1
|
Tong X, Dong C, Liang S. Mucin1 as a potential molecule for cancer immunotherapy and targeted therapy. J Cancer 2024; 15:54-67. [PMID: 38164273 PMCID: PMC10751670 DOI: 10.7150/jca.88261] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mucin1 is a highly glycosylated type 1 transmembrane mucin that ranks second among 75 tumor-related antigens published by the National Cancer Institute, and has been identified as a possible therapeutic target over the past 30 years. MUC1 plays an important role in malignant transformation and disease evolution, including cell proliferation, survival, self-renewal, and metastatic invasion. MUC1 has been shown to interact with diverse effectors such as β-catenin, receptor tyrosine kinases, and cellular-abelsongene, which are of importance in the pathogenesis of various malignant tumors. Targeting MUC1 has been shown to be an effective way to induce tumor cell death in vivo and in vitro models. In recent years, a number of therapeutic strategies targeting MUC1 have been developed and their value for tumor therapy have been demonstrated experimentally. This review summarizes recent findings on the structure of MUC1, its expression in different tumors and its involved mechanism pathways, with emphasis on new progress in cancer therapy which related MUC1 in the past decade and evaluates their therapeutic effect.
Collapse
Affiliation(s)
| | - Chunyan Dong
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shujing Liang
- Department of Oncology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Combination Immunotherapy in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14246040. [PMID: 36551526 PMCID: PMC9776760 DOI: 10.3390/cancers14246040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
During the last decade, there has been significant progress in the field of prostate cancer therapeutic treatments based on androgen receptor-axis-targeted therapies, which resulted in improved clinical outcomes [...].
Collapse
|
3
|
Qu C, Zhang H, Cao H, Tang L, Mo H, Liu F, Zhang L, Yi Z, Long L, Yan L, Wang Z, Zhang N, Luo P, Zhang J, Liu Z, Ye W, Liu Z, Cheng Q. Tumor buster - where will the CAR-T cell therapy 'missile' go? Mol Cancer 2022; 21:201. [PMID: 36261831 PMCID: PMC9580202 DOI: 10.1186/s12943-022-01669-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 11/10/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cell (CAR-T cell) therapy based on gene editing technology represents a significant breakthrough in personalized immunotherapy for human cancer. This strategy uses genetic modification to enable T cells to target tumor-specific antigens, attack specific cancer cells, and bypass tumor cell apoptosis avoidance mechanisms to some extent. This method has been extensively used to treat hematologic diseases, but the therapeutic effect in solid tumors is not ideal. Tumor antigen escape, treatment-related toxicity, and the immunosuppressive tumor microenvironment (TME) limit their use of it. Target selection is the most critical aspect in determining the prognosis of patients receiving this treatment. This review provides a comprehensive summary of all therapeutic targets used in the clinic or shown promising potential. We summarize CAR-T cell therapies' clinical trials, applications, research frontiers, and limitations in treating different cancers. We also explore coping strategies when encountering sub-optimal tumor-associated antigens (TAA) or TAA loss. Moreover, the importance of CAR-T cell therapy in cancer immunotherapy is emphasized.
Collapse
Affiliation(s)
- Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hui Cao
- Department of Psychiatry, The Second People's Hospital of Hunan Province, The Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- The School of Clinical Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lifu Long
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luzhe Yan
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Nan Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- One-third Lab, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Weijie Ye
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Huang D, Fu X, Zhang X, Zhao Y. Christmas Tree-Shaped Microneedles as FOLFIRINOX Spatiotemporal Delivery System for Pancreatic Cancer Treatment. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9809417. [PMID: 36340504 PMCID: PMC9620638 DOI: 10.34133/2022/9809417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/22/2022] [Indexed: 09/19/2023]
Abstract
As an effective combination chemotherapy, FOLFIRINOX regimen (fluorouracil, leucovorin, irinotecan, and oxaliplatin) has shown definite antitumor efficacy for treating pancreatic cancer (PC) nowadays. However, the traditional systematic administration of these chemotherapeutics limits the drug targeting and causes unwanted effects. Herein, we present a novel Christmas tree-shaped adhesive microneedle (MN) patch coloading fluorouracil, leucovorin, irinotecan, and oxaliplatin simultaneously to realize spatiotemporal FOLFIRINOX therapy in situ. Such MN patch was fabricated by using a layer-by-layer mold replication method, in which oxaliplatin and leucovorin are encapsulated in the top MNs, while irinotecan and fluorouracil are encapsulated in the bottom MNs. The multilayer structure imparts the MNs with enhanced adhesive ability and spatiotemporal drug release property, contributing to the antitumor effect on PC organoid models. Therefore, our Christmas tree-shaped MN patch represents an innovative approach for spatiotemporal multiple-drug delivering and realizes the combination chemotherapy for PC in a single platform.
