1
|
Coppini A, Falconieri A, Mualem O, Nasrin SR, Roudon M, Saper G, Hess H, Kakugo A, Raffa V, Shefi O. Can repetitive mechanical motion cause structural damage to axons? Front Mol Neurosci 2024; 17:1371738. [PMID: 38912175 PMCID: PMC11191579 DOI: 10.3389/fnmol.2024.1371738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
Biological structures have evolved to very efficiently generate, transmit, and withstand mechanical forces. These biological examples have inspired mechanical engineers for centuries and led to the development of critical insights and concepts. However, progress in mechanical engineering also raises new questions about biological structures. The past decades have seen the increasing study of failure of engineered structures due to repetitive loading, and its origin in processes such as materials fatigue. Repetitive loading is also experienced by some neurons, for example in the peripheral nervous system. This perspective, after briefly introducing the engineering concept of mechanical fatigue, aims to discuss the potential effects based on our knowledge of cellular responses to mechanical stresses. A particular focus of our discussion are the effects of mechanical stress on axons and their cytoskeletal structures. Furthermore, we highlight the difficulty of imaging these structures and the promise of new microscopy techniques. The identification of repair mechanisms and paradigms underlying long-term stability is an exciting and emerging topic in biology as well as a potential source of inspiration for engineers.
Collapse
Affiliation(s)
| | | | - Oz Mualem
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| | - Syeda Rubaiya Nasrin
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | - Marine Roudon
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Gadiel Saper
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Henry Hess
- Department of Biomedical Engineering, Columbia University, New York, NY, United States
| | - Akira Kakugo
- Graduate School of Science, Division of Physics and Astronomy, Kyoto University, Kyoto, Japan
| | | | - Orit Shefi
- Faculty of Engineering, Bar Ilan Institute of Nanotechnologies and Advanced Materials, Gonda Brain Research Center, Bar Ilan University, Ramat Gan, Israel
| |
Collapse
|
2
|
Kučera O, Gaillard J, Guérin C, Utzschneider C, Théry M, Blanchoin L. Actin Architecture Steers Microtubules in Active Cytoskeletal Composite. NANO LETTERS 2022; 22:8584-8591. [PMID: 36279243 DOI: 10.1021/acs.nanolett.2c03117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Motility assays use surface-immobilized molecular motors to propel cytoskeletal filaments. They have been widely used to characterize motor properties and their impact on cytoskeletal self-organization. Moreover, the motility assays are a promising class of bioinspired active tools for nanotechnological applications. While these assays involve controlling the filament direction and speed, either as a sensory readout or a functional feature, designing a subtle control embedded in the assay is an ongoing challenge. Here, we investigate the interaction between gliding microtubules and networks of actin filaments. We demonstrate that the microtubule's behavior depends on the actin architecture. Both unbranched and branched actin decelerate microtubule gliding; however, an unbranched actin network provides additional guidance and effectively steers the microtubules. This effect, which resembles the recognition of cortical actin by microtubules, is a conceptually new means of controlling the filament gliding with potential application in the design of active materials and cytoskeletal nanodevices.
Collapse
Affiliation(s)
- Ondřej Kučera
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Jérémie Gaillard
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Christophe Guérin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Clothilde Utzschneider
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
- CytoMorpho Lab, Unité de Thérapie Cellulaire, Hôpital Saint Louis/CNRS/CEA, 1 Avenue Claude Vellefaux, Paris75 010, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, Interdisciplinary Research Institute of Grenoble, CEA/CNRS/Université Grenoble Alpes, 17 Avenue des Martyrs, Grenoble38 054, France
- CytoMorpho Lab, Unité de Thérapie Cellulaire, Hôpital Saint Louis/CNRS/CEA, 1 Avenue Claude Vellefaux, Paris75 010, France
| |
Collapse
|
3
|
Functionalization of Tubulin: Approaches to Modify Tubulin with Biotin and DNA. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2430:47-59. [PMID: 35476324 DOI: 10.1007/978-1-0716-1983-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The filamentous cytoskeletal protein microtubule, a polymer of α and β heterodimers of tubulin, plays major roles in intracellular transport as well as in vitro molecular actuation and transportation. Functionalization of tubulin dimers through covalent linkage facilitates utilization of microtubule in the nanobioengineering. Here we present a detailed description of the methodologies used to modify tubulin dimers with DNA strand and biotin through covalent interaction.
