1
|
Yang X, Forstner M, Rothenaigner I, Bullo M, Şismanlar TE, Aslan AT, Latzin P, Hadian K, Griese M. Cyclosporine A in children with ABCA3 deficiency. Pediatr Pulmonol 2024; 59:3221-3227. [PMID: 39041931 PMCID: PMC11600998 DOI: 10.1002/ppul.27178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Biallelic ATP-binding cassette subfamily A member 3 (ABCA3) variants can cause interstitial lung disease in children and adults, for which no proven treatments exist. Recent in vitro evidence suggested that cyclosporine A (CsA) could correct some ABCA3 variants, however for other variants this is unknown and no data in patients exist. METHODS We retrieved the clinical data of two children aged 2 and 4 years carrying homozygous ABCA3 variants (G210C and Q1045R, respectively) and empiric CsA treatment from the Kids Lung Register database. In vitro experiments functionally characterized the two variants and explored the effects of CsA alone or combined with hydroxychloroquine (HCQ) in a human alveolar epithelial cell line (A549) derived from adenocarcinoma cells. RESULTS Six weeks following the introduction of CsA, both children required a reduced O2 flow supply, which then remained stable on CsA. Later, when CsA was discontinued, the clinical status of the children remained unchanged. Of note, the children simultaneously received prednisolone, azithromycin, and HCQ. In vitro, both ABCA3 variants demonstrated defective lysosomal colocalization and impaired ABCA3+ vesicle size, with proteolytic cleavage impairment only in Q1045R. CsA alone corrected the trafficking impairment and ABCA3+ vesicle size of both variants with a variant-specific effect on phosphatidylcholine recycling in G210C. CsA combined with HCQ were additive for improving trafficking of ABCA3 in G210C, but not in Q1045R. CONCLUSIONS CsA treatment might be helpful for certain patients with ABCA3 deficiency, however, currently strong clinical supporting evidence is lacking. Appropriate trials are necessary to overcome this unmet need.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches KinderspitalUniversity of Munich, German Center for Lung Research (DZL)MunichGermany
| | - Maria_E. Forstner
- Dr. von Haunersches KinderspitalUniversity of Munich, German Center for Lung Research (DZL)MunichGermany
| | - Ina Rothenaigner
- Research Unit Signaling and TranslationHelmholtz Zentrum MünchenNeuherbergGermany
| | - Marina Bullo
- Pediatric Pneumology and AllergologyUniversity Children's Inselspital Bern, University of BernBernSwitzerland
| | - Tugba E. Şismanlar
- Department of Pediatric Pulmonology, Faculty of MedicineGazi UniversityAnkaraTurkey
| | - Ayse T. Aslan
- Department of Pediatric Pulmonology, Faculty of MedicineGazi UniversityAnkaraTurkey
| | - Philipp Latzin
- Pediatric Pneumology and AllergologyUniversity Children's Inselspital Bern, University of BernBernSwitzerland
| | - Kamyar Hadian
- Research Unit Signaling and TranslationHelmholtz Zentrum MünchenNeuherbergGermany
| | - Matthias Griese
- Dr. von Haunersches KinderspitalUniversity of Munich, German Center for Lung Research (DZL)MunichGermany
| |
Collapse
|
2
|
Anciuc-Crauciuc M, Cucerea MC, Tripon F, Crauciuc GA, Bănescu CV. Descriptive and Functional Genomics in Neonatal Respiratory Distress Syndrome: From Lung Development to Targeted Therapies. Int J Mol Sci 2024; 25:649. [PMID: 38203821 PMCID: PMC10780183 DOI: 10.3390/ijms25010649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
In this up-to-date study, we first aimed to highlight the genetic and non-genetic factors associated with respiratory distress syndrome (RDS) while also focusing on the genomic aspect of this condition. Secondly, we discuss the treatment options and the progressing therapies based on RNAs or gene therapy. To fulfill this, our study commences with lung organogenesis, a highly orchestrated procedure guided by an intricate network of conserved signaling pathways that ultimately oversee the processes of patterning, growth, and differentiation. Then, our review focuses on the molecular mechanisms contributing to both normal and abnormal lung growth and development and underscores the connections between genetic and non-genetic factors linked to neonatal RDS, with a particular emphasis on the genomic aspects of this condition and their implications for treatment choices and the advancing therapeutic approaches centered around RNAs or gene therapy.
Collapse
Affiliation(s)
- Mădălina Anciuc-Crauciuc
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Manuela Camelia Cucerea
- Neonatology Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania;
| | - Florin Tripon
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
| | - George-Andrei Crauciuc
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| | - Claudia Violeta Bănescu
- Genetics Department, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540142 Târgu Mureș, Romania; (M.A.-C.); (C.V.B.)
- Genetics Laboratory, Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science, and Technology, 540139 Târgu Mureș, Romania;
| |
Collapse
|
3
|
Peers de Nieuwburgh M, Wambach JA, Griese M, Danhaive O. Towards personalized therapies for genetic disorders of surfactant dysfunction. Semin Fetal Neonatal Med 2023; 28:101500. [PMID: 38036307 PMCID: PMC10753445 DOI: 10.1016/j.siny.2023.101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Genetic disorders of surfactant dysfunction are a rare cause of chronic, progressive or refractory respiratory failure in term and preterm infants. This review explores genetic mechanisms underpinning surfactant dysfunction, highlighting specific surfactant-associated genes including SFTPB, SFTPC, ABCA3, and NKX2.1. Pathogenic variants in these genes contribute to a range of clinical presentations and courses, from neonatal hypoxemic respiratory failure to childhood interstitial lung disease and even adult-onset pulmonary fibrosis. This review emphasizes the importance of early recognition, thorough phenotype assessment, and assessment of variant functionality as essential prerequisites for treatments including lung transplantation. We explore emerging treatment options, including personalized pharmacological approaches and gene therapy strategies. In conclusion, this comprehensive review offers valuable insights into the pathogenic mechanisms of genetic disorders of surfactant dysfunction, genetic fundamentals, available and emerging therapeutic options, and underscores the need for further research to develop personalized therapies for affected infants and children.
Collapse
Affiliation(s)
- Maureen Peers de Nieuwburgh
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium.
| | - Jennifer A Wambach
- Washington University School of Medicine/St. Louis Children's Hospital, One Children's Place, St. Louis, Missouri, USA.
| | - Matthias Griese
- Pediatric Pulmonology, Dr von Hauner Children's Hospital, University-Hospital, German Center for Lung Research (DZL), Munich, Germany.
| | - Olivier Danhaive
- Division of Neonatology, Department of Pediatrics, St-Luc University Hospital, Catholic University of Louvain, Brussels, Belgium; Division of Neonatology, Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
4
|
Abe J, Ueki M, Honjou R, Takeda K, Seto Y, Nakamura Y, Furuse Y, Nakata K, Cho K. The clinical importance of pulmonary gene and protein expression levels in an infant with lethal ABCA3 variants. Pediatr Pulmonol 2023; 58:2956-2959. [PMID: 37477506 DOI: 10.1002/ppul.26611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Affiliation(s)
- Jiro Abe
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Pediatrics, JCHO Hokkaido Hospital, Sapporo, Japan
| | - Masahiro Ueki
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryota Honjou
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Kenta Takeda
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshitaka Seto
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuichi Nakamura
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuta Furuse
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koh Nakata
- Division of Pioneering Advanced Therapeutics, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Kazutoshi Cho
- Department of Pediatrics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Pediatrics, JCHO Hokkaido Hospital, Sapporo, Japan
| |
Collapse
|
5
|
Yang X, Rapp CK, Li Y, Forstner M, Griese M. Quantifying Functional Impairment of ABCA3 Variants Associated with Interstitial Lung Disease. Int J Mol Sci 2023; 24:ijms24087554. [PMID: 37108718 PMCID: PMC10141231 DOI: 10.3390/ijms24087554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
ATP-binding cassette subfamily A member 3 (ABCA3) is a lipid transporter within alveolar type II cells. Patients with bi-allelic variants in ABCA3 may suffer from a variable severity of interstitial lung disease. We characterized and quantified ABCA3 variants' overall lipid transport function by assessing the in vitro impairment of its intracellular trafficking and pumping activity. We expressed the results relative to the wild type, integrated the quantitative readouts from eight different assays and used newly generated data combined with previous results to correlate the variants' function and clinical phenotype. We differentiated normal (within 1 normalized standard deviation (nSD) of the wild-type mean), impaired (within 1 to 3 nSD) and defective (beyond 3 nSD) variants. The transport of phosphatidylcholine from the recycling pathway into ABCA3+ vesicles proved sensitive to the variants' dysfunction. The sum of the quantitated trafficking and pumping predicted a clinical outcome. More than an approximately 50% loss of function was associated with considerable morbidity and mortality. The in vitro quantification of ABCA3 function enables detailed variant characterization, substantially improves the phenotype prediction of genetic variants and possibly supports future treatment decisions.