Collapse
Affiliation(s)
- Danqing Huang
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Xiao Fu
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Xiaoxuan Zhang
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
| | - Yuanjin Zhao
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210002, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
5
|
Mukherjee AG, Wanjari UR, Prabakaran DS, Ganesan R, Renu K, Dey A, Vellingiri B, Kandasamy S, Ramesh T, Gopalakrishnan AV. The Cellular and Molecular Immunotherapy in Prostate Cancer. Vaccines (Basel) 2022; 10:vaccines10081370. [PMID: 36016257 PMCID: PMC9416492 DOI: 10.3390/vaccines10081370] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 12/13/2022] Open
Abstract
In recent history, immunotherapy has become a viable cancer therapeutic option. However, over many years, its tenets have changed, and it now comprises a range of cancer-focused immunotherapies. Clinical trials are currently looking into monotherapies or combinations of medicines that include immune checkpoint inhibitors (ICI), CART cells, DNA vaccines targeting viruses, and adoptive cellular therapy. According to ongoing studies, the discipline should progress by incorporating patient-tailored immunotherapy, immune checkpoint blockers, other immunotherapeutic medications, hormone therapy, radiotherapy, and chemotherapy. Despite significantly increasing morbidity, immunotherapy can intensify the therapeutic effect and enhance immune responses. The findings for the immunotherapy treatment of advanced prostate cancer (PCa) are compiled in this study, showing that is possible to investigate the current state of immunotherapy, covering new findings, PCa treatment techniques, and research perspectives in the field’s unceasing evolution.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - D. S. Prabakaran
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 28644, Korea
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Srivilliputhur Main Road, Sivakasi 626124, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Sabariswaran Kandasamy
- Water-Energy Nexus Laboratory, Department of Environmental Engineering, University of Seoul, Seoul 02504, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
- Correspondence:
| |
Collapse
|
6
|
Perera MP, Thomas PB, Risbridger GP, Taylor R, Azad A, Hofman MS, Williams ED, Vela I. Chimeric Antigen Receptor T-Cell Therapy in Metastatic Castrate-Resistant Prostate Cancer. Cancers (Basel) 2022; 14:cancers14030503. [PMID: 35158771 PMCID: PMC8833489 DOI: 10.3390/cancers14030503] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Prostate cancer is one of the most frequently diagnosed cancers amongst men worldwide. Treatment for metastatic disease is often in the form of androgen deprivation therapy. However, over the course of treatment affected men may become castrate-resistant. Options for men with metastatic castrate-resistant cancer are limited. This review focuses on the role of chimeric antigen receptor T-cell therapy (CAR-T) in men with metastatic castrate-resistant prostate cancer. This review is a contemporary appraisal of preclinical and clinical studies conducted in this emerging form of immunotherapy. A thorough evaluation of the role of CAR-T therapy in prostate cancer is provided, as well as the obstacles we must overcome to clinically translate this therapy for men affected with this rapidly fatal disease. Abstract Prostate cancer is the most commonly diagnosed solid-organ cancer amongst males worldwide. Metastatic castrate-resistant prostate cancer (mCRPC) is a rapidly fatal end-sequelae of prostate cancer. Therapeutic options for men with mCRPC are limited and are not curative in nature. The recent development of chimeric antigen receptor T-cell (CAR-T) therapy has revolutionised the treatment of treatment-resistant haematological malignancies, and several studies are underway investigating the utility of this technology in the treatment of solid tumours. In this review, we evaluate the current treatment options for men with mCRPC as well as the current landscape of preclinical and clinical trials of CAR-T cell therapy against prostate cancer. We also appraise the various prostate cancer-specific tumour-associated antigens that may be targeted by CAR-T cell technology. Finally, we examine the potential translational barriers of CAR-T cell therapy in solid tumours. Despite preclinical success, preliminary clinical trials in men with prostate cancer have had limited efficacy. Therefore, further clinically translatable preclinical models are required to enhance the understanding of the role of this investigational therapeutic in men with mCRPC. In the era of precision medicine, tailored immunotherapy administered to men in a tumour-agnostic approach provides hope to a group of men who otherwise have few treatment options available.
Collapse
Affiliation(s)
- Mahasha P.J. Perera
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| | - Patrick B. Thomas
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Gail P. Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Renea Taylor
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC 3168, Australia; (G.P.R.); (R.T.)
| | - Arun Azad
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Michael S. Hofman
- Prostate Cancer Theranostics and Imaging Centre of Excellence (ProsTIC), Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (A.A.); (M.S.H.)
| | - Elizabeth D. Williams
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
| | - Ian Vela
- School of Biomedical Sciences at Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia; (P.B.T.); (E.D.W.)
- Queensland Bladder Cancer Initiative (QBCI), Woolloongabba, QLD 4102, Australia
- Department of Urology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Personalised Analysis of Cancers (CPAC), Brisbane, QLD 4102, Australia
- Correspondence: (M.P.P.); (I.V.)
| |
Collapse
|
7
|
Saleh OM, Albakri KA, Alabdallat YJ, Dajani MH, El Gazzar WB. The safety and efficacy of CAR-T cells in the treatment of prostate cancer: review. Biomarkers 2021; 27:22-34. [PMID: 34882051 DOI: 10.1080/1354750x.2021.2016973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE A new breakthrough development in cancer treatment is chimeric antigen receptor (CAR)-T cell therapy. In this review, we focussed on its efficacy & safety in prostate cancer, obstacles impeding its clinical use, and some strategies trying to overcome them. METHODS Searching for relevant articles was done using the PubMed and Cochrane Library databases. Studies had to be published in full-text in English in order to be considered. RESULTS Many factors can limit optimal CAR-T cell outcomes, including the hostile Prostate microenvironment, age, comorbidities, and tumour grade. The adverse effects of the therapy, particularly the cytokine release syndrome, are a major source of worry after treatment administration. Attempts to alter gamma/delta T-cells and NK cells with CAR, on the other hand, have demonstrated higher effectiveness and safety than conventional CAR-T cells. CONCLUSION To improve the use of immunotherapies, a greater understanding of the prostate cancer microenvironment is required. Concerning toxicity, more research is needed to find the most specific and highly expressed prostate antigens. Furthermore, discovering predictive biomarkers for toxicities, as well as choosing the correct patient for therapy, might decrease immune-related side effects and achieve a greater response.
Collapse
Affiliation(s)
| | | | | | - Majd Hamdi Dajani
- Medical Student, Faculty of Medicine, Hashemite University, Zarqa, Jordan
| | - Walaa Bayoumie El Gazzar
- Department of Basic medical sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan.,Department of Medical Biochemistry and molecular biology, Faculty of Medicine, Benha University, Benha city, Egypt
| |
Collapse
|
8
|
Tang Q, Cheng B, Dai R, Wang R. The Role of Androgen Receptor in Cross Talk Between Stromal Cells and Prostate Cancer Epithelial Cells. Front Cell Dev Biol 2021; 9:729498. [PMID: 34692685 PMCID: PMC8526848 DOI: 10.3389/fcell.2021.729498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/06/2021] [Indexed: 11/13/2022] Open
Abstract
Prostate cancer (PCa) lists as the second most lethal cancer for men in western countries, and androgen receptor (AR) plays a central role in its initiation and progression, which prompts the development of androgen deprivation therapy (ADT) as the standard treatment. Prostate tumor microenvironment, consisting of stromal cells and extracellular matrix (ECM), has dynamic interactions with PCa epithelial cells and affects their growth and invasiveness. Studies have shown that both genomic and non-genomic AR signaling pathways are involved in the biological regulation of PCa epithelial cells. In addition, AR signaling in prostate stroma is also involved in PCa carcinogenesis and progression. Loss of AR in PCa stroma is clinically observed as PCa progresses to advanced stage. Especially, downregulation of AR in stromal fibroblasts dysregulates the expression levels of ECM proteins, thus creating a suitable environment for PCa cells to metastasize. Importantly, ADT treatment enhances this reciprocal interaction and predisposes stromal cells to promote cell invasion of PCa cells. During this process, AR in PCa epithelium actively responds to various stimuli derived from the surrounding stromal cells and undergoes enhanced degradation while elevating the expression of certain genes such as MMP9 responsible for cell invasion. AR reduction in epithelial cells also accelerates these cells to differentiate into cancer stem-like cells and neuroendocrine cells, which are AR-negative PCa cells and inherently resistant to ADT treatments. Overall, understanding of the cross talk between tumor microenvironment and PCa at the molecular level may assist the development of novel therapeutic strategies against this disease. This review will provide a snapshot of AR's action when the interaction of stromal cells and PCa cells occurs.
