1
|
Shipman GA, Padilla R, Horth C, Hu B, Bareke E, Vitorino FN, Gongora JM, Garcia BA, Lu C, Majewski J. Systematic perturbations of SETD2, NSD1, NSD2, NSD3, and ASH1L reveal their distinct contributions to H3K36 methylation. Genome Biol 2024; 25:263. [PMID: 39390582 PMCID: PMC11465688 DOI: 10.1186/s13059-024-03415-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development and disease, how the molecular agents collectively shape the H3K36me landscape is unclear. RESULTS We use mouse mesenchymal stem cells to perturb the H3K36me methyltransferases (K36MTs) and infer the activities of the five most prominent enzymes: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it may also deposit H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other (K36MTs) prime gene bodies with lower methylation states ahead of transcription. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. CONCLUSIONS Within genes, SETD2 primarily deposits H3K36me3, while the other K36MTs deposit H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1 > NSD2 > NSD3 > ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.
Collapse
Affiliation(s)
- Gerry A Shipman
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Reinnier Padilla
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Cynthia Horth
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Bo Hu
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Eric Bareke
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada
| | - Francisca N Vitorino
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Joanna M Gongora
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin A Garcia
- Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Chao Lu
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jacek Majewski
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1B1, Canada.
- McGill University Genome Centre, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
2
|
Tibben BM, Rothbart SB. Mechanisms of DNA Methylation Regulatory Function and Crosstalk with Histone Lysine Methylation. J Mol Biol 2024; 436:168394. [PMID: 38092287 PMCID: PMC10957332 DOI: 10.1016/j.jmb.2023.168394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
DNA methylation is a well-studied epigenetic modification that has key roles in regulating gene expression, maintaining genome integrity, and determining cell fate. Precisely how DNA methylation patterns are established and maintained in specific cell types at key developmental stages is still being elucidated. However, research over the last two decades has contributed to our understanding of DNA methylation regulation by other epigenetic processes. Specifically, lysine methylation on key residues of histone proteins has been shown to contribute to the allosteric regulation of DNA methyltransferase (DNMT) activities. In this review, we discuss the dynamic interplay between DNA methylation and histone lysine methylation as epigenetic regulators of genome function by synthesizing key recent studies in the field. With a focus on DNMT3 enzymes, we discuss mechanisms of DNA methylation and histone lysine methylation crosstalk in the regulation of gene expression and the maintenance of genome integrity. Further, we discuss how alterations to the balance of various sites of histone lysine methylation and DNA methylation contribute to human developmental disorders and cancers. Finally, we provide perspectives on the current direction of the field and highlight areas for continued research and development.
Collapse
Affiliation(s)
- Bailey M Tibben
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
3
|
Kawai T, Kinoshita S, Takayama Y, Ohnishi E, Kamura H, Kojima K, Kikuchi H, Terao M, Sugawara T, Migita O, Kagami M, Isojima T, Yamaguchi Y, Wakui K, Ohashi H, Shimizu K, Mizuno S, Okamoto N, Fukushima Y, Takada F, Kosaki K, Takada S, Akutsu H, Ura K, Nakabayashi K, Hata K. Loss of function in NSD2 causes DNA methylation signature similar to that in Wolf-Hirschhorn syndrome. GENETICS IN MEDICINE OPEN 2024; 2:101838. [PMID: 39669601 PMCID: PMC11613750 DOI: 10.1016/j.gimo.2024.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 12/14/2024]
Abstract
Purpose Wolf-Hirschhorn syndrome (WHS), a contiguous gene syndrome caused by heterozygous deletions of the distal short arm of chromosome 4 that includes NSD2, reportedly causes specific DNA methylation signatures in peripheral blood cells. However, the genomic loci responsible for these signatures have not been elucidated. The present study aims to define the loci underlying WHS-related DNA methylation signatures and explore the role of NSD2 in these signatures. Methods We conducted genome-wide methylation analysis of individuals with WHS or NSD2 variants using an array method. We studied genome-edited knockin mice and induced pluripotent stem cells to explore the function of NSD2 variants. Results Three undiagnosed cases with NSD2 variants showed WHS-related DNA methylation signatures. In patient-derived induced pluripotent stem cells and genome-edited knockin mice, these variants cause NSD2 loss of function, respectively. The p.Pro905Leu variant caused decreased Nsd2 protein levels and altered histone H3-lysine 36 dimethylation levels similarly to what was observed in Nsd2 knockout mice. Nsd2 knockout and p.Pro905Leu knockin mice exhibited common DNA methylation changes. Conclusion These results revealed that WHS-related DNA methylation signatures are dependent on NSD2 dysfunction and could be useful in identifying NSD2 variants of uncertain significance.
