-null, but not wild-type, cells. In conclusion, HP-β-CD and HP-γ-CD reduce the accumulation of sphingolipids, mainly sphingomyelins, and free cholesterol as well as lysosome changes in Npc1-null, but not in wild-type, CHO cells.
Collapse
Affiliation(s)
- Sanzana Hoque
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.H.); (Y.K.); (N.S.); (Y.Y.); (M.F.)
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuki Kondo
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.H.); (Y.K.); (N.S.); (Y.Y.); (M.F.)
| | - Nodoka Sakata
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.H.); (Y.K.); (N.S.); (Y.Y.); (M.F.)
| | - Yusei Yamada
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.H.); (Y.K.); (N.S.); (Y.Y.); (M.F.)
| | - Madoka Fukaura
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.H.); (Y.K.); (N.S.); (Y.Y.); (M.F.)
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Taishi Higashi
- Priority Organization for Innovation and Excellence, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Keiichi Motoyama
- Department of Physical Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan;
| | - Hidetoshi Arima
- Laboratory of Evidence-based Pharmacotherapy, Daiichi University of Pharmacy, 22-1 Tamagawa-machi, Minami-ku, Fukuoka 815-8511, Japan;
| | - Katsumi Higaki
- Research Initiative Center, Organization for Research Initiative and Promotion, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan;
| | - Akio Hayashi
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan; (A.H.); (T.K.)
| | - Takaki Komiya
- Discovery Research Laboratories, Ono Pharmaceutical Co., Ltd., 3-1-1 Sakurai Shimamoto-cho, Mishima-gun, Osaka 618-8585, Japan; (A.H.); (T.K.)
| | - Yoichi Ishitsuka
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.H.); (Y.K.); (N.S.); (Y.Y.); (M.F.)
- Correspondence: (Y.I.); (T.I.); Tel.: +81-96-371-4559 (Y.I.); +81-96-371-4552 (T.I.)
| | - Tetsumi Irie
- Department of Clinical Chemistry and Informatics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (S.H.); (Y.K.); (N.S.); (Y.Y.); (M.F.)
- Program for Leading Graduate Schools “HIGO (Health life science: Interdisciplinary and Glocal Oriented) Program”, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- Correspondence: (Y.I.); (T.I.); Tel.: +81-96-371-4559 (Y.I.); +81-96-371-4552 (T.I.)
| |
Collapse
|
20
|
Loss of Rb1 Enhances Glycolytic Metabolism in Kras-Driven Lung Tumors In Vivo. Cancers (Basel) 2020; 12:cancers12010237. [PMID: 31963621 PMCID: PMC7016860 DOI: 10.3390/cancers12010237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Accepted: 01/14/2020] [Indexed: 01/31/2023] Open
Abstract
Dysregulated metabolism is a hallmark of cancer cells and is driven in part by specific genetic alterations in various oncogenes or tumor suppressors. The retinoblastoma protein (pRb) is a tumor suppressor that canonically regulates cell cycle progression; however, recent studies have highlighted a functional role for pRb in controlling cellular metabolism. Here, we report that loss of the gene encoding pRb (Rb1) in a transgenic mutant Kras-driven model of lung cancer results in metabolic reprogramming. Our tracer studies using bolus dosing of [U-13C]-glucose revealed an increase in glucose carbon incorporation into select glycolytic intermediates. Consistent with this result, Rb1-depleted tumors exhibited increased expression of key glycolytic enzymes. Interestingly, loss of Rb1 did not alter mitochondrial pyruvate oxidation compared to lung tumors with intact Rb1. Additional tracer studies using [U-13C,15N]-glutamine and [U-13C]-lactate demonstrated that loss of Rb1 did not alter glutaminolysis or utilization of circulating lactate within the tricarboxylic acid cycle (TCA) in vivo. Taken together, these data suggest that the loss of Rb1 promotes a glycolytic phenotype, while not altering pyruvate oxidative metabolism or glutamine anaplerosis in Kras-driven lung tumors.