Collapse
Affiliation(s)
- Qianyao Tang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Bo Cheng
- Department of Urology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Rongyang Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ronghao Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
9
|
Abstract
Chimeric antigen receptor (CAR) T cell immunotherapy involves the genetic modification of the patient's own T cells so that they specifically recognize and destroy tumour cells. Considerable clinical success has been achieved using this technique in patients with lymphoid malignancies, but clinical studies that investigated treating solid tumours using this emerging technology have been disappointing. A number of developments might be able to increase the efficacy of CAR T cell therapy for treatment of prostate cancer, including improved trafficking to the tumour, techniques to overcome the immunosuppressive tumour microenvironment, as well as methods to enhance CAR T cell persistence, specificity and safety. Furthermore, CAR T cell therapy has the potential to be combined with other treatment modalities, such as androgen deprivation therapy, radiotherapy or chemotherapy, and could be applied as focal CAR T cell therapy for prostate cancer.
Collapse
|
10
|
|
11
|
Combination Treatment Options for Castration-Resistant Prostate Cancer. Prostate Cancer 2021. [DOI: 10.36255/exonpublications.prostatecancer.combinationtreatment.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
12
|
Management of men with metastatic castration-resistant prostate cancer following potent androgen receptor inhibition: a review of novel investigational therapies. Prostate Cancer Prostatic Dis 2020; 24:301-309. [PMID: 33168966 DOI: 10.1038/s41391-020-00299-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Androgen-targeted therapy and chemotherapy are currently the mainstay of treatment in metastatic castration resistant prostate cancer (mCRPC). When progression occurs despite these therapeutic strategies, additional FDA-approved treatment options are lacking. However, there is a vast amount of emerging data surrounding novel investigational therapies in this space. METHODS We reviewed and summarized the body of literature surrounding the current treatment options for mCRPC. Medline and Pubmed as well as abstracts from international congresses were utilized to gather relevant literature surrounding investigational treatment of mCRPC. We highlight the results of recent trials investigating the use of novel strategies to treat mCRPC. RESULTS Androgen-targeted therapy and chemotherapy will remain foundational in the treatment of mCRPC. However, heavily pretreated patients who have developed resistance may benefit from novel therapeutic strategies. The use of poly(adenosine diphosphate [ADP]-ribose) polymerase inhibitors (PARPi) has now gained FDA approval for patients with homologous recombination repair (HRR) gene mutations. Novel androgen receptor (AR) degraders and the use of radioligand therapy (RLT) with Lu-PSMA-617 (Lu-PSMA) are under investigation. Immune-directed therapies, including programmed death (PD-1) inhibition, bi-specific T-cell engager (BiTE) technology, and chimeric antigen receptor (CAR) T-cell therapy, have shown promise in early phase trials. Further understanding of resistance mechanisms has led to additional therapeutic targets, including targeting the PI3K-Akt-mTOR pathway and enhancer of zester homolog 2 (EZH2). CONCLUSIONS Based on our review of the literature, exciting new therapeutic strategies exist for the treatment of mCRPC. In particular, PARPi, AR degraders, PSMA-targeted therapies, immune-directed therapies, and agents targeting resistance mechanisms as monotherapy or in combination could improve patient outcomes. Additional data from randomized trials are necessary to understand the efficacy and tolerability of these treatment strategies.
Collapse
|
13
|
Abstract
Adoptive T cell therapy has proven effective against hematologic malignancies and demonstrated efficacy against a variety of solid tumors in preclinical studies and clinical trials. Nonetheless, antitumor responses against solid tumors remain modest, highlighting the need to enhance the effectiveness of this therapy. Genetic modification of T cells with RNA has been explored to enhance T-cell antigen specificity, effector function, and migration to tumor sites, thereby potentiating antitumor immunity. This review describes the rationale for RNA-electroporated T cell modifications and provides an overview of their applications in preclinical and clinical investigations for the treatment of hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Fernanda Pohl-Guimarães
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Lan B Hoang-Minh
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| | - Duane A Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, McKnight Brain Institute, Department of Neurosurgery, University of Florida, Gainesville, FL, USA
| |
Collapse
|
14
|
Ponterio E, De Maria R, Haas TL. Identification of Targets to Redirect CAR T Cells in Glioblastoma and Colorectal Cancer: An Arduous Venture. Front Immunol 2020; 11:565631. [PMID: 33101285 PMCID: PMC7555836 DOI: 10.3389/fimmu.2020.565631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
The chimeric antigen receptor (CAR) is an artificial molecule engineered to induce cytolytic T cell reactions in tumors. Generally, this molecule combines an extracellular single-chain variable fragment (scFv) able to recognize tumor-associated epitopes together with the intracellular signaling domains that are required for T cell activation. When expressed by T cells, the CAR enables the recognition and subsequent destruction of cancer cells expressing the complementary antigen on their surface. Although the clinical application for CAR T cells is currently limited to some hematological malignancies, researchers are trying to develop CAR T cell-based therapies for the treatment of solid tumors. However, while in the case of CD19, or other targets restricted to the hematopoietic compartment, the toxicity is limited and manageable, the scarcity of specific antigens expressed by solid tumors and not by healthy cells from vital organs makes the clinical development of CAR T cells in this context particularly challenging. Here we summarize relevant research and clinical trials conducted to redirect CAR T cells to surface antigens in solid tumors and cancer stem cells with a focus on colorectal cancer and glioblastoma. Finally, we will discuss current knowledge of altered glycosylation of CSCs and cancer cells and how these novel epitopes may help to target CAR T cell-based immunotherapy in the future.