Collapse
Affiliation(s)
- Tomoko Kawai
- Division of Fetal Development, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Shiori Kinoshita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Yuka Takayama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eriko Ohnishi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiromi Kamura
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kazuaki Kojima
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hiroki Kikuchi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tohru Sugawara
- Department of Reproductive Medicine, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ohsuke Migita
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Laboratory Medicine, St. Marianna University School of Medicine, Kanagawa, Japan
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Tsuyoshi Isojima
- Department of Pediatrics, Teikyo University School of Medicine, Tokyo, Japan
| | | | - Keiko Wakui
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hirofumi Ohashi
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children’s Medical Center, Saitama, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Developmental Disability Center, Kasugai, Aichi, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Yoshimitsu Fukushima
- Department of Medical Genetics, Shinshu University School of Medicine, Matsumoto, Japan
| | - Fumio Takada
- Department of Medical Genetics and Genomics, Kitasato University Graduate School of Medical Sciences, Kanagawa, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Hidenori Akutsu
- Department of Reproductive Medicine, Center for Regenerative Medicine, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kiyoe Ura
- Laboratory of Chromatin Metabolism and Epigenetics, Department of Biology, Chiba University, Chiba, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
- Department of Human Molecular Genetics, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
4
|
Su D, Eliason S, Sun Z, Shao F, Amendt BA. Wolf-Hirschhorn syndrome candidate 1 (Whsc1) methyltransferase signals via a Pitx2-miR-23/24 axis to effect tooth development. J Biol Chem 2023; 299:105324. [PMID: 37806494 PMCID: PMC10656234 DOI: 10.1016/j.jbc.2023.105324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/01/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is a developmental disorder attributed to a partial deletion on the short arm of chromosome 4. WHS patients suffer from oral manifestations including cleft lip and palate, hypodontia, and taurodontism. WHS candidate 1 (WHSC1) gene is a H3K36-specific methyltransferase that is deleted in every reported case of WHS. Mutation in this gene also results in tooth anomalies in patients. However, the correlation between genetic abnormalities and the tooth anomalies has remained controversial. In our study, we aimed to clarify the role of WHSC1 in tooth development. We profiled the Whsc1 expression pattern during mouse incisor and molar development by immunofluorescence staining and found Whsc1 expression is reduced as tooth development proceeds. Using real-time quantitative reverse transcription PCR, Western blot, chromatin immunoprecipitation, and luciferase assays, we determined that Whsc1 and Pitx2, the initial transcription factor involved in tooth development, positively and reciprocally regulate each other through their gene promoters. miRNAs are known to regulate gene expression posttranscriptionally during development. We previously reported miR-23a/b and miR-24-1/2 were highly expressed in the mature tooth germ. Interestingly, we demonstrate here that these two miRs directly target Whsc1 and repress its expression. Additionally, this miR cluster is also negatively regulated by Pitx2. We show the expression of these two miRs and Whsc1 are inversely correlated during mouse mandibular development. Taken together, our results provide new insights into the potential role of Whsc1 in regulating tooth development and a possible molecular mechanism underlying the dental defects in WHS.