Collapse
|
21
|
Chen TY, Hsieh YT, Huang JM, Liu CJ, Chuang LT, Huang PC, Kuo TY, Chia HY, Chou CY, Chang CW, Chen YF, Chen HM, Lo JF, Li WC. Determination of Pyruvate Metabolic Fates Modulates Head and Neck Tumorigenesis. Neoplasia 2019; 21:641-652. [PMID: 31100640 PMCID: PMC6522776 DOI: 10.1016/j.neo.2019.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/13/2019] [Accepted: 04/16/2019] [Indexed: 12/16/2022]
Abstract
Even with increasing evidence for roles of glycolytic enzymes in controlling cancerous characteristics, the best target of candidate metabolic enzymes for lessening malignancy remains under debate. Pyruvate is a main glycolytic metabolite that could be mainly converted into either lactate by Lactate Dehydrogenase A (LDHA) or acetyl-CoA by Pyruvate Dehydrogenase E1 component α subunit (PDHA1) catalytic complex. In tumor cells, accumulating lactate is produced whereas the conversion of pyruvate into mitochondrial acetyl-CoA is less active compared with their normal counterparts. This reciprocal molecular association makes pyruvate metabolism a potential choice of anti-cancer target. Cellular and molecular changes were herein assayed in Head and Neck Squamous Cell Carcinoma (HNSCC) cells in response to LDHA and PDHA1 loss in vitro, in vivo and in clinic. By using various human cancer databases and clinical samples, LDHA and PDHA1 levels exhibit reversed prognostic roles. In vitro analysis demonstrated that decreased cell growth and motility accompanied by an increased sensitivity to chemotherapeutic agents was found in cells with LDHA loss whereas PDHA1-silencing exhibited opposite phenotypes. At the molecular level, it was found that oncogenic Protein kinase B (PKB/Akt) and Extracellular signal-regulated kinase (ERK) singling pathways contribute to pyruvate metabolism mediated HNSCC cell growth. Furthermore, LDHA/PDHA1 changes in HNSCC cells resulted in a broad metabolic reprogramming while intracellular molecules including polyunsaturated fatty acids and nitrogen metabolism related metabolites underlie the malignant changes. Collectively, our findings reveal the significance of pyruvate metabolic fates in modulating HNSCC tumorigenesis and highlight the impact of metabolic plasticity in HNSCC cells.
Collapse
Key Words
- 4-nqo, 4-nitroquinoline 1-oxide
- 5-fu, 5-fluouracil
- abc, atp-binding cassette
- acacb, acetyl-coa carboxylase beta
- aldh, aldehyde dehydrogenase
- cddp, cisplatin
- dca, dicholoroacetate
- dlat, dihydrolipoamide s-acetyltransferase
- dld, dihydrolipoamide dehydrogenase
- don, 6-diazo-5-oxo-l-norlucine
- ecm, extracellular matrix
- egcg, epigallocatechin gallate
- emt, epithelial-mesenchymal transition
- eno, enolase
- erk, extracellular signal-regulated kinase
- fasn, fatty acid synthase
- hoscc, human oral squamous cell carcinoma
- gc-fid, gas chromatograph-flame ionization detector
- gls1, glutaminase 1
- gluts, glucose transporters
- glud1/2, glutamine dehydrogenase 1/2
- g3pdh, glyceraldehyde-3-phosphate dehydrogenase
- hnscc, head and neck squamous cell carcinoma
- ic50, half maximal inhibitory concentration
- inn, silibinin
- ldha, lactate dehydrogenase a
- lc–ms, liquid chromatography-mass spectrophotometry
- mufas, monounsaturated fatty acids
- mtt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- nhok, normal human oral keratinocytes
- ocr, oxygen consumption rate
- os, overall survival
- oxphos, oxidative phosphorylation
- pdc, pyruvate dehydrogenase complex
- pdha1, pyruvate dehydrogenase e1 component α subunit
- pdk1, pyruvate dehydrogenase kinase 1
- pdp1, pyruvate dehydrogenase phosphatase 1
- pep, phosphoenolpyruvate
- pfk1, phosphofructokinase 1
- pgam1, phosphoglycerate mutase 1
- pkb/akt, protein kinase b
- pkm2, pyruvate kinase m2
- ppp, pentose phosphate pathway
- pufas, polyunsaturated fatty acids
- ros, reactive oxygen species
- scd1, stearoyl-coa desaturase 1
- sfas, saturated fatty acids
- shrna, short-hairpin rna
- srebf1/2, sterol regulatory element-binding transcription factor 1/2
- taxol, paclitaxel
- tca, tricarboxylic acid
- tcga, the cancer genomic atlas
Collapse
Affiliation(s)
- Tsai-Ying Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Ta Hsieh
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Jian-Min Huang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Ji Liu