Collapse
Affiliation(s)
- Xiaohua Yang
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Christina K Rapp
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Yang Li
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
- Medical College, Chongqing University, Chongqing 400030, China
| | - Maria Forstner
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| | - Matthias Griese
- Dr. von Haunersches Kinderspital, German Center for Lung Research (DZL), University of Munich, Lindwurmstr. 4a, D-80337 Munich, Germany
| |
Collapse
|
6
|
Balinotti JE, Mallie C, Maffey A, Colom A, Epaud R, de Becdelievre A, Fanen P, Delestrain C, Medín M, Teper A. Inherited pulmonary surfactant metabolism disorders in Argentina: Differences between patients with SFTPC and ABCA3 variants. Pediatr Pulmonol 2023; 58:540-549. [PMID: 36324278 DOI: 10.1002/ppul.26225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND Patients with inherited pulmonary surfactant metabolism disorders have a wide range of clinical outcomes and imaging findings. Response to current anti-inflammatory therapies has been variable and efficacy is unclear. OBJECTIVE To describe and compare genetic, clinical, histological, and computed tomography (CT) outcomes in a cohort of patients with variants in the genes encoding surfactant protein C (SP-C) or adenosine triphosphate-binding cassette transporter A3 (ABCA3) in Argentina. METHODS Observational cohort retrospective study. Patients carrying variants in genes encoding SP-C and ABCA3 proteins were included. RESULTS Fourteen patients met the inclusion criteria: SFTPC n = 6, ABCA3 n = 8 (seven were heterozygous and one compound heterozygous). Neonatal respiratory distress was more frequent and severe in neonates with variants in the ABCA3 gene. The onset of the disease occurred in infancy before the age of 20 months in all cases. Patients with ABCA3 pathogenic variants had a severe clinical course, while long-term outcomes were more favorable in individuals with SFTPC variants. Initial CT findings were ground glass opacities and intraparenchymal cysts in both groups. Over time, signs of lung fibrosis were present in 57% of patients with ABCA3 variants and in 33% of the SFTPC group. The efficacy of anti-inflammatory interventions appears to be poor, especially for patients with ABCA3 pathogenic variants. CONCLUSIONS Clinical, histological, and radiological features are similar in patients with SFTPC and ABCA3 variants; however, the latter have more severe clinical course. Current anti-inflammatory regimens do not appear to stop the progression of the disease.
Collapse
Affiliation(s)
- Juan E Balinotti
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Camila Mallie
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Alberto Maffey
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Alejandro Colom
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Ralph Epaud
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de Références des maladies respiratoires rares, Creteil, Île-de-France, France
| | - Alix de Becdelievre
- Hôpital Henri Mondor, Département de Génétique, Creteil, Île-de-France, France
| | - Pascale Fanen
- Hôpital Henri Mondor, Département de Génétique, Creteil, Île-de-France, France
| | - Céline Delestrain
- Centre Hospitalier Intercommunal de Créteil, Service de Pédiatrie Générale, Centre de Références des maladies respiratoires rares, Creteil, Île-de-France, France
| | - Martín Medín
- Pathology Service, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| | - Alejandro Teper
- Respiratory Center, Ricardo Gutiérrez Children's Hospital, Buenos Aires, Argentina
| |
Collapse
|
7
|
Keegan NP, Wilton SD, Fletcher S. Analysis of Pathogenic Pseudoexons Reveals Novel Mechanisms Driving Cryptic Splicing. Front Genet 2022; 12:806946. [PMID: 35140743 PMCID: PMC8819188 DOI: 10.3389/fgene.2021.806946] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
Understanding pre-mRNA splicing is crucial to accurately diagnosing and treating genetic diseases. However, mutations that alter splicing can exert highly diverse effects. Of all the known types of splicing mutations, perhaps the rarest and most difficult to predict are those that activate pseudoexons, sometimes also called cryptic exons. Unlike other splicing mutations that either destroy or redirect existing splice events, pseudoexon mutations appear to create entirely new exons within introns. Since exon definition in vertebrates requires coordinated arrangements of numerous RNA motifs, one might expect that pseudoexons would only arise when rearrangements of intronic DNA create novel exons by chance. Surprisingly, although such mutations do occur, a far more common cause of pseudoexons is deep-intronic single nucleotide variants, raising the question of why these latent exon-like tracts near the mutation sites have not already been purged from the genome by the evolutionary advantage of more efficient splicing. Possible answers may lie in deep intronic splicing processes such as recursive splicing or poison exon splicing. Because these processes utilize intronic motifs that benignly engage with the spliceosome, the regions involved may be more susceptible to exonization than other intronic regions would be. We speculated that a comprehensive study of reported pseudoexons might detect alignments with known deep intronic splice sites and could also permit the characterisation of novel pseudoexon categories. In this report, we present and analyse a catalogue of over 400 published pseudoexon splice events. In addition to confirming prior observations of the most common pseudoexon mutation types, the size of this catalogue also enabled us to suggest new categories for some of the rarer types of pseudoexon mutation. By comparing our catalogue against published datasets of non-canonical splice events, we also found that 15.7% of pseudoexons exhibit some splicing activity at one or both of their splice sites in non-mutant cells. Importantly, this included seven examples of experimentally confirmed recursive splice sites, confirming for the first time a long-suspected link between these two splicing phenomena. These findings have the potential to improve the fidelity of genetic diagnostics and reveal new targets for splice-modulating therapies.
Collapse
Affiliation(s)
- Niall P. Keegan
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Steve D. Wilton
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| | - Sue Fletcher
- Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute, Murdoch University, Perth, WA, Australia
- Centre for Neuromuscular and Neurological Disorders, Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Wu ZQ, Xu J, Zhang AM, Hu X, Huang FR. [Dyspnea and ventilator dependence after birth in a full-term female infant]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:897-902. [PMID: 32800039 PMCID: PMC7441518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 11/13/2023]
Abstract
A female infant, aged 43 days, had shortness of breath, cyanosis, groan, and dyspnea since birth. Physical examination showed cyanosis of lips and three-concave sign, and multiple lung imaging examinations showed diffuse ground-glass opacities in both lungs. The girl was given anti-infective therapy and continuous mechanical ventilation but there were no significant improvements in symptoms. Gene testing confirmed a compound heterozygous mutation, c.1890C>A(p.Tyr630Ter)+c.3208G>A(p.Ala1070Thr), in the ABCA3 gene, with the former from her father and the latter from her mother. Pathological examination of the lungs indicated pulmonary interstitial disease. The girl was diagnosed with infantile diffuse pulmonary interstitial disease caused by mutations in the ABCA3 gene. When full-term neonates experience shortness of breath and dyspnea after birth, pulmonary imaging suggests diffuse ground-glass changes, and conventional treatment is not effective (ventilator-dependent), congenital pulmonary surfactant metabolism defects needs to be considered. Gene testing, which can provide a basis for early intervention, prognostic evaluation, and genetic counseling, should be performed as early as possible.
Collapse
Affiliation(s)
- Zi-Qi Wu
- Department of Neonatology, Hunan Provincial People's Hospital/ First Affiliated Hospital of Hunan Normal University, Changsha 410005, China.
| | | | | | | | | |
Collapse
|
9
|
Wu ZQ, Xu J, Zhang AM, Hu X, Huang FR. [Dyspnea and ventilator dependence after birth in a full-term female infant]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2020; 22:897-902. [PMID: 32800039 PMCID: PMC7441518 DOI: 10.7499/j.issn.1008-8830.2003332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
A female infant, aged 43 days, had shortness of breath, cyanosis, groan, and dyspnea since birth. Physical examination showed cyanosis of lips and three-concave sign, and multiple lung imaging examinations showed diffuse ground-glass opacities in both lungs. The girl was given anti-infective therapy and continuous mechanical ventilation but there were no significant improvements in symptoms. Gene testing confirmed a compound heterozygous mutation, c.1890C>A(p.Tyr630Ter)+c.3208G>A(p.Ala1070Thr), in the ABCA3 gene, with the former from her father and the latter from her mother. Pathological examination of the lungs indicated pulmonary interstitial disease. The girl was diagnosed with infantile diffuse pulmonary interstitial disease caused by mutations in the ABCA3 gene. When full-term neonates experience shortness of breath and dyspnea after birth, pulmonary imaging suggests diffuse ground-glass changes, and conventional treatment is not effective (ventilator-dependent), congenital pulmonary surfactant metabolism defects needs to be considered. Gene testing, which can provide a basis for early intervention, prognostic evaluation, and genetic counseling, should be performed as early as possible.