Collapse
Affiliation(s)
- Dan Su
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Steve Eliason
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Zhao Sun
- College of Medicine, Washington University St Louis, St Louis, Missouri, USA
| | - Fan Shao
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA; Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA; Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
5
|
Shipman GA, Padilla R, Horth C, Hu B, Bareke E, Vitorino FN, Gongora JM, Garcia BA, Lu C, Majewski J. Systematic perturbations of SETD2, NSD1, NSD2, NSD3 and ASH1L reveals their distinct contributions to H3K36 methylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559313. [PMID: 37905045 PMCID: PMC10614729 DOI: 10.1101/2023.09.27.559313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background Methylation of histone 3 lysine 36 (H3K36me) has emerged as an essential epigenetic component for the faithful regulation of gene expression. Despite its importance in development, disease, and cancer, how the molecular agents collectively shape the H3K36me landscape is unclear. Results We use a mouse mesenchymal stem cell model to perturb the H3K36me deposition machinery and infer the activities of the five most prominent players: SETD2, NSD1, NSD2, NSD3, and ASH1L. We find that H3K36me2 is the most abundant of the three methylation states and is predominantly deposited at intergenic regions by NSD1, and partly by NSD2. In contrast, H3K36me1/3 are most abundant within exons and are positively correlated with gene expression. We demonstrate that while SETD2 deposits most H3K36me3, it also deposits H3K36me2 within transcribed genes. Additionally, loss of SETD2 results in an increase of exonic H3K36me1, suggesting other H3K36 methyltransferases (K36MTs) prime gene bodies with lower methylation states ahead of transcription. Through a reductive approach, we uncover the distribution patterns of NSD3- and ASH1L-catalyzed H3K36me2. While NSD1/2 establish broad intergenic H3K36me2 domains, NSD3 deposits H3K36me2 peaks on active promoters and enhancers. Meanwhile, the activity of ASH1L is restricted to the regulatory elements of developmentally relevant genes, and our analyses implicate PBX2 as a potential recruitment factor. Conclusions Within genes, SETD2 deposits both H3K36me2/3, while the other K36MTs are capable of depositing H3K36me1/2 independently of SETD2 activity. For the deposition of H3K36me1/2, we find a hierarchy of K36MT activities where NSD1>NSD2>NSD3>ASH1L. While NSD1 and NSD2 are responsible for most genome-wide propagation of H3K36me2, the activities of NSD3 and ASH1L are confined to active regulatory elements.
Collapse
|
6
|
Hsueh HW, Kao HJ, Chao CC, Hsueh SJ, Huang YN, Lin WJ, Su JP, Shy HT, Yeh TY, Lin CC, Kwok PY, Lee NC, Hsieh ST. Identification of an 85-kb Heterozygous 4p Microdeletion With Full Genome Analysis in Autosomal Dominant Charcot-Marie-Tooth Disease. Neurol Genet 2023; 9:e200078. [PMID: 37346931 PMCID: PMC10281236 DOI: 10.1212/nxg.0000000000200078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/06/2023] [Indexed: 06/23/2023]
Abstract
Background and Objectives Charcot-Marie-Tooth disease (CMT) is a syndrome of a hereditary neurodegenerative condition affecting the peripheral nervous system and is a single gene disorder. Deep phenotyping coupled with advanced genetic techniques is critical in discovering new genetic defects of rare genetic disorders such as CMT. Methods We applied multidisciplinary investigations to examine the neurophysiology and nerve pathology in a family that fulfilled the diagnosis of CMT2. When phenotype-guided first-tier genetic tests and whole-exome sequencing did not yield a molecular diagnosis, we conducted full genome analysis by examining phased whole-genome sequencing and whole-genome optical mapping data to search for the causal variation. We then performed a systematic review to compare the reported patients with interstitial microdeletion in the short arm of chromosome 4. Results In this family with CMT2, we reported the discovery of a heterozygous 85-kb microdeletion in the short arm of chromosome 4 (4p16.3)[NC_000004.12:g.1733926_1819031del] spanning 3 genes [TACC3 (intron 6-exon 16), FGFR3 (total deletion), and LETM1 (intron 10-exon14)] that cosegregated with disease phenotypes in family members. The clinical features of peripheral nerve degeneration in our family are distinct from the well-known 4p microdeletion syndrome of Wolf-Hirschhorn syndrome, in which brain involvement is the major phenotype. Discussion In summary, we used the full genome analysis approach to discover a new microdeletion in a family with CMT2. The deleted segment contains 3 genes (TACC3, FGFR3, and LETM1) that likely play a role in the pathogenesis of nerve degeneration.