Collapse
Affiliation(s)
- Eleonora Ponterio
- Fondazione Policlinico Universitario "A. Gemelli" -Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Istituto di Patologia Generale, Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | - Ruggero De Maria
- Fondazione Policlinico Universitario "A. Gemelli" -Istituti di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Istituto di Patologia Generale, Università Cattolica del Sacro Cuore Rome, Rome, Italy
| | - Tobias Longin Haas
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore Rome, Rome, Italy.,IIGM-Italian Institute for Genomic Medicine, IRCCS, Candiolo, Italy.,Candiolo Cancer Institute, Fondazione del Piemonte per l'Oncologia-Istituti di Ricovero e Cura a Carattere Scientifico, Candiolo, Italy
| |
Collapse
|
15
|
Ben-Batalla I, Vargas-Delgado ME, von Amsberg G, Janning M, Loges S. Influence of Androgens on Immunity to Self and Foreign: Effects on Immunity and Cancer. Front Immunol 2020; 11:1184. [PMID: 32714315 PMCID: PMC7346249 DOI: 10.3389/fimmu.2020.01184] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
It is well-known that sex hormones can directly and indirectly influence immune cell function. Different studies support a suppressive role of androgens on different components of the immune system by decreasing antibody production, T cell proliferation, NK cytotoxicity, and stimulating the production of anti-inflammatory cytokines. Androgen receptors have also been detected in many different cells of hematopoietic origin leading to direct effects of their ligands on the development and function of the immune system. The immunosuppressive properties of androgens could contribute to gender dimorphisms in autoimmune and infectious disease and thereby also hamper immune surveillance of tumors. Consistently, females generally are more prone to autoimmunity, while relatively less susceptible to infections, and have lower incidence and mortality of the majority of cancers compared to males. Some studies show that androgen deprivation therapy (ADT) can induce expansion of naïve T cells and increase T-cell responses. Emerging clinical data also reveal that ADT might enhance the efficacy of various immunotherapies including immune checkpoint blockade. In this review, we will discuss the potential role of androgens and their receptors in the immune responses in the context of different diseases. A particular focus will be on cancer, highlighting the effect of androgens on immune surveillance, tumor biology and on the efficacy of anti-cancer therapies including emerging immune therapies.
Collapse
Affiliation(s)
- Isabel Ben-Batalla
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - María Elena Vargas-Delgado
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunhild von Amsberg
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Martini-Clinic, Prostate Cancer Center, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Janning
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| | - Sonja Loges
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Personalized Oncology, University Hospital Mannheim, Mannheim, Germany
| |
Collapse
|
16
|
Rennier K, Shin WJ, Krug E, Virdi G, Pachynski RK. Chemerin Reactivates PTEN and Suppresses PD-L1 in Tumor Cells via Modulation of a Novel CMKLR1-mediated Signaling Cascade. Clin Cancer Res 2020; 26:5019-5035. [PMID: 32605911 DOI: 10.1158/1078-0432.ccr-19-4245] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/18/2020] [Accepted: 06/26/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Chemerin (retinoic acid receptor responder 2, RARRES2) is an endogenous leukocyte chemoattractant that recruits innate immune cells through its receptor, ChemR23. RARRES2 is widely expressed in nonhematopoietic tissues and often downregulated across multiple tumor types compared with normal tissue. Recent studies show that augmenting chemerin in the tumor microenvironment significantly suppresses tumor growth, in part, by immune effector cells recruitment. However, as tumor cells express functional chemokine/chemoattractant receptors that impact their phenotype, we hypothesized that chemerin may have additional, tumor-intrinsic effects. EXPERIMENTAL DESIGN We investigated the effect of exogenous chemerin on human prostate and sarcoma tumor lines. Key signaling pathway components were elucidated using qPCR, Western blotting, siRNA knockdown, and specific inhibitors. Functional consequences of chemerin treatment were evaluated using in vitro and in vivo studies. RESULTS We show for the first time that human tumors exposed to exogenous chemerin significantly upregulate PTEN expression/activity, and concomitantly suppress programmed death ligand-1 (PD-L1) expression. CMKLR1 knockdown abrogated chemerin-induced PTEN and PD-L1 modulation, exposing a novel CMKLR1/PTEN/PD-L1 signaling cascade. Targeted inhibitors suggested signaling was occurring through the PI3K/AKT/mTOR pathway. Chemerin treatment significantly reduced tumor migration, while significantly increasing T-cell-mediated cytotoxicity. Chemerin treatment was as effective as both PD-L1 knockdown and the anti-PD-L1 antibody, atezolizumab, in augmenting T-cell-mediated tumor lysis. Forced expression of chemerin in human DU145 tumors significantly suppressed in vivo tumor growth, and significantly increased PTEN and decreased PD-L1 expression. CONCLUSIONS Collectively, our data show a novel link between chemerin, PTEN, and PD-L1 in human tumor lines, which may have a role in improving T-cell-mediated immunotherapies.
Collapse
Affiliation(s)
- Keith Rennier
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Woo Jae Shin
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Ethan Krug
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Gurpal Virdi
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Russell K Pachynski
- Division of Oncology, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri. .,Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri.,The Bursky Center for Human Immunology & Immunotherapy Programs (CHiiPs), Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
17
|
Schepisi G, Cursano MC, Casadei C, Menna C, Altavilla A, Lolli C, Cerchione C, Paganelli G, Santini D, Tonini G, Martinelli G, De Giorgi U. CAR-T cell therapy: a potential new strategy against prostate cancer. J Immunother Cancer 2019; 7:258. [PMID: 31619289 PMCID: PMC6794851 DOI: 10.1186/s40425-019-0741-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/13/2019] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer (PCa) is one of the main causes of cancer-related death in men. In the present immunotherapy era, several immunotherapeutic agents have been evaluated in PCa with poor results, possibly due to its low mutational burden. The recent development of chimeric antigen receptor (CAR)-T cell therapy redirected against cancer-specific antigens would seem to provide the means for bypassing immune tolerance mechanisms. CAR-T cell therapy has proven effective in eradicating hematologic malignancies and the challenge now is to obtain the same degree of in solid tumors, including PCa. In this study we review the principles that have guided the engineering of CAR-T cells and the specific prostatic antigens identified as possible targets for immunological and non-immunological therapies. We also provide a state-of-the-art overview of CAR-T cell therapy in PCa, defining the key obstacles to its development and underlining the mechanisms used to overcome these barriers. At present, although there are still many unanswered questions regarding CAR-T cell therapy, there is no doubt that it has the potential to become an important treatment option for urological malignancies.