Collapse
Affiliation(s)
- Zi-Qi Wu
- Department of Neonatology, Hunan Provincial People's Hospital/ First Affiliated Hospital of Hunan Normal University, Changsha 410005, China.
| | | | | | | | | |
Collapse
|
10
|
Pruchniak MP, Ostafin M, Wachowska M, Jakubaszek M, Kwiatkowska B, Olesinska M, Zycinska K, Demkow U. Neutrophil extracellular traps generation and degradation in patients with granulomatosis with polyangiitis and systemic lupus erythematosus. Autoimmunity 2020; 52:126-135. [PMID: 31257985 DOI: 10.1080/08916934.2019.1631812] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Neutrophils are one of the first cells to arrive at the site of infection, where they apply several strategies to kill pathogens: degranulation, respiratory burst, phagocytosis, and release of neutrophil extracellular traps (NETs). Recent discoveries try to connect NETs formation with autoimmune diseases, like systemic lupus erythematosus (SLE) or granulomatosis with polyangiitis (GPA) and place them among one of the factors responsible for disease pathogenesis. The aim of the study was to assess the NETotic capabilities of neutrophils obtained from freshly diagnosed autoimmune patients versus healthy controls. Further investigation involved assessing NETs production among treated patients. In the latter step, NETs degradation potency of collected sera from non-treated patients was checked. Lastly, the polymorphisms of the DNASE I gene among tested subjects were checked. NETs formation was measured in a neutrophil culture by fluorometry, while degradation assessment was performed with patients' sera and extracellular source of DNA. Additionally, Sanger sequencing was used to check potential SNP mutations between patients. About 121 subjects were enrolled into this study, 54 of them with a diagnosed autoimmune disorder. Neutrophils stimulated with NETosis inducers were able to release NETs in all cases. We have found that disease affected patients produce NETs more rapidly and in larger quantities than control groups, with up to 82.5% more released. Most importantly, we showed a difference between the diseases themselves. NETs release was 68.5% higher in GPA samples when compared to SLE ones while stimulated with Calcium Ionophore. Serum nucleases were less effective at degrading NETs in both autoimmune diseases, with a reduction in degradation of 20.9% observed for GPA and 18.2% for SLE when compared with the controls. Potential therapies targeting neutrophils and NETs should be specifically tailored to the type of the disease. Since there are significant differences between NETs release and disease type, a standard neutrophil targeted therapy could prevent over-generation of traps in some cases, while in others it would deplete the cells, leaving the immune system unresponsive to primary infections.
Collapse
Affiliation(s)
- Michal Przemyslaw Pruchniak
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland.,b Postgraduate School of Molecular Medicine , Medical University of Warsaw , Warsaw , Poland
| | - Magdalena Ostafin
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| | - Malgorzata Wachowska
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| | - Michal Jakubaszek
- c National Institute of Geriatrics, Rheumatology and Rehabilitation, Early Arthritis Clinic , Warsaw , Poland
| | - Brygida Kwiatkowska
- c National Institute of Geriatrics, Rheumatology and Rehabilitation, Early Arthritis Clinic , Warsaw , Poland
| | - Marzena Olesinska
- d Department of Connective Tissue Diseases, National Institute of Geriatrics, Rheumatology and Rehabilitation , Warsaw , Poland
| | - Katarzyna Zycinska
- e Department of Family Medicine, Internal and Metabolic Diseases , Medical University of Warsaw , Warsaw , Poland
| | - Urszula Demkow
- a Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age , Medical University of Warsaw , Warsaw , Poland
| |
Collapse
|
11
|
Hafezi N, Heimberger MA, Lewellen KA, Maatman T, Montgomery GS, Markel TA. Lung biopsy in children's interstitial and diffuse lung disease: Does it alter management? Pediatr Pulmonol 2020; 55:1050-1060. [PMID: 32040887 DOI: 10.1002/ppul.24683] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/27/2020] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Pediatric patients with acute life-threatening consequences of interstitial and diffuse lung disease are often treated with empiric systemic corticosteroids, immune modulators, and/or broad antibiotic therapy. Histological evaluation of lung tissue represents the final necessary step in diagnosis-however, a definitive diagnosis may still remain elusive and medical therapies may not be changed following biopsy. We hypothesized that lung biopsy from pediatric patients with children's interstitial and diffuse lung disease (chILD) without a defined lesion on computed tomography (CT) imaging would guide diagnosis, but not substantially alter clinical management. METHODS After IRB approval, patients who underwent a lung biopsy at a single large children's hospital between 2013 and 2018 were retrospectively reviewed. Patients without a defined lesion were included. Demographics, length of stay, oxygen-requirements, steroid, unique number of immune modulators, and antibiotics prebiopsy and postbiopsy were reviewed. Nonparametric data were compared by the Mann Whitney U and Kruskal Wallace tests and expressed as median with interquartile range. Decision tree alterations were analyzed by t test. P < .05 was significant. RESULTS Sixty-four patients underwent lung biopsy during the period. Nineteen (30%) did not have a defined lesion on CT scan, and were included. A significant difference was seen between prebiopsy, 2 weeks, and 2 months postbiopsy prednisone dosing (P = .03), while the number of unique immune modulators, antibiotics, type of oxygen support and FiO2 were not significantly different before or after obtaining biopsy results. Pathology results provided additional information in 12 of 19 (63%) patients which resulted in management changes. CONCLUSIONS Lung biopsy in chILD may guide clinical management, especially influencing the management of steroid dosing. Although on aggregate the number of antibiotics, immune modulators, mode of oxygen support and FiO2 did not differ significantly before and after biopsy, the pathologic evaluation provided diagnostic information that led to a variety of changes in therapeutic management in greater than half of the population.
Collapse
Affiliation(s)
- Niloufar Hafezi
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Mark A Heimberger
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kyle A Lewellen
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Thomas Maatman
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gregory S Montgomery
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana.,Riley Hospital for Children, Indiana University Health, Indianapolis, Indiana
| | - Troy A Markel
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.,Riley Hospital for Children, Indiana University Health, Indianapolis, Indiana
| |
Collapse
|
12
|
Rigau M, Juan D, Valencia A, Rico D. Intronic CNVs and gene expression variation in human populations. PLoS Genet 2019; 15:e1007902. [PMID: 30677042 PMCID: PMC6345438 DOI: 10.1371/journal.pgen.1007902] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/17/2018] [Indexed: 11/19/2022] Open
Abstract
Introns can be extraordinarily large and they account for the majority of the DNA sequence in human genes. However, little is known about their population patterns of structural variation and their functional implication. By combining the most extensive maps of CNVs in human populations, we have found that intronic losses are the most frequent copy number variants (CNVs) in protein-coding genes in human, with 12,986 intronic deletions, affecting 4,147 genes (including 1,154 essential genes and 1,638 disease-related genes). This intronic length variation results in dozens of genes showing extreme population variability in size, with 40 genes with 10 or more different sizes and up to 150 allelic sizes. Intronic losses are frequent in evolutionarily ancient genes that are highly conserved at the protein sequence level. This result contrasts with losses overlapping exons, which are observed less often than expected by chance and almost exclusively affect primate-specific genes. An integrated analysis of CNVs and RNA-seq data showed that intronic loss can be associated with significant differences in gene expression levels in the population (CNV-eQTLs). These intronic CNV-eQTLs regions are enriched for intronic enhancers and can be associated with expression differences of other genes showing long distance intron-promoter 3D interactions. Our data suggests that intronic structural variation of protein-coding genes makes an important contribution to the variability of gene expression and splicing in human populations.
Collapse
Affiliation(s)
- Maria Rigau
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | - David Juan
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra, Parc de Recerca Biomèdica de Barcelona, Barcelona, Spain
| | - Alfonso Valencia
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Martinovich KM, Shaw NC, Kicic A, Schultz A, Fletcher S, Wilton SD, Stick SM. The potential of antisense oligonucleotide therapies for inherited childhood lung diseases. Mol Cell Pediatr 2018; 5:3. [PMID: 29411170 PMCID: PMC5801198 DOI: 10.1186/s40348-018-0081-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/25/2018] [Indexed: 01/05/2023] Open
Abstract
Antisense oligonucleotides are an emerging therapeutic option to treat diseases with known genetic origin. In the age of personalised medicines, antisense oligonucleotides can sometimes be designed to target and bypass or overcome a patient's genetic mutation, in particular those lesions that compromise normal pre-mRNA processing. Antisense oligonucleotides can alter gene expression through a variety of mechanisms as determined by the chemistry and antisense oligomer design. Through targeting the pre-mRNA, antisense oligonucleotides can alter splicing and induce a specific spliceoform or disrupt the reading frame, target an RNA transcript for degradation through RNaseH activation, block ribosome initiation of protein translation or disrupt miRNA function. The recent accelerated approval of eteplirsen (renamed Exondys 51™) by the Food and Drug Administration, for the treatment of Duchenne muscular dystrophy, and nusinersen, for the treatment of spinal muscular atrophy, herald a new and exciting era in splice-switching antisense oligonucleotide applications to treat inherited diseases. This review considers the potential of antisense oligonucleotides to treat inherited lung diseases of childhood with a focus on cystic fibrosis and disorders of surfactant protein metabolism.