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Oral and Maxillofacial Surgery, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Lu-Te Chuang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Pei-Chun Huang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Tz-Yu Kuo
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Hao-Yuan Chia
- Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yi Chou
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Wen Chang
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Fen Chen
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Ming Chen
- School of Dentistry and Department of Dentistry, National Taiwan University Medical College and National Taiwan University Hospital, Taipei, Taiwan
| | - Jeng-Fan Lo
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Stomatology, Taipei Veterans General Hospital, Taipei, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Wan-Chun Li
- Institute of Oral Biology, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Department of Dentistry, School of Dentistry, National Yang-Ming University, Taipei, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
22
|
Sahoo S, Ravi Kumar RK, Nicolay B, Mohite O, Sivaraman K, Khetan V, Rishi P, Ganesan S, Subramanyan K, Raman K, Miles W, Elchuri SV. Metabolite systems profiling identifies exploitable weaknesses in retinoblastoma. FEBS Lett 2018; 593:23-41. [PMID: 30417337 DOI: 10.1002/1873-3468.13294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/25/2018] [Accepted: 11/06/2018] [Indexed: 11/06/2022]
Abstract
Retinoblastoma (RB) is a childhood eye cancer. Currently, chemotherapy, local therapy, and enucleation are the main ways in which these tumors are managed. The present work is the first study that uses constraint-based reconstruction and analysis approaches to identify and explain RB-specific survival strategies, which are RB tumor specific. Importantly, our model-specific secretion profile is also found in RB1-depleted human retinal cells in vitro and suggests that novel biomarkers involved in lipid metabolism may be important. Finally, RB-specific synthetic lethals have been predicted as lipid and nucleoside transport proteins that can aid in novel drug target development.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, India.,Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India
| | | | - Brandon Nicolay
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Agios Pharmaceutical, 88 Sidney Street, Cambridge, MA, USA
| | - Omkar Mohite
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Vikas Khetan
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Pukhraj Rishi
- Shri Bhagwan Mahavir Vitreoretinal Services and Ocular Oncology Services, Sankara Nethralaya, Chennai, India
| | - Suganeswari Ganesan
- Department of Histopathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | | | - Karthik Raman
- Initiative for Biological Systems Engineering, Indian Institute of Technology Madras, Chennai, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India.,Robert Bosch Centre for Data Science and Artificial Intelligence (RBC-DSAI), Indian Institute of Technology Madras, Chennai, India
| | - Wayne Miles
- Department of Molecular Oncology, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA, USA.,Department of Molecular Genetics, The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Sailaja V Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
23
|
Shergalis A, Bankhead A, Luesakul U, Muangsin N, Neamati N. Current Challenges and Opportunities in Treating Glioblastoma. Pharmacol Rev 2018; 70:412-445. [PMID: 29669750 PMCID: PMC5907910 DOI: 10.1124/pr.117.014944] [Citation(s) in RCA: 557] [Impact Index Per Article: 79.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM), the most common and aggressive primary brain tumor, has a high mortality rate despite extensive efforts to develop new treatments. GBM exhibits both intra- and intertumor heterogeneity, lending to resistance and eventual tumor recurrence. Large-scale genomic and proteomic analysis of GBM tumors has uncovered potential drug targets. Effective and "druggable" targets must be validated to embark on a robust medicinal chemistry campaign culminating in the discovery of clinical candidates. Here, we review recent developments in GBM drug discovery and delivery. To identify GBM drug targets, we performed extensive bioinformatics