Collapse
|
4
|
A new approach to explore the mechanoresponsiveness of microtubules and its application in studying dynamic soft interfaces. Polym J 2020. [DOI: 10.1038/s41428-020-00415-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
5
|
Tanida S, Furuta K, Nishikawa K, Hiraiwa T, Kojima H, Oiwa K, Sano M. Gliding filament system giving both global orientational order and clusters in collective motion. Phys Rev E 2020; 101:032607. [PMID: 32289972 DOI: 10.1103/physreve.101.032607] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 02/21/2020] [Indexed: 06/11/2023]
Abstract
Emergence and collapse of coherent motions of self-propelled particles are affected more by particle motions and interactions than by their material or biological details. In the reconstructed systems of biofilaments and molecular motors, several types of collective motion including a global-order pattern emerge due to the alignment interaction. Meanwhile, earlier studies show that the alignment interaction of a binary collision of biofilaments is too weak to form the global order. The multiple collision is revealed to be important to achieve global order, but it is still unclear what kind of multifilament collision is actually involved. In this study, we demonstrate that not only alignment but also crossing of two filaments is essential to produce an effective multiple-particle interaction and the global order. We design the reconstructed system of biofilaments and molecular motors to vary a probability of the crossing of biofilaments on a collision and thus control the effect of volume exclusion. In this system, biofilaments glide along their polar strands on the turf of molecular motors and can align themselves nematically when they collide with each other. Our experiments show the counterintuitive result, in which the global order is achieved only when the crossing is allowed. When the crossing is prohibited, the cluster pattern emerges instead. We also investigate the numerical model in which we can change the strength of the volume exclusion effect and find that the global orientational order and clusters emerge with weak and strong volume exclusion effects, respectively. With those results and simple theory, we conclude that not only alignment but also finite crossing probability are necessary for the effective multiple-particles interaction forming the global order. Additionally, we describe the chiral symmetry breaking of a microtubule motion which causes a rotation of global alignment.
Collapse
Affiliation(s)
- Sakurako Tanida
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Ken'ya Furuta
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Kaori Nishikawa
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tetsuya Hiraiwa
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - Hiroaki Kojima
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology, 588-2 Iwaoka, Iwaoka-cho, Nishi-ku, Kobe, Japan
| | - Masaki Sano
- Department of Physics, Universal Biology Institute, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
6
|
|
7
|
Tsuji M, Rashedul Kabir AM, Ito M, Inoue D, Kokado K, Sada K, Kakugo A. Motility of Microtubules on the Inner Surface of Water-in-Oil Emulsion Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12108-12113. [PMID: 28972769 DOI: 10.1021/acs.langmuir.7b01550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Water-in-oil emulsion systems have recently attracted much attention in various fields. However, functionalization of water-in-oil emulsion systems, which is required for expanding their applications in industries and research, has been challenging. We now demonstrate the functionalization of a water-in-oil emulsion system by anchoring a target protein molecule. A microtubule (MT)-associated motor protein kinesin-1 was successfully anchored to the inner surface of water-in-oil emulsion droplets by employing the specific interaction of nickel-nitrilotriacetic acid-histidine tag. The MTs exhibited a gliding motion on the kinesin-functionalized inner surface of the emulsion droplets, which confirmed the success of the functionalization of the water-in-oil emulsion system. This result would be beneficial in exploring the roles of biomolecular motor systems in the cellular events that take place at the cell membrane and might also contribute to expanding the nanotechnological applications of biomolecular motors and water-in-oil emulsion systems in the future.
Collapse
Affiliation(s)
- Mikako Tsuji
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Arif Md Rashedul Kabir
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Masaki Ito
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Daisuke Inoue
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Kenta Kokado
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering and ‡Faculty of Science, Hokkaido University , Sapporo 060-0810, Japan
| |
Collapse
|
8
|
Saito A, Farhana TI, Kabir AMR, Inoue D, Konagaya A, Sada K, Kakugo A. Understanding the emergence of collective motion of microtubules driven by kinesins: role of concentration of microtubules and depletion force. RSC Adv 2017. [DOI: 10.1039/c6ra27449h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
9
|
Lam AT, VanDelinder V, Kabir AMR, Hess H, Bachand GD, Kakugo A. Cytoskeletal motor-driven active self-assembly in in vitro systems. SOFT MATTER 2016; 12:988-997. [PMID: 26576824 DOI: 10.1039/c5sm02042e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Molecular motor-driven self-assembly has been an active area of soft matter research for the past decade. Because molecular motors transform chemical energy into mechanical work, systems which employ molecular motors to drive self-assembly processes are able to overcome kinetic and thermodynamic limits on assembly time, size, complexity, and structure. Here, we review the progress in elucidating and demonstrating the rules and capabilities of motor-driven active self-assembly. We focus on the types of structures created and the degree of control realized over these structures, and discuss the next steps necessary to achieve the full potential of this assembly mode which complements robotic manipulation and passive self-assembly.