Collapse
Affiliation(s)
- Kelly M. Martinovich
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Nicole C. Shaw
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Western Australia 6008 Australia
- School of Public Health, Curtin University, Bentley, Western Australia 6102 Australia
| | - André Schultz
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Western Australia 6008 Australia
| | - Sue Fletcher
- Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Steve D. Wilton
- Perron Institute for Neurological and Translational Sciences, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Comparative Genomics, Murdoch University, Murdoch, Western Australia 6150 Australia
| | - Stephen M. Stick
- School of Paediatrics and Child Health, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands, Western Australia 6009 Australia
- Department of Respiratory Medicine, Princess Margaret Hospital for Children, Subiaco, Western Australia 6008 Australia
| |
Collapse
|
14
|
Chen YJ, Meyer J, Wambach JA, DePass K, Wegner DJ, Fan X, Zhang QY, Hillary H, Cole FS, Hamvas A. Gene variants of the phosphatidylcholine synthesis pathway do not contribute to RDS in the Chinese population. World J Pediatr 2018; 14:52-56. [PMID: 29411327 DOI: 10.1007/s12519-017-0109-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/03/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND To determine population-based prevalence and disease contribution of phosphatidylcholine synthetic pathway-associated gene variants in a native southern Chinese cohort. METHODS We used bloodspots from 2010 that were obtained from the Guangxi Neonatal Screening Center in Nannning China and included the Han (n = 443) and Zhuang (n = 313) ethnic groups. We sequenced the exons of cholinephosphate cytidylyltransferase (PCYT1B) lysophospholipid acyltransferase 1 (LPCAT1), and cholinephosphotransferase (CHPT1) genes, and analyzed both rare and common exonic variants. RESULTS We obtained five mutations (G199D, A299V, G434C, Y490C, L312S) with eight alleles in the three candidate genes. The collapsed minor allele frequency for candidate genes was not significantly different between the Han and Zhuang populations (0.0045 vs. 0.0064, respectively, P = 0.725). The combined Han and Zhuang pool collapsed carrier frequency of rare mutation allele was found to be 1.06%, which is much higher than previously reported for the Missouri population (0.1%). Further, we detected six exonic common variants (three in LPCAT1 and three in CHPT1), with three non-synonymous variants (F162S, F341L, M427K) among them. Two of the non-synonymous exonic variants (F341L, M427K) were not found in CHB; F341L was also not previously reported in exome sequencing project. CONCLUSIONS The population-based frequency of mutations in the phosphatidylcholine synthesis pathway-associated genes PCYT1B LPCAT1, CHPT1 is low in southern Chinese newborns and there is no evidence of contribution to population-based disease burden of respiratory distress syndrome. As a population-based study of rare mutations and common variants, this work is valuable in directing future research.
Collapse
Affiliation(s)
- Yu-Jun Chen
- Neonatology, the First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Julia Meyer
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Jennifer A Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Kelcey DePass
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Daniel J Wegner
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Xin Fan
- Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Qun-Yuan Zhang
- Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - Heins Hillary
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - F Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Aaron Hamvas
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA. .,Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, 225 E. Chicago Ave, Box #45, Chicago, IL, 60611, USA.
| |
Collapse
|
15
|
Gupta A, Zheng SL. Genetic disorders of surfactant protein dysfunction: when to consider and how to investigate. Arch Dis Child 2017; 102:84-90. [PMID: 27417306 DOI: 10.1136/archdischild-2012-303143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/13/2016] [Accepted: 06/26/2016] [Indexed: 01/02/2023]
Abstract
Genetic mutations affecting proteins required for normal surfactant protein function are a rare cause of respiratory disease. The genes identified that cause respiratory disease are surfactant protein B, surfactant protein C, ATP binding cassette number A3 and thyroid transcription factor-1. Surfactant protein dysfunction syndromes are highly variable in their onset and presentation, and are dependent on the genes involved and environmental factors. This heterogeneous group of conditions can be associated with significant morbidity and mortality. Presentation may be in a full-term neonate with acute and progressive respiratory distress with a high mortality or later in childhood or adulthood with signs and symptoms of interstitial lung disease. Genetic testing for these disorders is now available, providing a non-invasive diagnostic test. Other useful investigations include radiological imaging and lung biopsy. This review will provide an overview of the genetic and clinical features of surfactant protein dysfunction syndromes, and discuss when to suspect this diagnosis, how to investigate it and current treatment options.
Collapse
Affiliation(s)
- Atul Gupta
- Department of Paediatric Respiratory Medicine, King's College Hospital and King's College London, London, UK
| | - Sean Lee Zheng
- Department of Paediatric Respiratory Medicine, King's College Hospital and King's College London, London, UK
| |
Collapse
|
16
|
The biology of the ABCA3 lipid transporter in lung health and disease. Cell Tissue Res 2016; 367:481-493. [PMID: 28025703 DOI: 10.1007/s00441-016-2554-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/29/2016] [Indexed: 01/10/2023]
Abstract
The lipid transporter, ATP-binding cassette class A3 (ABCA3), is a highly conserved multi-membrane-spanning protein that plays a critical role in the regulation of pulmonary surfactant homeostasis. Mutations in ABCA3 have been increasingly recognized as one of the causes of inherited pulmonary diseases. These monogenic disorders produce familial lung abnormalities with pathological presentations ranging from neonatal surfactant-deficiency-induced respiratory failure to childhood or adult diffuse parenchymal lung diseases for which specific treatment modalities remain limited. More than 200 ABCA3 mutations have been reported to date with approximately three quarters of patients presenting as compound heterozygotes. Recent advances in our understanding of the molecular basis underlying normal ABCA3 biosynthesis and processing and of the mechanisms of alveolar epithelial cell dysregulation caused by the expression of its mutant forms are beginning to emerge. These insights and the role of environmental factors and modifier genes are discussed in the context of the considerable variability in disease presentation observed in patients with identical ABCA3 gene mutations. Moreover, the opportunities afforded by an enhanced understanding of ABCA3 biology for targeted therapeutic strategies are addressed.
Collapse
|
17
|
Pachajoa H, Ruiz-Botero F, Meza-Escobar LE, Villota-Delgado VA, Ballesteros A, Padilla I, Duarte D. Fatal respiratory disease due to a homozygous intronic ABCA3 mutation: a case report. J Med Case Rep 2016; 10:266. [PMID: 27670912 PMCID: PMC5037624 DOI: 10.1186/s13256-016-1027-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 08/09/2016] [Indexed: 11/15/2022] Open
Abstract
Background Pulmonary surfactant is a complex mixture of lipids and proteins. Mutations in surfactant protein-C, surfactant protein-D, and adenosine triphosphate-binding cassette subfamily A member 3 have been related to surfactant dysfunction and neonatal respiratory failure in full-term babies. Adenosine triphosphate-binding cassette subfamily A member 3 facilitates the transfer of lipids to lamellar bodies. We report the case of patient with a homozygous intronic ABCA3 mutation. Case presentation We describe a newborn full-term Colombian baby boy who was the son of non-consanguineous parents of mixed race ancestry (Mestizo), who was delivered with severe respiratory depression. Invasive treatment was unsuccessful and diagnosis was uncertain. Exons 4 and 5 of the SP-C gene showed heterozygous Thr138Asn polymorphism and homozygous Asn186Asn polymorphism respectively. At intron 25 at position –98 from exon 26 a homozygous C>T transition mutation was detected in ABCA3 gene. Conclusions The clinical presentation and the histopathological findings of this case are consistent with a case of neonatal respiratory failure due to surfactant deficiency. Analysis of the five coding SP-C exons does not support surfactant deficiency. An analysis of the mutation IVS25-98 T was performed and a homozygous mutation responsible for our case’s neonatal respiratory failure was detected. The findings suggest an autosomic recessive pattern of inheritance. Genetic counseling was provided and the relatives are now informed of the recurrence risks and treatment options.
Collapse
|
18
|
Du C, Pusey BN, Adams CJ, Lau CC, Bone WP, Gahl WA, Markello TC, Adams DR. Explorations to improve the completeness of exome sequencing. BMC Med Genomics 2016; 9:56. [PMID: 27568008 PMCID: PMC5002202 DOI: 10.1186/s12920-016-0216-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 08/05/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Exome sequencing has advanced to clinical practice and proven useful for obtaining molecular diagnoses in rare diseases. In approximately 75 % of cases, however, a clinical exome study does not produce a definitive molecular diagnosis. These residual cases comprise a new diagnostic challenge for the genetics community. The Undiagnosed Diseases Program of the National Institutes of Health routinely utilizes exome sequencing for refractory clinical cases. Our preliminary data suggest that disease-causing variants may be missed by current standard-of-care clinical exome analysis. Such false negatives reflect limitations in experimental design, technical performance, and data analysis. RESULTS We present examples from our datasets to quantify the analytical performance associated with current practices, and explore strategies to improve the completeness of data analysis. In particular, we focus on patient ascertainment, exome capture, inclusion of intronic variants, and evaluation of medium-sized structural variants. CONCLUSIONS The strategies we present may recover previously-missed, disease causing variants in second-pass exome analysis. Understanding the limitations of the current clinical exome search space provides a rational basis to improve methods for disease variant detection using genome-scale sequencing techniques.