Collapse
Affiliation(s)
- Giuseppe Schepisi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy.
| | | | - Chiara Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Cecilia Menna
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Amelia Altavilla
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Cristian Lolli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Claudio Cerchione
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Giovanni Paganelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | | | | | - Giovanni Martinelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli 40, 47014, Meldola, Italy
| |
Collapse
|
18
|
Yu H, Pan J, Guo Z, Yang C, Mao L. CART cell therapy for prostate cancer: status and promise. Onco Targets Ther 2019; 12:391-395. [PMID: 30655675 PMCID: PMC6322708 DOI: 10.2147/ott.s185556] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
In recent years, the, chimeric antigen receptor T (CAR-T) cell therapy as an adoptive immunotherapy has received great attention and made great breakthroughs. CAR-T cells show great specificity, targeting, and less major histocompatibility complex restriction in tumor immunotherapy, significantly different from traditional T cells. In spite of the progress of CART-T technology in the treatment of lymphoma, leukemia, and other blood system tumor, there are still many difficulties in the treatment of solid tumors by CAR-T technology. In this review, we will make a brief summary of the present situation of CAR-T cells in the treatment of prostate cancer, and discuss the promise of the application of this technology to prostate cancer therapy.
Collapse
Affiliation(s)
- Haiyuan Yu
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, ,
| | - Jun Pan
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, ,
| | - Zhicheng Guo
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, ,
| | - Chunhua Yang
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, , .,Jiangsu Key Laboratory of Biological Cancer Therapy, Department of Clinic Institute, Xuzhou Medical University, Xuzhou 221002, China, ,
| | - Lijun Mao
- Department of Urinary Surgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou 221000, China, , .,Jiangsu Key Laboratory of Biological Cancer Therapy, Department of Clinic Institute, Xuzhou Medical University, Xuzhou 221002, China, ,
| |
Collapse
|
19
|
Zhou D, Xu L, Huang W, Tonn T. Epitopes of MUC1 Tandem Repeats in Cancer as Revealed by Antibody Crystallography: Toward Glycopeptide Signature-Guided Therapy. Molecules 2018; 23:molecules23061326. [PMID: 29857542 PMCID: PMC6099590 DOI: 10.3390/molecules23061326] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 02/06/2023] Open
Abstract
Abnormally O-glycosylated MUC1 tandem repeat glycopeptide epitopes expressed by multiple types of cancer have long been attractive targets for therapy in the race against genetic mutations of tumor cells. Glycopeptide signature-guided therapy might be a more promising avenue than mutation signature-guided therapy. Three O-glycosylated peptide motifs, PDTR, GSTA, and GVTS, exist in a tandem repeat HGVTSAPDTRPAPGSTAPPA, containing five O-glycosylation sites. The exact peptide and sugar residues involved in antibody binding are poorly defined. Co-crystal structures of glycopeptides and respective monoclonal antibodies are very few. Here we review 3 groups of monoclonal antibodies: antibodies which only bind to peptide portion, antibodies which only bind to sugar portion, and antibodies which bind to both peptide and sugar portions. The antigenicity of peptide and sugar portions of glyco-MUC1 tandem repeat were analyzed according to available biochemical and structural data, especially the GSTA and GVTS motifs independent from the most studied PDTR. Tn is focused as a peptide-modifying residue in vaccine design, to induce glycopeptide-binding antibodies with cross reactivity to Tn-related tumor glycans, but not glycans of healthy cells. The unique requirement for the designs of antibody in antibody-drug conjugate, bi-specific antibodies, and chimeric antigen receptors are also discussed.
Collapse
Affiliation(s)
- Dapeng Zhou
- Shanghai Pulmonary Hospital Affiliated with Tongji University School of Medicine, Shanghai 200092, China.
| | - Lan Xu
- Laboratory of Antibody Structure, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201203, China.
| | - Wei Huang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences and iHuman Institute, ShanghaiTech University, Shanghai 201203, China.
| | - Torsten Tonn
- Institute for Transfusion Medicine Dresden, German Red Cross Blood Donation Service North-East, D-01307 Dresden, Germany.
- Medical Faculty, Carl Gustav Carus Technical University Dresden, D-01307 Dresden, Germany.
| |
Collapse
|
20
|
ALBERTI C. Prostate cancer immunotherapy, particularly in combination with androgen deprivation or radiation treatment. Customized pharmacogenomic approaches to overcome immunotherapy cancer resistance. G Chir 2017; 37:225-235. [PMID: 28098061 PMCID: PMC5256907 DOI: 10.11138/gchir/2016.37.5.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Conventional therapeutic approaches for advanced prostate cancer - such as androgen deprivation, chemotherapy, radiation - come up often against lack of effectiveness because of possible arising of correlative cancer cell resistance and/or inadequate anti-tumor immune conditions. Whence the timeliness of resorting to immune-based treatment strategies including either therapeutic vaccination-based active immunotherapy or anti-tumor monoclonal antibody-mediated passive immunotherapy. Particularly attractive, as for research studies and clinical applications, results to be the cytotoxic T-lymphocyte check point blockade by the use of anti-CTLA-4 and PD-1 monoclonal antibodies, particularly when combined with androgen deprivation therapy or radiation. Unlike afore said immune check point inhibitors, both cell-based (by the use of prostate specific antigen carriers autologous dendritic cells or even whole cancer cells) and recombinant viral vector vaccines are able to induce immune-mediated focused killing of specific antigen-presenting prostate cancer cells. Such vaccines, either used alone or concurrently/sequentially combined with above-mentioned conventional therapies, led to generally reach, in the field of various clinical trials, reasonable results particularly as regards the patient's overall survival. Adoptive trasferred T-cells, as adoptive T-cell passive immunotherapy, and monoclonal antibodies against specific antigen-endowed prostate cancer cells can improve immune micro-environmental conditions. On the basis of a preliminary survey about various immunotherapy strategies, are here also outlined their effects when combined with androgen deprivation therapy or radiation. What's more, as regard the immune-based treatment effectiveness, it has to be pointed out that suitable personalized epigenetic/gene profile-achieved pharmacogenomic approaches to target identified gene aberrations, may lead to overcome - as well as for conventional therapies - possible prostate cancer resistance to immunotherapy.