analysis using data from The Cancer Genome Atlas project. We discovered 20 genes, BOC, CLEC4GP1, ELOVL6, EREG, ESR2, FDCSP, FURIN, FUT8-AS1, GZMB, IRX3, LITAF, NDEL1, NKX3-1, PODNL1, PTPRN, QSOX1, SEMA4F, TH, VEGFC, and C20orf166AS1 that are overexpressed in a subpopulation of GBM patients and correlate with poor survival outcomes. Importantly, nine of these genes exhibit higher expression in GBM versus low-grade glioma and may be involved in disease progression. In this review, we discuss these proteins in the context of GBM disease progression. We also conducted computational multi-parameter optimization to assess the blood-brain barrier (BBB) permeability of small molecules in clinical trials for GBM treatment. Drug delivery in the context of GBM is particularly challenging because the BBB hinders small molecule transport. Therefore, we discuss novel drug delivery methods, including nanoparticles and prodrugs. Given the aggressive nature of GBM and the complexity of targeting the central nervous system, effective treatment options are a major unmet medical need. Identification and validation of biomarkers and drug targets associated with GBM disease progression present an exciting opportunity to improve treatment of this devastating disease.
Collapse
Affiliation(s)
- Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Armand Bankhead
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Urarika Luesakul
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nongnuj Muangsin
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, North Campus Research Complex, Ann Arbor, Michigan (A.S., U.L., N.N.); Biostatistics Department and School of Public Health, University of Michigan, Ann Arbor, Michigan (A.B.); and Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand (U.L., N.M.)
| |
Collapse
|
24
|
Elchuri SV, Rajasekaran S, Miles WO. RNA-Sequencing of Primary Retinoblastoma Tumors Provides New Insights and Challenges Into Tumor Development. Front Genet 2018; 9:170. [PMID: 29868118 PMCID: PMC5966869 DOI: 10.3389/fgene.2018.00170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/26/2018] [Indexed: 12/17/2022] Open
Abstract
Retinoblastoma is rare tumor of the retina caused by the homozygous loss of the Retinoblastoma 1 tumor suppressor gene (RB1). Loss of the RB1 protein, pRB, results in de-regulated activity of the E2F transcription factors, chromatin changes and developmental defects leading to tumor development. Extensive microarray profiles of these tumors have enabled the identification of genes sensitive to pRB disruption, however, this technology has a number of limitations in the RNA profiles that they generate. The advent of RNA-sequencing has enabled the global profiling of all of the RNA within the cell including both coding and non-coding features and the detection of aberrant RNA processing events. In this perspective, we focus on discussing how RNA-sequencing of rare Retinoblastoma tumors will build on existing data and open up new area's to improve our understanding of the biology of these tumors. In particular, we discuss how the RB-research field may be to use this data to determine how RB1 loss results in the expression of; non-coding RNAs, causes aberrant RNA processing events and how a deeper analysis of metabolic RNA changes can be utilized to model tumor specific shifts in metabolism. Each section discusses new opportunities and challenges associated with these types of analyses and aims to provide an honest assessment of how understanding these different processes may contribute to the treatment of Retinoblastoma.
Collapse
Affiliation(s)
- Sailaja V. Elchuri
- Department of Nanotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| | - Swetha Rajasekaran
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| | - Wayne O. Miles
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Center for RNA Biology, The Ohio State University, Columbus, OH, United States
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
25
|
Abstract
Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.
Collapse
Affiliation(s)
- Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
- Life Science Center, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba 305-8577, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Ryuichiro Sato
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| |
Collapse
|