Collapse
Affiliation(s)
- Chen Du
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Barbara N Pusey
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Christopher J Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - C Christopher Lau
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - William P Bone
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - William A Gahl
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - Thomas C Markello
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA
| | - David R Adams
- NIH Undiagnosed Diseases Program, Common Fund, National Institutes of Health, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
19
|
Chen YJ, Wambach JA, DePass K, Wegner DJ, Chen SK, Zhang QY, Heins H, Cole FS, Hamvas A. Population-based frequency of surfactant dysfunction mutations in a native Chinese cohort. World J Pediatr 2016; 12:190-5. [PMID: 26547207 DOI: 10.1007/s12519-015-0047-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 07/14/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Rare mutations in surfactant-associated genes contribute to neonatal respiratory distress syndrome. The frequency of mutations in these genes in the Chinese population is unknown. METHODS We obtained blood spots from the Guangxi Neonatal Screening Center in Nanning, China that included Han (n=443) and Zhuang (n=313) ethnic groups. We resequenced all exons of the surfactant proteins-B (SFTPB), -C (SFTPC), and the ATP-binding cassette member A3 (ABCA3) genes and compared the frequencies of 5 common and all rare variants. RESULTS We found minor differences in the frequencies of the common variants in the Han and Zhuang cohorts. We did not find any rare mutations in SFTPB or SFTPC, but we found three ABCA3 mutations in the Han [minor allele frequency (MAF)=0.003] and 7 in the Zhuang (MAF=0.011) cohorts (P=0.10). The ABCA3 mutations were unique to each cohort; five were novel. The collapsed carrier rate of rare ABCA3 mutations in the Han and Zhuang populations combined was 1.3%, which is significantly lower than that in the United States (P<0.001). CONCLUSION The population-based frequency of mutations in ABCA3 in south China newborns is significantly lower than that in United States. The contribution of these rare ABCA3 mutations to disease burden in the south China population is still unknown.
Collapse
Affiliation(s)
- Yu-Jun Chen
- Division of Neonatology, Department of Pediatrics, the First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Jennifer Anne Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Kelcey DePass
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Daniel James Wegner
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Shao-Ke Chen
- Department of Pediatrics, Guangxi Maternal and Child Health Hospital, Nanning, China
| | - Qun-Yuan Zhang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - Hillary Heins
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Francis Sessions Cole
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA
| | - Aaron Hamvas
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, USA. .,Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, 225 E. Chicago Ave, Box No. 45, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Richardson IW, Berry DP, Wiencko HL, Higgins IM, More SJ, McClure J, Lynn DJ, Bradley DG. A genome-wide association study for genetic susceptibility to Mycobacterium bovis infection in dairy cattle identifies a susceptibility QTL on chromosome 23. Genet Sel Evol 2016; 48:19. [PMID: 26960806 PMCID: PMC4784436 DOI: 10.1186/s12711-016-0197-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 02/29/2016] [Indexed: 01/08/2023] Open
Abstract
Background Bovine tuberculosis (bTB) infection in cattle is a significant economic concern in many countries, with annual costs to the UK and Irish governments of approximately €190 million and €63 million, respectively, for bTB control. The existence of host additive and non-additive genetic components to bTB susceptibility has been established. Methods Two approaches i.e. single-SNP (single nucleotide polymorphism) regression and a Bayesian method were applied to genome-wide association studies (GWAS) using high-density SNP genotypes (n = 597,144 SNPs) from 841 dairy artificial insemination (AI) sires. Deregressed estimated breeding values for bTB susceptibility were used as the quantitative dependent variable. Network analysis was performed using the quantitative trait loci (QTL) that were identified as significant in the single-SNP regression and Bayesian analyses separately. In addition, an identity-by-descent analysis was performed on a subset of the most prolific sires in the dataset that showed contrasting prevalences of bTB infection in daughters. Results A significant QTL region was identified on BTA23 (P value >1 × 10−5, Bayes factor >10) across all analyses. Sires with the minor allele (minor allele frequency = 0.136) for this QTL on BTA23 had estimated breeding values that conferred a greater susceptibility to bTB infection than those that were homozygous for the major allele. Imputation of the regions that flank this QTL on BTA23 to full sequence indicated that the most significant associations were located within introns of the FKBP5 gene. Conclusions A genomic region on BTA23 that is strongly associated with host susceptibility to bTB infection was identified. This region contained FKBP5, a gene involved in the TNFα/NFκ-B signalling pathway, which is a major biological pathway associated with immune response. Although there is no study that validates this region in the literature, our approach represents one of the most powerful studies for the analysis of bTB susceptibility to
date. Electronic supplementary material The online version of this article (doi:10.1186/s12711-016-0197-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ian W Richardson
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland. .,Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.
| | - Donagh P Berry
- Animal and Grassland Research and Innovation Centre, Teagasc, Moorepark, Fermoy, Co. Cork, Ireland.
| | - Heather L Wiencko
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.
| | - Isabella M Higgins
- UCD Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Simon J More
- UCD Centre for Veterinary Epidemiology and Risk Analysis, UCD School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, Ireland.
| | | | - David J Lynn
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland. .,South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA, 5000, Australia. .,School of Medicine, Flinders University, Bedford Park, SA, 5042, Australia.
| | - Daniel G Bradley
- Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
21
|
Wittmann T, Frixel S, Höppner S, Schindlbeck U, Schams A, Kappler M, Hegermann J, Wrede C, Liebisch G, Vierzig A, Zacharasiewicz A, Kopp MV, Poets CF, Baden W, Hartl D, van Kaam AH, Lohse P, Aslanidis C, Zarbock R, Griese M. Increased Risk of Interstitial Lung Disease in Children with a Single R288K Variant of ABCA3. Mol Med 2016; 22:183-191. [PMID: 26928390 DOI: 10.2119/molmed.2015.00244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/17/2016] [Indexed: 11/06/2022] Open
Abstract
The ABCA3 gene encodes a lipid transporter in type II pneumocytes critical for survival and normal respiratory function. The frequent ABCA3 variant R288K increases the risk for neonatal respiratory distress syndrome among term and late preterm neonates, but its role in children's interstitial lung disease has not been studied in detail. In a retrospective cohort study of 228 children with interstitial lung disease related to the alveolar surfactant system, the frequency of R288K was assessed and the phenotype of patients carrying a single R288K variant further characterized by clinical course, lung histology, computed tomography and bronchoalveolar lavage phosphatidylcholine PC 32:0. Cell lines stably transfected with ABCA3-R288K were analyzed for intracellular transcription, processing and targeting of the protein. ABCA3 function was assessed by detoxification assay of doxorubicin, and the induction and volume of lamellar bodies. We found nine children with interstitial lung disease carrying a heterozygous R288K variant, a frequency significantly higher than in the general Caucasian population. All identified patients had neonatal respiratory insufficiency, recovered and developed chronic interstitial lung disease with intermittent exacerbations during early childhood. In vitro analysis showed normal transcription, processing, and targeting of ABCA3-R288K, but impaired detoxification function and smaller lamellar bodies. We propose that the R288K variant can underlie interstitial lung disease in childhood due to reduced function of ABCA3, demonstrated by decelerated detoxification of doxorubicin, reduced PC 32:0 content and decreased lamellar body volume.
Collapse
Affiliation(s)
- Thomas Wittmann
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| | - Sabrina Frixel
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| | - Stefanie Höppner
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| | - Ulrike Schindlbeck
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| | - Andrea Schams
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| | - Matthias Kappler
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| | - Jan Hegermann
- Institute of Functional and Applied Anatomy, Hannover Medical School, German Lung Research Center (DZL), Hannover, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Hannover Medical School, German Lung Research Center (DZL), Hannover, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Anne Vierzig
- Paediatric Intensive Care, University Children's Hospital, University of Cologne, Cologne, Germany
| | | | - Matthias Volkmar Kopp
- Department of Pediatric Allergy and Pulmonology, University Löbeck, Airway Research Center North (ARCN), Löbeck, Germany
| | | | - Winfried Baden
- Children's Hospital, University of Töbingen, Töbingen, Germany
| | - Dominik Hartl
- Children's Hospital, University of Töbingen, Töbingen, Germany
| | - Anton H van Kaam
- Department of Neonatology, Emma Children's Hospital, Academic Medical Center, Amsterdam, The Netherlands
| | | | - Charalampos Aslanidis
- Institute for Clinical Chemistry and Laboratory Medicine, University of Regensburg, Regensburg, Germany
| | - Ralf Zarbock
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| | - Matthias Griese
- Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, German Lung Research Center (DZL), Munich, Germany
| |
Collapse
|
22
|
Dohmen LCT, Navas A, Vargas DA, Gregory DJ, Kip A, Dorlo TPC, Gomez MA. Functional Validation of ABCA3 as a Miltefosine Transporter in Human Macrophages: IMPACT ON INTRACELLULAR SURVIVAL OF LEISHMANIA (VIANNIA) PANAMENSIS. J Biol Chem 2016; 291:9638-47. [PMID: 26903515 DOI: 10.1074/jbc.m115.688168] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Indexed: 12/25/2022] Open
Abstract
Within its mammalian host, Leishmania resides and replicates as an intracellular parasite. The direct activity of antileishmanials must therefore depend on intracellular drug transport, metabolism, and accumulation within the host cell. In this study, we explored the role of human macrophage transporters in the intracellular accumulation and antileishmanial activity of miltefosine (MLF), the only oral drug available for the treatment of visceral and cutaneous leishmaniasis (CL). Membrane transporter gene expression in primary human macrophages infected in vitro with Leishmania Viannia panamensis and exposed to MLF showed modulation of ABC and solute liquid carrier transporters gene transcripts. Among these, ABCA3, a lipid transporter, was significantly induced after exposure to MLF, and this induction was confirmed in primary macrophages from CL patients. Functional validation of MLF as a substrate for ABCA3 was performed by shRNA gene knockdown (KD) in THP-1 monocytes. Intracellular accumulation of radiolabeled MLF was significantly higher in ABCA3(KD) macrophages. ABCA3(KD) resulted in increased cytotoxicity induced by MLF exposure. ABCA3 gene expression inversely correlated with intracellular MLF content in primary macrophages from CL patients. ABCA3(KD) reduced parasite survival during macrophage infection with an L. V. panamensis strain exhibiting low in vitro susceptibility to MLF. Confocal microscopy showed ABCA3 to be located in the cell membrane of resting macrophages and in intracellular compartments in L. V. panamensis-infected cells. These results provide evidence of ABCA3 as an MLF efflux transporter in human macrophages and support its role in the direct antileishmanial effect of this alkylphosphocholine drug.