Collapse
|
21
|
MUC1 Expression by Immunohistochemistry Is Associated with Adverse Pathologic Features in Prostate Cancer: A Multi-Institutional Study. PLoS One 2016; 11:e0165236. [PMID: 27846218 PMCID: PMC5112958 DOI: 10.1371/journal.pone.0165236] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 09/16/2016] [Indexed: 12/31/2022] Open
Abstract
Background The uncertainties inherent in clinical measures of prostate cancer (CaP) aggressiveness endorse the investigation of clinically validated tissue biomarkers. MUC1 expression has been previously reported to independently predict aggressive localized prostate cancer. We used a large cohort to validate whether MUC1 protein levels measured by immunohistochemistry (IHC) predict aggressive cancer, recurrence and survival outcomes after radical prostatectomy independent of clinical and pathological parameters. Material and Methods MUC1 IHC was performed on a multi-institutional tissue microarray (TMA) resource including 1,326 men with a median follow-up of 5 years. Associations with clinical and pathological parameters were tested by the Chi-square test and the Wilcoxon rank sum test. Relationships with outcome were assessed with univariable and multivariable Cox proportional hazard models and the Log-rank test. Results The presence of MUC1 expression was significantly associated with extracapsular extension and higher Gleason score, but not with seminal vesicle invasion, age, positive surgical margins or pre-operative serum PSA levels. In univariable analyses, positive MUC1 staining was significantly associated with a worse recurrence free survival (RFS) (HR: 1.24, CI 1.03–1.49, P = 0.02), although not with disease specific survival (DSS, P>0.5). On multivariable analyses, the presence of positive surgical margins, extracapsular extension, seminal vesicle invasion, as well as higher pre-operative PSA and increasing Gleason score were independently associated with RFS, while MUC1 expression was not. Positive MUC1 expression was not independently associated with disease specific survival (DSS), but was weakly associated with overall survival (OS). Conclusion In our large, rigorously designed validation cohort, MUC1 protein expression was associated with adverse pathological features, although it was not an independent predictor of outcome after radical prostatectomy.
Collapse
|
22
|
Mazzucchelli R, Gasparrini S, Galosi AB, Massari F, Ciccarese C, Scarpelli M, Lopez-Beltran A, Cheng L, Montironi R. Immunotargeting and personalized therapies in genitourinary cancers. Future Oncol 2016; 12:1853-6. [PMID: 27113700 DOI: 10.2217/fon-2016-0183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Roberta Mazzucchelli
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | - Silvia Gasparrini
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | - Andrea B Galosi
- Dipartimento di Scienze Cliniche e Specialistiche, Sezione di Urologia, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria Ospedali Riuniti, Ancona, Italy
| | | | - Chiara Ciccarese
- Medical Oncology, Azienda Ospedaliera Universitaria Integrata, University of Verona, Verona, Italy
| | - Marina Scarpelli
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Liang Cheng
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rodolfo Montironi
- Section of Pathological Anatomy, Marche Polytechnic University, School of Medicine, United Hospitals, Ancona, Italy
| |
Collapse
|
23
|
Shu D, Pi F, Wang C, Zhang P, Guo P. New approach to develop ultra-high inhibitory drug using the power function of the stoichiometry of the targeted nanomachine or biocomplex. Nanomedicine (Lond) 2016; 10:1881-97. [PMID: 26139124 DOI: 10.2217/nnm.15.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS To find methods for potent drug development by targeting to biocomplex with high copy number. METHODS Phi29 DNA packaging motor components with different stoichiometries were used as model to assay virion assembly with Yang Hui's Triangle [Formula: see text], where Z = stoichiometry, M = drugged subunits per biocomplex, p and q are the fraction of drugged and undrugged subunits in the population. RESULTS Inhibition efficiency follows a power function. When number of drugged subunits to block the function of the complex K = 1, the uninhibited biocomplex equals q(z), demonstrating the multiplicative effect of stoichiometry on inhibition with stoichiometry 1000 > 6 > 1. Complete inhibition of virus replication was found when Z = 6. CONCLUSION Drug inhibition potency depends on the stoichiometry of the targeted components of the biocomplex or nanomachine. The inhibition effect follows a power function of the stoichiometry of the target biocomplex.
Collapse
Affiliation(s)
- Dan Shu
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Fengmei Pi
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Chi Wang
- Department of Biostatistics & Nanobiotechnology Center, University of Kentucky, Lexington, KY 40536, USA
| | - Peng Zhang
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI 48109, USA
| | - Peixuan Guo
- Department of Pharmaceutical Sciences, Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
24
|
Morello A, Sadelain M, Adusumilli PS. Mesothelin-Targeted CARs: Driving T Cells to Solid Tumors. Cancer Discov 2015; 6:133-46. [PMID: 26503962 DOI: 10.1158/2159-8290.cd-15-0583] [Citation(s) in RCA: 361] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/08/2015] [Indexed: 12/19/2022]
Abstract
UNLABELLED Chimeric antigen receptors (CAR) are synthetic receptors that target T cells to cell-surface antigens and augment T-cell function and persistence. Mesothelin is a cell-surface antigen implicated in tumor invasion, which is highly expressed in mesothelioma and lung, pancreas, breast, ovarian, and other cancers. Its low-level expression in mesothelia, however, commands thoughtful therapeutic interventions. Encouragingly, recent clinical trials evaluating active immunization or immunoconjugates in patients with pancreatic adenocarcinoma or mesothelioma have shown responses without toxicity. Altogether, these findings and preclinical CAR therapy models using either systemic or regional T-cell delivery argue favorably for mesothelin CAR therapy in multiple solid tumors. SIGNIFICANCE Recent success obtained with adoptive transfer of CAR T cells targeting CD19 in patients with refractory hematologic malignancies has generated much enthusiasm for T-cell engineering and raises the prospect of implementing similar strategies for solid tumors. Mesothelin is expressed in a wide range and a high percentage of solid tumors, which we review here in detail. Mesothelin CAR therapy has the potential to treat multiple solid malignancies.