Collapse
Affiliation(s)
- Hsueh Wen Hsueh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Hsiao-Jung Kao
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Chi-Chao Chao
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Sung-Ju Hsueh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Yu-Ning Huang
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Wan-Jia Lin
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Jen-Ping Su
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Horng-Tzer Shy
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Ti-Yen Yeh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Cheng-Chen Lin
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Pui-Yan Kwok
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Ni-Chung Lee
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| | - Sung-Tsang Hsieh
- From the Department of Neurology (H.W.H., C.-C.C., Y.-N.H., S.-T.H.), Department of Anatomy and Cell Biology (H.W.H., H.-T.S., T.-Y.Y., C.-C.L., S.-T.H.), National Taiwan University College of Medicine; Institute of Biomedical Sciences (H.-J.K., W.-J.L., J.-P.S., P.-Y.K.), Academia Sinica, Taipei; Department of Neurology (S.-J.H.), National Taiwan University Hospital Yunlin Branch; Institute for Human Genetics (P.-Y.K.), Cardiovascular Research Institute, and Department of Dermatology, University of California, San Francisco; and Department of Medical Genetics (N.-C.L.), National Taiwan University Hospital, Taipei
| |
Collapse
|
7
|
Yang Q, Gong D, Yi S, Luo J, Zhang Q. Case report: A de novo NSD2 truncating variant in a child with Rauch-Steindl syndrome. Front Pediatr 2023; 11:1064783. [PMID: 37351323 PMCID: PMC10282739 DOI: 10.3389/fped.2023.1064783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 05/22/2023] [Indexed: 06/24/2023] Open
Abstract
Wolf-Hirschhorn syndrome (WHS) is a rare genetic disorder caused by a heterozygous deletion on chromosome 4p16.3, which is called the WHS critical region (WHSC). The major features of this disorder, including "Greek warrior helmet" facies, delayed growth, intellectual disability, seizures, and skeletal abnormalities, are caused by the combined haploinsufficiency of multiple genes. The WHS candidate 1 (WHSC1) gene, also known as NSD2, is located in the WHSC and has been reported to associate with Rauch-Steindl syndrome (RSS,OMIM 619695). RSS is a highly heterogeneous disease characterized by mild developmental delay, prenatal-onset growth restriction, low body mass index, and characteristic facial features distinct from WHS. In this report, using whole exome sequencing (WES), we identified a novel de novo heterozygous NSD2 truncating variant in a 7-year-old Chinese girl with Rauch-Steindl syndrome, including failure to thrive, facial dysmorphisms, developmental delay, intellectual disability, and hypotonia. These findings further support that haploinsufficiency of NSD2 is necessary for WHS, and molecular genetic testing is more accurate to diagnose these patients. The novel variant uncovered in this study further expands the mutation spectrum of NSD2.
Collapse
Affiliation(s)
- Qi Yang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Di Gong
- Department of School Infirmary, Guangxi Minzu University, Nanning, China
| | - Shang Yi
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qinle Zhang
- Guangxi Key Laboratory of Birth Defects Research and Prevention, Guangxi Key Laboratory of Reproductive Health and Birth Defects Prevention, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Guangxi Key Laboratory of Birth Defects and Stem Cell Biobank, Nanning, China
| |
Collapse
|
8
|
Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: An update and perspectives. Eur J Med Chem 2023; 250:115232. [PMID: 36863225 DOI: 10.1016/j.ejmech.2023.115232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Nuclear receptor-binding SET domain 2 (NSD2) is a histone lysine methyltransferase (HKMTase), which is mainly responsible for the di-methylation of lysine residues on histones, which are involved in the regulation of various biological pathways. The amplification, mutation, translocation, or overexpression of NSD2 can be linked to various diseases. NSD2 has been identified as a promising drug target for cancer therapy. However, relatively few inhibitors have been discovered and this field still needs further exploration. This review provides a detailed summary of the biological studies related to NSD2 and the current progress of inhibitors, research, and describes the challenges in the development of NSD2 inhibitors, including SET (su(var), enhancer-of-zeste, trithorax) domain inhibitors and PWWP1 (proline-tryptophan-tryptophan-proline 1) domain inhibitors. Through analysis and discussion of the NSD2-related crystal complexes and the biological evaluation of related small molecules, we hope to provide insights for future drug design and optimization methods that will stimulate the development of novel NSD2 inhibitors.