Collapse
Affiliation(s)
- Luuk C T Dohmen
- From the Centro Internacional de Entrenamiento e Investigaciones Médicas, Cra. 125 # 19-225 Cali, Colombia, the Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Adriana Navas
- From the Centro Internacional de Entrenamiento e Investigaciones Médicas, Cra. 125 # 19-225 Cali, Colombia
| | - Deninson Alejandro Vargas
- From the Centro Internacional de Entrenamiento e Investigaciones Médicas, Cra. 125 # 19-225 Cali, Colombia
| | - David J Gregory
- the Molecular and Integrative Physiological Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115
| | - Anke Kip
- the Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands, the Department of Pharmacy and Pharmacology, Antoni van Leeuwenhoek Hospital/Slotervaart Hospital, 1066 CX Amsterdam, The Netherlands, and
| | - Thomas P C Dorlo
- the Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3508 TB Utrecht, The Netherlands, the Department of Pharmaceutical Biosciences, Uppsala University, 751 24 Uppsala, Sweden
| | - Maria Adelaida Gomez
- From the Centro Internacional de Entrenamiento e Investigaciones Médicas, Cra. 125 # 19-225 Cali, Colombia,
| |
Collapse
|
23
|
Montella S, Vece TJ, Langston C, Carrera P, Nogee LM, Hamvas A, Manna A, Cervasio M, Cervasio M, Santamaria F. A disorder of surfactant metabolism without identified genetic mutations. Ital J Pediatr 2015; 41:93. [PMID: 26606984 PMCID: PMC4658764 DOI: 10.1186/s13052-015-0198-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/05/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Surfactant metabolism disorders may result in diffuse lung disease in children. CASE PRESENTATION We report a 3-years-old boy with dry cough, progressive hypoxemia, dyspnea and bilateral ground glass opacities at chest high-resolution computed tomography (HRCT) who had no variants in genes encoding surfactant proteins or transcription factors. Lung histology strongly suggested an abnormality of surfactant protein. A 7-month course of pulse intravenous high-dose methylprednisolone plus oral hydroxychloroquine and azithromycin led to gradual weaning from oxygen and oral steroids, and to improvement of cough and dyspnea. Over the follow-up period, hydroxychloroquine and azithromycin were not withdrawn as cough and dyspnea re-appeared at each attempt and disappeared at re-start. At 6 years of age chest HRCT still appeared unchanged, but clinical symptoms or signs were absent. CONCLUSIONS In children suspected of inborn errors of pulmonary surfactant metabolism who do not have a recognized genetic mutation, lung biopsy with consistent histology may help physicians to address the definitive diagnosis.
Collapse
Affiliation(s)
- Silvia Montella
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini, 5 - 80131, Naples, Italy.
| | - Timothy J Vece
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Claire Langston
- Department of Pathology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
| | - Paola Carrera
- Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milano, Italy.
| | - Lawrence M Nogee
- Department of Pediatrics, Division of Neonatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Aaron Hamvas
- Edward Mallinckrodt Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO, USA. .,Department of Pediatrics, Division of Neonatology, Ann and Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Angelo Manna
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini, 5 - 80131, Naples, Italy.
| | | | - Mara Cervasio
- Department of Advanced Biomedical Sciences, Anatomo-Pathology Unit, Federico II University, Naples, Italy.
| | - Francesca Santamaria
- Department of Translational Medical Sciences, Federico II University, Via Sergio Pansini, 5 - 80131, Naples, Italy.
| |
Collapse
|
24
|
Zheng M, Mitra RN, Filonov NA, Han Z. Nanoparticle-mediated rhodopsin cDNA but not intron-containing DNA delivery causes transgene silencing in a rhodopsin knockout model. FASEB J 2015; 30:1076-86. [PMID: 26564956 DOI: 10.1096/fj.15-280511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/28/2015] [Indexed: 12/14/2022]
Abstract
Previously, we compared the efficacy of nanoparticle (NP)-mediated intron-containing rhodopsin (sgRho) vs. intronless cDNA in ameliorating retinal disease phenotypes in a rhodopsin knockout (RKO) mouse model of retinitis pigmentosa. We showed that NP-mediated sgRho delivery achieved long-term expression and phenotypic improvement in RKO mice, but not NP housing cDNA. However, the protein level of the NP-sgRho construct was only 5-10% of wild-type at 8 mo postinjection. To have a better understanding of the reduced levels of long-term expression of the vectors, in the present study, we evaluated the epigenetic changes of subretinal delivering NP-cDNA vs. NP-sgRho in the RKO mouse eyes. Following the administration, DNA methylation and histone status of specific regions (bacteria plasmid backbone, promoter, rhodopsin gene, and scaffold/matrix attachment region) of the vectors were evaluated at various time points. We documented that epigenetic transgene silencing occurred in vector-mediated gene transfer, which were caused by the plasmid backbone and the cDNA of the transgene, but not the intron-containing transgene. No toxicity or inflammation was found in the treated eyes. Our results suggest that cDNA of the rhodopsin transgene and bacteria backbone interfered with the host defense mechanism of DNA methylation-mediated transgene silencing through heterochromatin-associated modifications.
Collapse
Affiliation(s)
- Min Zheng
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Rajendra N Mitra
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Nazar A Filonov
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| | - Zongchao Han
- *Department of Ophthalmology and Carolina Institute for NanoMedicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; and Molecular Therapeutics, University of North Carolina Eshelman School of Pharmacy, Chapel Hill, North Carolina, USA
| |
Collapse
|
25
|
Kitazawa H, Kure S. Interstitial Lung Disease in Childhood: Clinical and Genetic Aspects. CLINICAL MEDICINE INSIGHTS-CIRCULATORY RESPIRATORY AND PULMONARY MEDICINE 2015; 9:57-68. [PMID: 26512209 PMCID: PMC4603523 DOI: 10.4137/ccrpm.s23282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/12/2015] [Accepted: 08/19/2015] [Indexed: 12/16/2022]
Abstract
Interstitial lung disease (ILD) in childhood is a heterogeneous group of rare pulmonary conditions presenting chronic respiratory disorders. Many clinical features of ILD still remain unclear, making the treatment strategies mainly investigative. Guidelines may provide physicians with an overview on the diagnosis and therapeutic directions. However, the criteria used in different clinical studies for the classification and diagnosis of ILDs are not always the same, making the development of guidelines difficult. Advances in genetic testing have thrown light on some etiologies of ILD, which were formerly classified as ILDs of unknown origins. The need of genetic testing for unexplained ILD is growing, and new classification criteria based on the etiology should be adopted to better understand the disease. The purpose of this review is to give an overview of the clinical and genetic aspects of ILD in children.
Collapse
Affiliation(s)
- Hiroshi Kitazawa
- Department of General Pediatrics, Division of Allergy, Miyagi Children's Hospital, Sendai, Japan
| | - Shigeo Kure
- Department of Pediatrics, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
26
|
ABCA3, a key player in neonatal respiratory transition and genetic disorders of the surfactant system. Biochem Soc Trans 2015; 43:913-9. [DOI: 10.1042/bst20150100] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genetic disorders of the surfactant system are rare diseases with a broad range of clinical manifestations, from fatal respiratory distress syndrome (RDS) in neonates to chronic interstitial lung disease (ILD) in children and adults. ABCA3 [ATP-binding cassette (ABC), subfamily A, member 3] is a lung-specific phospholipid transporter critical for intracellular surfactant synthesis and storage in lamellar bodies (LBs). Its expression is developmentally regulated, peaking prior to birth under the influence of steroids and transcription factors. Bi-allelic mutations of the ABCA3 gene represent the most frequent cause of congenital surfactant deficiency, indicating its critical role in lung function. Mutations affect surfactant lipid and protein processing and LBs’ morphology, leading to partial or total surfactant deficiency. Approximately 200 mutations have been reported, most of which are unique to individuals and families, which makes diagnosis and prognosis challenging. Various types of mutations, affecting different domains of the protein, account in part for phenotype diversity. Disease-causing mutations have been reported in most coding and some non-coding regions of the gene, but tend to cluster in the first extracellular loop and the second nucleotide-binding domain (NBD), leading to defective glycosylation and trafficking defects and interfering with ATP binding and hydrolysis respectively. Mono-allelic damaging and benign variants are often subclinical but may act as disease modifiers in lung diseases such as RDS of prematurity or associate with mutations in other surfactant-related genes. Diagnosis is complex but essential and should combine pathology and ultrastructure studies on lung biopsy with broad-spectrum genetic testing of surfactant-related genes, made possible by recent technology advances in the massive parallel sequencing technology.