Collapse
Affiliation(s)
- A T Lam
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, MC 8904, New York, NY 10027, USA.
| | - V VanDelinder
- Sandia National Laboratories, Nanosystems Synthesis/Analysis Dept., Albuquerque, NM, USA.
| | - A M R Kabir
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - H Hess
- Department of Biomedical Engineering, Columbia University, 351 Engineering Terrace, 1210 Amsterdam Avenue, MC 8904, New York, NY 10027, USA.
| | - G D Bachand
- Sandia National Laboratories, Nanosystems Synthesis/Analysis Dept., Albuquerque, NM, USA.
| | - A Kakugo
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
10
|
Islam MS, Kabir AMR, Inoue D, Sada K, Kakugo A. Enhanced dynamic instability of microtubules in a ROS free inert environment. Biophys Chem 2015; 211:1-8. [PMID: 26774598 DOI: 10.1016/j.bpc.2015.11.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/19/2015] [Accepted: 11/22/2015] [Indexed: 11/28/2022]
Abstract
Reactive oxygen species (ROS), one of the regulators in various biological processes, have recently been suspected to modulate microtubule (MT) dynamics in cells. However due to complicated cellular environment and unavailability of any in vitro investigation, no detail is understood yet. Here, by performing simple in vitro investigations, we have unveiled the effect of ROS on MT dynamics. By studying dynamic instability of MTs in a ROS free environment and comparing with that in the presence of ROS, we disclosed that MTs showed enhanced dynamics in the ROS free environment. All the parameters that define dynamic instability of MTs e.g., growth and shrinkage rates, rescue and catastrophe frequencies were significantly affected by the presence of ROS. This work clearly reveals the role of ROS in modulating MT dynamics in vitro, and would be a great help in understanding the role of ROS in regulation of MT dynamics in cells.
Collapse
Affiliation(s)
- Md Sirajul Islam
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan
| | | | - Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kazuki Sada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan; Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.
| |
Collapse
|
11
|
Inoue D, Mahmot B, Kabir AMR, Farhana TI, Tokuraku K, Sada K, Konagaya A, Kakugo A. Depletion force induced collective motion of microtubules driven by kinesin. NANOSCALE 2015; 7:18054-61. [PMID: 26260025 DOI: 10.1039/c5nr02213d] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Collective motion is a fascinating example of coordinated behavior of self-propelled objects, which is often associated with the formation of large scale patterns. Nowadays, the in vitro gliding assay is being considered a model system to experimentally investigate various aspects of group behavior and pattern formation by self-propelled objects. In the in vitro gliding assay, cytoskeletal filaments F-actin or microtubules are driven by the surface immobilized associated biomolecular motors myosin or dynein respectively. Although the F-actin/myosin or microtubule/dynein system was found to be promising in understanding the collective motion and pattern formation by self-propelled objects, the most widely used biomolecular motor system microtubule/kinesin could not be successfully employed so far in this regard. Failure in exhibiting collective motion by kinesin driven microtubules is attributed to the intrinsic properties of kinesin, which was speculated to affect the behavior of individual gliding microtubules and mutual interactions among them. In this work, for the first time, we have demonstrated the collective motion of kinesin driven microtubules by regulating the mutual interaction among the gliding microtubules, by employing a depletion force among them. Proper regulation of the mutual interaction among the gliding microtubules through the employment of the depletion force was found to allow the exhibition of collective motion and stream pattern formation by the microtubules. This work offers a universal means for demonstrating the collective motion using the in vitro gliding assay of biomolecular motor systems and will help obtain a meticulous understanding of the fascinating coordinated behavior and pattern formation by self-propelled objects.