Collapse
|
9
|
Wiel LC, Bruno I, Barbi E, Sirchia F. From Wolf-Hirschhorn syndrome to NSD2 haploinsufficiency: a shifting paradigm through the description of a new case and a review of the literature. Ital J Pediatr 2022; 48:72. [PMID: 35550183 PMCID: PMC9097050 DOI: 10.1186/s13052-022-01267-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
Background Wolf-Hirschhorn syndrome (WHS) is a well-defined disorder, whose core phenotype encompasses growth restriction, facial gestalt, intellectual disability and seizures. Nevertheless, great phenotypic variability exists due to the variable extent of the responsible 4p deletion. In addition, exome sequencing analyses, recently identified two genes, namely NSD2 and NELFA, whose loss-of-function variants contribute to a clinical spectrum consistent with atypical or partial WHS. The observation of patients exhibiting clinical features resembling WHS, with only mild developmental delay and without the typical dysmorphic features, carrying microdeletions sparing NSD2, has lead to the hypothesis that NSD2 is responsible for the intellectual disability and the facial gestalt of WHS. While presenting some of the typical findings of WHS (intellectual disability, facial gestalt, microcephaly, growth restriction and congenital heart defects), NSD2-deleted children tend to display a milder spectrum of skeletal abnormalities, usually consisting of clinodactyly, and do not exhibit seizures. We describe the clinical picture of a child with WHS due to a de novo mutation of NSD2 and discuss the clinical and diagnostic implications. Case presentation A 6-year-old boy was evaluated for a history of intrauterine growth restriction, low birth weight, neonatal hypotonia, and psychomotor delay. No episodes of seizure were reported. At physical examination, he displayed marphanoid habitus, muscle hypotrophy and facial dysmorphisms consisting in high frontal hairline, upslanting palpebral fissures and full lips with bifid ugula. Cryptorchidism, shawl scrotum, mild clinodactyly of the right little finger and bilateral syndactyly of the II and III toes with sandal gap were also noted. The radiographic essay demonstrated delayed bone age and echocardiography showed mild mitral prolapse. Whole genome sequencing analysis revealed a heterozygous de novo variant of NSD2 (c.2523delG). Conclusions Full WHS phenotype likely arises from the cumulative effect of the combined haploinsufficiency of several causative genes mapping within the 4p16.3 region, as a contiguous genes syndrome, with slightly different phenotypes depending on the specific genes involved in the deletion. When evaluating children with pictures resembling WHS, in absence of seizures, clinicians should consider this differential diagnosis.
Collapse
Affiliation(s)
| | - Irene Bruno
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Egidio Barbi
- University of Trieste, Piazzale Europa, 1, 34127, Trieste, Italy.,Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Fabio Sirchia
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
10
|
Wilson KD, Porter EG, Garcia BA. Reprogramming of the epigenome in neurodevelopmental disorders. Crit Rev Biochem Mol Biol 2022; 57:73-112. [PMID: 34601997 PMCID: PMC9462920 DOI: 10.1080/10409238.2021.1979457] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 02/03/2023]
Abstract
The etiology of neurodevelopmental disorders (NDDs) remains a challenge for researchers. Human brain development is tightly regulated and sensitive to cellular alterations caused by endogenous or exogenous factors. Intriguingly, the surge of clinical sequencing studies has revealed that many of these disorders are monogenic and monoallelic. Notably, chromatin regulation has emerged as highly dysregulated in NDDs, with many syndromes demonstrating phenotypic overlap, such as intellectual disabilities, with one another. Here we discuss epigenetic writers, erasers, readers, remodelers, and even histones mutated in NDD patients, predicted to affect gene regulation. Moreover, this review focuses on disorders associated with mutations in enzymes involved in histone acetylation and methylation, and it highlights syndromes involving chromatin remodeling complexes. Finally, we explore recently discovered histone germline mutations and their pathogenic outcome on neurological function. Epigenetic regulators are mutated at every level of chromatin organization. Throughout this review, we discuss mechanistic investigations, as well as various animal and iPSC models of these disorders and their usefulness in determining pathomechanism and potential therapeutics. Understanding the mechanism of these mutations will illuminate common pathways between disorders. Ultimately, classifying these disorders based on their effects on the epigenome will not only aid in prognosis in patients but will aid in understanding the role of epigenetic machinery throughout neurodevelopment.
Collapse
Affiliation(s)
- Khadija D Wilson
- Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth G Porter
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Molecular Biophysics, University of Washington School of Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Cueto-González AM, Fernández-Álvarez P, Palafoll IV, Lasa-Aranzasti A, Vendrell Bayona T, Tizzano EF. Correspondence on "Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype" by Zanoni et al. Genet Med 2021; 24:754-756. [PMID: 34906509 DOI: 10.1016/j.gim.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/04/2021] [Accepted: 11/04/2021] [Indexed: 10/19/2022] Open
Affiliation(s)
- Anna Ma Cueto-González
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Campus Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Campus Hospital, Autonomous University of Barcelona, Barcelona, Spain; European Reference Network Craniofacial Anomalies and ENT disorders (ERN CRANIO) and ERN ITHACA, Barcelona, Spain.