Collapse
|
27
|
Children’s Interstitial and Diffuse Lung Disease. Progress and Future Horizons. Ann Am Thorac Soc 2015; 12:1451-7. [DOI: 10.1513/annalsats.201508-558ps] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
28
|
O'Reilly R, Kilner D, Ashworth M, Aurora P. Diffuse lung disease in infants less than 1 year of age: Histopathological diagnoses and clinical outcome. Pediatr Pulmonol 2015; 50:1000-8. [PMID: 25603783 DOI: 10.1002/ppul.23124] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 08/18/2014] [Accepted: 09/28/2014] [Indexed: 11/11/2022]
Abstract
INTRODUCTION Interstitial lung disease (ILD) in infants is rare. Clinical and radiological features are often non-specific, and overlap with growth disorders and infection. In infants with severe respiratory compromise, lung biopsy is often necessary to guide acute management, but the risk and diagnostic yield of this procedure is incompletely understood. AIMS To retrospectively review infants undergoing open lung biopsy for suspected ILD at a large referral center; to determine morbidity and mortality related to the procedure; and to describe subsequent diagnosis and outcome. METHODS Lung biopsies performed in infants (aged <1 year) between January 1, 2005 and March 31, 2012 were identified and clinical data were collected. Biopsies were reclassified using the ChILD classification for diffuse lung disorders in infants. RESULTS Twenty-seven infants were identified, with the number of biopsies performed increasing each year over the study period. There was no mortality and negligible morbidity associated with biopsy. Diagnoses seen were similar to those reported by the ChILD network. Histopathological diagnosis was not compatible with life in the absence of lung transplant in 6/27 (22%) of infants. Of the 14 children longitudinally followed up (median 0.5 (0.4 - 5.81) years), only four continued to require supplemental oxygen. CONCLUSION Lung biopsy in infants with suspected ILD is safe, and histopathological diagnosis frequently assists treatment decisions, particularly with regard to withdrawal of care.
Collapse
Affiliation(s)
- Ruth O'Reilly
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK
| | - David Kilner
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK
| | - Michael Ashworth
- Department of Pathology, Great Ormond Street Hospital for Children, London, UK
| | - Paul Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children, London, UK.,Portex Respiratory Unit, UCL Institute of Child Health, London, UK
| |
Collapse
|
29
|
Large-scale RNA-Seq Transcriptome Analysis of 4043 Cancers and 548 Normal Tissue Controls across 12 TCGA Cancer Types. Sci Rep 2015; 5:13413. [PMID: 26292924 PMCID: PMC4544034 DOI: 10.1038/srep13413] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 07/27/2015] [Indexed: 12/21/2022] Open
Abstract
The Cancer Genome Atlas (TCGA) has accrued RNA-Seq-based transcriptome data for more than 4000 cancer tissue samples across 12 cancer types, translating these data into biological insights remains a major challenge. We analyzed and compared the transcriptomes of 4043 cancer and 548 normal tissue samples from 21 TCGA cancer types, and created a comprehensive catalog of gene expression alterations for each cancer type. By clustering genes into co-regulated gene sets, we identified seven cross-cancer gene signatures altered across a diverse panel of primary human cancer samples. A 14-gene signature extracted from these seven cross-cancer gene signatures precisely differentiated between cancerous and normal samples, the predictive accuracy of leave-one-out cross-validation (LOOCV) were 92.04%, 96.23%, 91.76%, 90.05%, 88.17%, 94.29%, and 99.10% for BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC, respectively. A lung cancer-specific gene signature, containing SFTPA1 and SFTPA2 genes, accurately distinguished lung cancer from other cancer samples, the predictive accuracy of LOOCV for TCGA and GSE5364 data were 95.68% and 100%, respectively. These gene signatures provide rich insights into the transcriptional programs that trigger tumorigenesis and metastasis, and many genes in the signature gene panels may be of significant value to the diagnosis and treatment of cancer.
Collapse
|
30
|
Dylag IK, Myers RE. Case 2: Poor Weight Gain, Cough, Shortness of Breath, and Chest Pain in an 11-year-old Boy. Pediatr Rev 2015; 36:219-21. [PMID: 25934912 DOI: 10.1542/pir.36-5-219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
| | - Ross E Myers
- Rainbow Babies and Children's Hospital, Cleveland, OH
| |
Collapse
|
31
|
Jackson T, Wegner DJ, White FV, Hamvas A, Cole FS, Wambach JA. Respiratory failure in a term infant with cis and trans mutations in ABCA3. J Perinatol 2015; 35:231-2. [PMID: 25712598 PMCID: PMC4341920 DOI: 10.1038/jp.2014.236] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/09/2022]
Abstract
A full-term female neonate presented with persistent respiratory failure and radiologic studies consistent with surfactant deficiency. Sequencing of the ATP-binding cassette transporter A3 gene (ABCA3) revealed three mutations: R280C, V1399M and Q1589X. The infant underwent bilateral lung transplantation at 9 months of age and is alive at 3 years of age. Parental sequencing demonstrated that two of the mutations (R280C and Q1589X) were oriented on the same allele (cis), whereas V1399M was oriented on the opposite allele (trans). As more than one mutation in ABCA3 can be present on the same allele, parental studies are needed to determine allelic orientation to inform clinical decision making and future reproductive counseling.
Collapse
Affiliation(s)
- Tara Jackson
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel J. Wegner
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Frances V. White
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Aaron Hamvas
- Department of Pediatrics, Northwestern University School of Medicine, Chicago, IL, USA
| | - F. Sessions Cole
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Jennifer A. Wambach
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
32
|
Wambach JA, Casey AM, Fishman MP, Wegner DJ, Wert SE, Cole FS, Hamvas A, Nogee LM. Genotype-phenotype correlations for infants and children with ABCA3 deficiency. Am J Respir Crit Care Med 2014; 189:1538-43. [PMID: 24871971 DOI: 10.1164/rccm.201402-0342oc] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Recessive mutations in the ATP-binding cassette transporter A3 (ABCA3) cause lethal neonatal respiratory failure and childhood interstitial lung disease. Most ABCA3 mutations are private. OBJECTIVES To determine genotype-phenotype correlations for recessive ABCA3 mutations. METHODS We reviewed all published and unpublished ABCA3 sequence and phenotype data from our prospective genetic studies of symptomatic infants and children at Washington and Johns Hopkins Universities. Mutations were classified based on their predicted disruption of protein function: frameshift and nonsense mutations were classified as "null," whereas missense, predicted splice site mutations, and insertion/deletions were classified as "other." We compared age of presentation and outcomes for the three genotypes: null/null, null/other, and other/other. MEASUREMENTS AND MAIN RESULTS We identified 185 infants and children with homozygous or compound heterozygous ABCA3 mutations and lung disease. All of the null/null infants presented with respiratory failure at birth compared with 75% of infants with null/other or other/other genotypes (P = 0.00011). By 1 year of age, all of the null/null infants had died or undergone lung transplantation compared with 62% of the null/other and other/other children (P < 0.0001). CONCLUSIONS Genotype-phenotype correlations exist for homozygous or compound heterozygous mutations in ABCA3. Frameshift or nonsense ABCA3 mutations are predictive of neonatal presentation and poor outcome, whereas missense, splice site, and insertion/deletions are less reliably associated with age of presentation and prognosis. Counseling and clinical decision making should acknowledge these correlations.
Collapse
Affiliation(s)
- Jennifer A Wambach
- 1 Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW There has been tremendous progress in the approach to childhood interstitial lung diseases (chILD), with particular recognition that interstitial lung disease (ILD) in infants is often distinct from the forms that occur in older children and adults. Diagnosis is challenging because of the rarity of ILD and the fact that the presenting symptoms of ILD often overlap those of common respiratory disorders. This review summarizes the newly published recommendations for diagnosis and management, and highlights the recent scientific advances in several specific forms of chILD. RECENT FINDINGS Clinical practice guidelines emphasize the role for chest computed tomography, genetic testing, and lung biopsy in the diagnostic evaluation of children with suspected ILD. Recent studies have better defined the characteristics and molecular understanding of several different forms of ILD, including neuroendocrine cell hyperplasia of infancy and ILD, due to mutations in genes affecting surfactant production and metabolism. Despite significant progress, definitive therapies are often lacking. SUMMARY chILD encompasses a collection of rare, diffuse lung diseases. Timely recognition of children with suspected ILD and initiation of appropriate diagnostic evaluations will facilitate medical management. Systematic approaches to clinical care and further studies are needed to improve the outcomes of children with these rare disorders.