Collapse
Affiliation(s)
- Daisuke Inoue
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Bulbul Mahmot
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | | | - Tamanna Ishrat Farhana
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Kiyotaka Tokuraku
- Department of Applied Sciences, Muroran Institute of Technology, Muroran, 050-8585, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan. and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| | - Akihiko Konagaya
- Department of Computational Intelligence and Systems Science, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Akira Kakugo
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan. and Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 060-0810, Japan
| |
Collapse
|
12
|
Fujimoto K, Nagai M, Shintaku H, Kotera H, Yokokawa R. Dynamic formation of a microchannel array enabling kinesin-driven microtubule transport between separate compartments on a chip. LAB ON A CHIP 2015; 15:2055-2063. [PMID: 25805147 DOI: 10.1039/c5lc00148j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Microtubules driven by kinesin motors have been utilised as "molecular shuttles" in microfluidic environments with potential applications in autonomous nanoscale manipulations such as capturing, separating, and/or concentrating biomolecules. However, the conventional flow cell-based assay has difficulty in separating bound target molecules from free ones even with buffer flushing because molecular manipulations by molecular shuttles take place on a glass surface and molecular binding occurs stochastically; this makes it difficult to determine whether molecules are carried by molecular shuttles or by diffusion. To address this issue, we developed a microtubule-based transport system between two compartments connected by a single-micrometre-scale channel array that forms dynamically via pneumatic actuation of a polydimethylsiloxane membrane. The device comprises three layers-a control channel layer (top), a microfluidic channel layer (middle), and a channel array layer (bottom)-that enable selective injection of assay solutions into a target compartment and dynamic formation of the microchannel array. The pneumatic channel also serves as a nitrogen supply path to the assay area, which reduces photobleaching of fluorescently labelled microtubules and deactivation of kinesin by oxygen radicals. The channel array suppresses cross-contamination of molecules caused by diffusion or pressure-driven flow between compartments, facilitating unidirectional transport of molecular shuttles from one compartment to another. The method demonstrates, for the first time, efficient and unidirectional microtubule transport by eliminating diffusion of target molecules on a chip and thus may constitute one of the key aspects of motor-driven nanosystems.
Collapse
Affiliation(s)
- Kazuya Fujimoto
- Department of Micro Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
| | | | | | | | | |
Collapse
|
13
|
Wada S, Kabir AMR, Ito M, Inoue D, Sada K, Kakugo A. Effect of length and rigidity of microtubules on the size of ring-shaped assemblies obtained through active self-organization. SOFT MATTER 2015; 11:1151-1157. [PMID: 25557641 DOI: 10.1039/c4sm02292k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The microtubule (MT)-kinesin biomolecular motor system has attracted considerable attention due to its possible applications in artificial biomachines. Recently, an active self-organization (AcSO) method has been established to integrate MT filaments into highly organized assembled structures. The ring-shaped MT assembly, one of the structures derived from the AcSO of MTs, can convert the translational motion of MTs into rotational motion. Due to this attractive feature, the ring-shaped MT assembly appears to be a promising candidate for developing artificial devices and for future nanotechnological applications. In this work, we have investigated the effect of length and rigidity of the MT filaments on the size of the ring-shaped MT assembly in the AcSO process. We show that the size of the ring-shaped MT assembly can be controlled by tuning the length and rigidity of MT filaments employed in the AcSO. Longer and stiffer MT filaments led to larger ring-shaped assemblies through AcSO, whereas AcSO of shorter and less stiff MT filaments produced smaller ring-shaped assemblies. This work might be important for the development of biomolecular motor based artificial biomachines, especially where size control of ring-shaped MT assembly will play an important role.
Collapse
Affiliation(s)
- Shoki Wada
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Wada S, Kabir AMR, Kawamura R, Ito M, Inoue D, Sada K, Kakugo A. Controlling the Bias of Rotational Motion of Ring-Shaped Microtubule Assembly. Biomacromolecules 2014; 16:374-8. [DOI: 10.1021/bm501573v] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Ryuzo Kawamura
- Department
of Chemistry, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | |
Collapse
|
15
|
Ito M, Kabir AMR, Inoue D, Torisawa T, Toyoshima Y, Sada K, Kakugo A. Formation of ring-shaped microtubule assemblies through active self-organization on dynein. Polym J 2013. [DOI: 10.1038/pj.2013.89] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|