Collapse
Affiliation(s)
- Aurore Morello
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York. Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
25
|
Abstract
Cancer immunotherapy was selected as the Breakthrough of the Year 2013 by the editors of Science, in part because of the successful treatment of refractory hematological malignancies with adoptive transfer of chimeric antigen receptor (CAR)-engineered T cells. Effective treatment of B cell leukemia may pave the road to future treatment of solid tumors, using similar approaches. The prostate expresses many unique proteins and, since the prostate gland is a dispensable organ, CAR T cells can potentially be used to target these tissue-specific antigens. However, the location and composition of prostate cancer metastases complicate the task of treating these tumors. It is therefore likely that more sophisticated CAR T cell approaches are going to be required for prostate metastasis than for B cell malignancies. Two main challenges that need to be resolved are how to increase the migration and infiltration of CAR T cells into prostate cancer bone metastases and how to counteract the immunosuppressive microenvironment found in bone lesions. Inclusion of homing (chemokine) receptors in CAR T cells may improve their recruitment to bone metastases, as may antibody-based combination therapies to normalize the tumor vasculature. Optimal activation of CAR T cells through the introduction of multiple costimulatory domains would help to overcome inhibitory signals from the tumor microenvironment. Likewise, combination therapy with checkpoint inhibitors that can reduce tumor immunosuppression may help improve efficacy. Other elegant approaches such as induced expression of immune stimulatory cytokines upon target recognition may also help to recruit other effector immune cells to metastatic sites. Although toxicities are difficult to predict in prostate cancer, severe on-target/off-tumor toxicities have been observed in clinical trials with use of CAR T cells against hematological malignancies; therefore, the choice of the target antigen is going to be crucial. This review focuses on different means of accomplishing maximal effectiveness of CAR T cell therapy for prostate cancer bone metastases while minimizing side effects and CAR T cell-associated toxicities. CAR T cell-based therapies for prostate cancer have the potential to be a therapy model for other solid tumors.
Collapse
|
26
|
Pi F, Vieweger M, Zhao Z, Wang S, Guo P. Discovery of a new method for potent drug development using power function of stoichiometry of homomeric biocomplexes or biological nanomotors. Expert Opin Drug Deliv 2015; 13:23-36. [PMID: 26307193 DOI: 10.1517/17425247.2015.1082544] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Multidrug resistance and the appearance of incurable diseases inspire the quest for potent therapeutics. AREAS COVERED We review a new methodology in designing potent drugs by targeting multi-subunit homomeric biological motors, machines or complexes with Z > 1 and K = 1, where Z is the stoichiometry of the target, and K is the number of drugged subunits required to block the function of the complex. The condition is similar to a series electrical circuit of Christmas decorations: failure of one light bulb causes the entire lighting system to lose power. In most multi-subunit, homomeric biological systems, a sequential coordination or cooperative action mechanism is utilized, thus K equals 1. Drug inhibition depends on the ratio of drugged to non-drugged complexes. When K = 1, and Z > 1, the inhibition effect follows a power law with respect to Z, leading to enhanced drug potency. The hypothesis that the potency of drug inhibition depends on the stoichiometry of the targeted biological complexes was recently quantified by Yang-Hui's Triangle (or binomial distribution), and proved using a highly sensitive in vitro phi29 viral DNA packaging system. Examples of targeting homomeric bio-complexes with high stoichiometry for potent drug discovery are discussed. EXPERT OPINION Biomotors with multiple subunits are widespread in viruses, bacteria and cells, making this approach generally applicable in the development of inhibition drugs with high efficiency.
Collapse
Affiliation(s)
- Fengmei Pi
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Mario Vieweger
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Zhengyi Zhao
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Shaoying Wang
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| | - Peixuan Guo
- a 1 University of Kentucky, Nanobiotechnology Center , Lexington, KY 40536, USA.,b 2 University of Kentucky, Markey Cancer Center , Lexington, KY 40536, USA.,c 3 University of Kentucky, Department of Pharmaceutical Sciences , 789 S. Limestone Street, Room # 576, Lexington, KY 40536, USA +1 859 218 0128 ; +1 859 257 1307 ;
| |
Collapse
|
27
|
Hu S, Li L, Yeh S, Cui Y, Li X, Chang HC, Jin J, Chang C. Infiltrating T cells promote prostate cancer metastasis via modulation of FGF11→miRNA-541→androgen receptor (AR)→MMP9 signaling. Mol Oncol 2014; 9:44-57. [PMID: 25135278 DOI: 10.1016/j.molonc.2014.07.013] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 12/31/2022] Open
Abstract
Early clinical studies suggested infiltrating T cells might be associated with poor outcomes in prostate cancer (PCa) patients. The detailed mechanisms how T cells contribute to PCa progression, however, remained unclear. Here, we found PCa cells have a better capacity to recruit more CD4(+) T cells than the surrounding normal prostate cells via secreting more chemokines-CXCL9. The consequences of more recruited CD4(+) T cells to PCa might then lead to enhance PCa cell invasion. Mechanism dissection revealed that infiltrating CD4(+) T cells might function through the modulation of FGF11→miRNA-541 signals to suppress PCa androgen receptor (AR) signals. The suppressed AR signals might then alter the MMP9 signals to promote the PCa cell invasion. Importantly, suppressed AR signals via AR-siRNA or anti-androgen Enzalutamide in PCa cells also enhanced the recruitment of T cells and the consequences of this positive feed back regulation could then enhance the PCa cell invasion. Targeting these newly identified signals via FGF11-siRNA, miRNA-541 inhibitor or MMP9 inhibitor all led to partially reverse the enhanced PCa cell invasion. Results from in vivo mouse models also confirmed the in vitro cell lines in co-culture studies. Together, these results concluded that infiltrating CD4(+) T cells could promote PCa metastasis via modulation of FGF11→miRNA-541→AR→MMP9 signaling. Targeting these newly identified signals may provide us a new potential therapeutic approach to better battle PCa metastasis.