Collapse
|
34
|
Hamvas A, Deterding R, Balch WE, Schwartz DA, Albertine KH, Whitsett JA, Cardoso WV, Kotton DN, Kourembanas S, Hagood JS. Diffuse lung disease in children: summary of a scientific conference. Pediatr Pulmonol 2014; 49:400-9. [PMID: 23798474 PMCID: PMC4145861 DOI: 10.1002/ppul.22805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 02/24/2013] [Indexed: 12/14/2022]
Abstract
A multi-disciplinary scientific conference focused on diffuse and interstitial lung diseases in children was held in La Jolla, CA in June 2012. The conference brought together clinicians (including Pediatric and Adult Pulmonologists, Neonatologists, Pathologists, and Radiologists), clinical researchers, basic scientists, government agency representatives, patient advocates, as well as children affected by diffuse lung disease (DLD) and their families, to review recent scientific developments and emerging concepts in the pathophysiology of childhood DLD. Invited speakers discussed translational approaches, including genetics and proteomics, epigenetics and epigenomics, models of DLD, including animal models and induced pluripotent stem cells, and regenerative medicine approaches. The presentations of the invited speakers are summarized here.
Collapse
Affiliation(s)
- Aaron Hamvas
- Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kurland G, Deterding RR, Hagood JS, Young LR, Brody AS, Castile RG, Dell S, Fan LL, Hamvas A, Hilman BC, Langston C, Nogee LM, Redding GJ. An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med 2013; 188:376-94. [PMID: 23905526 DOI: 10.1164/rccm.201305-0923st] [Citation(s) in RCA: 305] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND There is growing recognition and understanding of the entities that cause interstitial lung disease (ILD) in infants. These entities are distinct from those that cause ILD in older children and adults. METHODS A multidisciplinary panel was convened to develop evidence-based guidelines on the classification, diagnosis, and management of ILD in children, focusing on neonates and infants under 2 years of age. Recommendations were formulated using a systematic approach. Outcomes considered important included the accuracy of the diagnostic evaluation, complications of delayed or incorrect diagnosis, psychosocial complications affecting the patient's or family's quality of life, and death. RESULTS No controlled clinical trials were identified. Therefore, observational evidence and clinical experience informed judgments. These guidelines: (1) describe the clinical characteristics of neonates and infants (<2 yr of age) with diffuse lung disease (DLD); (2) list the common causes of DLD that should be eliminated during the evaluation of neonates and infants with DLD; (3) recommend methods for further clinical investigation of the remaining infants, who are regarded as having "childhood ILD syndrome"; (4) describe a new pathologic classification scheme of DLD in infants; (5) outline supportive and continuing care; and (6) suggest areas for future research. CONCLUSIONS After common causes of DLD are excluded, neonates and infants with childhood ILD syndrome should be evaluated by a knowledgeable subspecialist. The evaluation may include echocardiography, controlled ventilation high-resolution computed tomography, infant pulmonary function testing, bronchoscopy with bronchoalveolar lavage, genetic testing, and/or lung biopsy. Preventive care, family education, and support are essential.
Collapse
|
36
|
Kitazawa H, Moriya K, Niizuma H, Kawano K, Saito-Nanjo Y, Uchiyama T, Rikiishi T, Sasahara Y, Sakamoto O, Setoguchi Y, Kure S. Interstitial lung disease in two brothers with novel compound heterozygous ABCA3 mutations. Eur J Pediatr 2013; 172:953-7. [PMID: 23443156 DOI: 10.1007/s00431-013-1977-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/12/2013] [Indexed: 11/28/2022]
Abstract
Mutations in genes critical for surfactant metabolism, including surfactant protein C (SP-C) and ABCA3, are well-recognized causes of interstitial lung disease. Recessive mutations in ABCA3 were first attributed to fatal respiratory failure in full-term neonates, but they are also increasingly being recognized as a cause of respiratory disorders with less severe phenotypes in older children and also adults. Here, we report a 20-month-old boy with interstitial lung disease caused by two distinct ABCA3 mutations. Initial treatment with methylprednisolone was unsuccessful, but the additional administration of hydroxychloroquine was effective. The family history revealed that the patient's older brother had died of idiopathic interstitial lung disease at 6 months of age, suggesting a genetic etiology of the disease. Sequence analyses of SP-C and ABCA3 genes were performed using DNA samples from the patient himself, his parents, and his brother. These analyses revealed novel compound heterozygous mutations in the coding exons of ABCA3 in both the patient and his brother: c.2741A > G, of paternal origin, and c.3715_3716insGGGGGG, of maternal origin. Conclusion Since ABCA3 mutations seem to be a heterogeneous entity with various phenotypes, we recommend genetic testing for mutations in SP-C and ABCA3 genes to be considered in children with unexplained interstitial lung disease.
Collapse
Affiliation(s)
- Hiroshi Kitazawa
- Department of Pediatrics, Tohoku University School of Medicine, 1-1 Seiryo-cho, Aoba-ku, Sendai 980-8574, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Wambach JA, Wegner DJ, DePass K, Heins H, Druley TE, Mitra RD, An P, Zhang Q, Nogee LM, Cole FS, Hamvas A. Single ABCA3 mutations increase risk for neonatal respiratory distress syndrome. Pediatrics 2012; 130:e1575-82. [PMID: 23166334 PMCID: PMC3507255 DOI: 10.1542/peds.2012-0918] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Neonatal respiratory distress syndrome (RDS) due to pulmonary surfactant deficiency is heritable, but common variants do not fully explain disease heritability. METHODS Using next-generation, pooled sequencing of race-stratified DNA samples from infants ≥34 weeks' gestation with and without RDS (n = 513) and from a Missouri population-based cohort (n = 1066), we scanned all exons of 5 surfactant-associated genes and used in silico algorithms to identify functional mutations. We validated each mutation with an independent genotyping platform and compared race-stratified, collapsed frequencies of rare mutations by gene to investigate disease associations and estimate attributable risk. RESULTS Single ABCA3 mutations were overrepresented among European-descent RDS infants (14.3% of RDS vs 3.7% of non-RDS; P = .002) but were not statistically overrepresented among African-descent RDS infants (4.5% of RDS vs 1.5% of non-RDS; P = .23). In the Missouri population-based cohort, 3.6% of European-descent and 1.5% of African-descent infants carried a single ABCA3 mutation. We found no mutations among the RDS infants and no evidence of contribution to population-based disease burden for SFTPC, CHPT1, LPCAT1, or PCYT1B. CONCLUSIONS In contrast to lethal neonatal RDS resulting from homozygous or compound heterozygous ABCA3 mutations, single ABCA3 mutations are overrepresented among European-descent infants ≥34 weeks' gestation with RDS and account for ~10.9% of the attributable risk among term and late preterm infants. Although ABCA3 mutations are individually rare, they are collectively common among European- and African-descent individuals in the general population.
Collapse
Affiliation(s)
| | | | | | | | - Todd E. Druley
- Division of Hematology and Oncology, the Edward Mallinckrodt Department of Pediatrics,,Center for Genome Sciences and Systems Biology, Department of Genetics
| | - Robi D. Mitra
- Center for Genome Sciences and Systems Biology, Department of Genetics
| | - Ping An
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, Missouri; and
| | - Qunyuan Zhang
- Division of Statistical Genomics, Washington University School of Medicine, St Louis, Missouri; and
| | - Lawrence M. Nogee
- Division of Neonatal–Perinatal Medicine, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | |
Collapse
|
38
|
Kim YJ, Kim HS. Alternative splicing and its impact as a cancer diagnostic marker. Genomics Inform 2012; 10:74-80. [PMID: 23105933 PMCID: PMC3480681 DOI: 10.5808/gi.2012.10.2.74] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/18/2012] [Accepted: 05/21/2012] [Indexed: 01/13/2023] Open
Abstract
Most genes are processed by alternative splicing for gene expression, resulting in the complexity of the transcriptome in eukaryotes. It allows a limited number of genes to encode various proteins with intricate functions. Alternative splicing is regulated by genetic mutations in cis-regulatory factors and epigenetic events. Furthermore, splicing events occur differently according to cell type, developmental stage, and various diseases, including cancer. Genome instability and flexible proteomes by alternative splicing could affect cancer cells to grow and survive, leading to metastasis. Cancer cells that are transformed by aberrant and uncontrolled mechanisms could produce alternative splicing to maintain and spread them continuously. Splicing variants in various cancers represent crucial roles for tumorigenesis. Taken together, the identification of alternative spliced variants as biomarkers to distinguish between normal and cancer cells could cast light on tumorigenesis.
Collapse
Affiliation(s)
- Yun-Ji Kim
- Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan 609-735, Korea
| | | |
Collapse
|