Collapse
Affiliation(s)
- Shuai Hu
- Department of Urology, Peking University First Hospital, Beijing, China; George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Lei Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Yun Cui
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Xin Li
- Department of Urology, Peking University First Hospital, Beijing, China
| | - Hong-Chiang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Jie Jin
- Department of Urology, Peking University First Hospital, Beijing, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, and The Wilmot Cancer Center, University of Rochester Medical Center, Rochester, NY, USA; Sex Hormone Research Center, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
28
|
Brennen WN, Drake CG, Isaacs JT. Enhancement of the T-cell armamentarium as a cell-based therapy for prostate cancer. Cancer Res 2014; 74:3390-5. [PMID: 24747912 DOI: 10.1158/0008-5472.can-14-0249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostate cancer is frequently characterized by a large inflammatory infiltrate that includes T cells. Although T cells traffic to cancer lesions in large numbers, they are unable to generate a therapeutic response because of the immunosuppressive microenvironment. Therefore, arming T cells with a cytotoxic agent that is capable of killing cancer cells independent of these immunosuppressive signals is a rational approach to enhance their potency. Essentially, the T cells would serve as a cell-based vector, or "Trojan Horse," to selectively deliver a protoxin to disseminated prostate cancer lesions. The selective delivery of a protoxin using T cells represents an ideal method to maximize their therapeutic potency through a "field effect." Because systemically infused T cells are expected to traffic to sites of inflammation other than cancer, an additional level of specificity may be needed to prevent toxicity to nontarget tissues. Toward this goal, genetic engineering can be used to make protoxin expression dependent upon T-cell recognition of the prostate-specific membrane antigen by a chimeric antigen receptor. Furthermore, selective activation of the protoxin using a tissue- or tumor-specific protease, such as PSA, can promote further specificity. Thus, T-cell potency can be enhanced by targeted protoxin secretion and greater specificity achieved using combinatorial antigen recognition and protoxin activation.
Collapse
Affiliation(s)
- W Nathaniel Brennen
- Authors' Affiliations: Chemical Therapeutics Program; Department of Oncology;
| | - Charles G Drake
- Department of Oncology; Department of Immunology; and Department of Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - John T Isaacs
- Authors' Affiliations: Chemical Therapeutics Program; Department of Oncology; Department of Urology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
29
|
Chu J, He S, Deng Y, Zhang J, Peng Y, Hughes T, Yi L, Kwon CH, Wang QE, Devine SM, He X, Bai XF, Hofmeister CC, Yu J. Genetic modification of T cells redirected toward CS1 enhances eradication of myeloma cells. Clin Cancer Res 2014; 20:3989-4000. [PMID: 24677374 DOI: 10.1158/1078-0432.ccr-13-2510] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE Our goal is to test whether CS1 could be targeted by chimeric antigen receptor (CAR) T cells to treat multiple myeloma (MM). EXPERIMENTAL DESIGN We generated a retroviral construct of a CS1-specific CAR and engineered primary human T cells expressing the CAR. We then tested the capacity of CS1-CAR T cells to eradicate human MM tumor cells in vitro, ex vivo, and in vivo using orthotopic MM xenograft mouse models. RESULTS In vitro, compared with mock-transduced T cells, upon recognizing CS1-positive MM cells, CS1-CAR-transduced T cells secreted more IFN-γ as well as interleukin (IL)-2, expressed higher levels of the activation marker CD69, showed higher capacity for degranulation, and displayed enhanced cytotoxicity. Ectopically forced expression of CS1 in MM cells with low CS1 expression enhanced recognition and killing by CAR T cells. Ex vivo, CS1-CAR T cells also showed similarly enhanced activities when responding to primary MM cells. More importantly, in orthotopic MM xenograft mouse models, adoptive transfer of human primary T cells expressing CS1-CAR efficiently suppressed the growth of human MM.1S and IM9 myeloma cells and significantly prolonged mouse survival. CONCLUSIONS CS1 is a promising antigen that can be targeted by CAR-expressing T cells for treatment of MM.
Collapse
Affiliation(s)
- Jianhong Chu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Shun He
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Youcai Deng
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | - Jianying Zhang
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Yong Peng
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Tiffany Hughes
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Ling Yi
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Chang-Hyuk Kwon
- Dardinger Neuro-oncology Center, Department of Neurological Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Qi-En Wang
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Steven M Devine
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Blood and Marrow Transplantation Program, The James Cancer Hospital, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xiaoming He
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xue-Feng Bai
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Craig C Hofmeister
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, Ohio 43210, USA.,Blood and Marrow Transplantation Program, The James Cancer Hospital, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
30
|
Kinetics of tumor destruction by chimeric antigen receptor-modified T cells. Mol Ther 2013; 22:623-633. [PMID: 24213558 DOI: 10.1038/mt.2013.262] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 10/30/2013] [Indexed: 01/28/2023] Open
Abstract
The use of chimeric antigen receptor (CAR)-modified T cells as a therapy for hematologic malignancies and solid tumors is becoming more widespread. However, the infusion of a T-cell product targeting a single tumor-associated antigen may lead to target antigen modulation under this selective pressure, with subsequent tumor immune escape. With the purpose of preventing this phenomenon, we have studied the impact of simultaneously targeting two distinct antigens present on tumor cells: namely mucin 1 and prostate stem cell antigen, both of which are expressed in a variety of solid tumors, including pancreatic and prostate cancer. When used individually, CAR T cells directed against either tumor antigen were able to kill target-expressing cancer cells, but tumor heterogeneity led to immune escape. As a combination therapy, we demonstrate superior antitumor effects using both CARs simultaneously, but this was nevertheless insufficient to achieve a complete response. To understand the mechanism of escape, we studied the kinetics of T-cell killing and found that the magnitude of tumor destruction depended not only on the presence of target antigens but also on the intensity of expression-a feature that could be altered by administering epigenetic modulators that upregulated target expression and enhanced CAR T-cell potency.
Collapse
|
31
|
Engineered T cells for cancer treatment. Cytotherapy 2013; 16:713-33. [PMID: 24239105 DOI: 10.1016/j.jcyt.2013.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/01/2013] [Accepted: 10/05/2013] [Indexed: 01/08/2023]
Abstract
Adoptively transferred T cells have the capacity to traffic to distant tumor sites, infiltrate fibrotic tissue and kill antigen-expressing tumor cells. Various groups have investigated different genetic engineering strategies designed to enhance tumor specificity, increase T cell potency, improve proliferation, persistence or migratory capacity and increase safety. This review focuses on recent developments in T cell engineering, discusses the clinical application of these engineered cell products and outlines future prospects for this therapeutic modality.
Collapse
|