| | - Paula Fernández-Álvarez
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Campus Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Campus Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Irene Valenzuela Palafoll
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Campus Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Campus Hospital, Autonomous University of Barcelona, Barcelona, Spain; European Reference Network Craniofacial Anomalies and ENT disorders (ERN CRANIO) and ERN ITHACA, Barcelona, Spain
| | - Amaia Lasa-Aranzasti
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Campus Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Campus Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Teresa Vendrell Bayona
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Campus Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Campus Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Eduardo F Tizzano
- Department of Clinical and Molecular Genetics, Vall d'Hebron Barcelona Campus Hospital, Barcelona, Spain; Medicine Genetics Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Campus Hospital, Autonomous University of Barcelona, Barcelona, Spain; European Reference Network Craniofacial Anomalies and ENT disorders (ERN CRANIO) and ERN ITHACA, Barcelona, Spain
| |
Collapse
|
12
|
Petrova NV, Marakhonov AV, Balinova NV, Abrukova AV, Konovalov FA, Kutsev SI, Zinchenko RA. Genetic Variant c.245A>G (p.Asn82Ser) in GIPC3 Gene Is a Frequent Cause of Hereditary Nonsyndromic Sensorineural Hearing Loss in Chuvash Population. Genes (Basel) 2021; 12:820. [PMID: 34071867 PMCID: PMC8226456 DOI: 10.3390/genes12060820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/05/2022] Open
Abstract
Hereditary nonsyndromic sensorineural hearing loss is a disease in which hearing loss occurs due to damage to the organ of the inner ear, the auditory nerve, or the center in the brain that is responsible for the perception of sound, characterized by wide locus and allelic heterogeneity and different types of inheritance. Given the diversity of population of the Russian Federation, it seems necessary to study the ethnic characteristics of the molecular causes of the disease. The aim is to study the molecular and genetic causes of hereditary sensorineural hearing loss in Chuvash, the fifth largest ethnic group in Russia. DNA samples of 26 patients from 21 unrelated Chuvash families from the Republic of Chuvashia, in whom the diagnosis of hereditary sensorineural hearing loss had been established, were analyzed using a combination of targeted Sanger sequencing, multiplex ligase-dependent probe amplification, and whole exome sequencing. The homozygous variant NM_133261.3(GIPC3):c.245A>G (p.Asn82Ser) is the major molecular cause of hereditary sensorineural hearing loss in 23% of Chuvash patients (OMIM #601869). Its frequency was 25% in patients and 1.1% in healthy Chuvash population. Genotyping of the NM_133261.3(GIPC3):c.245A>G (p.Asn82Ser) variant in five neighboring populations from the Volga-Ural region (Russian, Udmurt, Mary, Tatar, Bushkir) found no evidence that this variant is common in those populations.
Collapse
Affiliation(s)
- Nika V. Petrova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (N.V.P.); (N.V.B.); (S.I.K.); (R.A.Z.)
| | - Andrey V. Marakhonov
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (N.V.P.); (N.V.B.); (S.I.K.); (R.A.Z.)
| | - Natalia V. Balinova
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (N.V.P.); (N.V.B.); (S.I.K.); (R.A.Z.)
| | - Anna V. Abrukova
- Presidential Perinatal Center of the Public Health Ministry of Chuvashia, Genetic Counseling Department, 428018 Cheboksary, Russia;
| | | | - Sergey I. Kutsev
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (N.V.P.); (N.V.B.); (S.I.K.); (R.A.Z.)
| | - Rena A. Zinchenko
- Research Centre for Medical Genetics, 115522 Moscow, Russia; (N.V.P.); (N.V.B.); (S.I.K.); (R.A.Z.)
- N.A. Semashko National Research Institute of Public Health, 105064 Moscow, Russia
| |
Collapse
|
13
|
Battaglia A, Carey JC. The delineation of the Wolf-Hirschhorn syndrome over six decades: Illustration of the ongoing advances in phenotype analysis and cytogenomic technology. Am J Med Genet A 2021; 185:2748-2755. [PMID: 34002939 DOI: 10.1002/ajmg.a.62341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/24/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022]
Abstract
Since Hirschhorn's description in 1961, the history and chronology of the clinical, cytogenetic, and molecular characterization of Wolf-Hirschhorn syndrome (WHS) elegantly demonstrates the remarkable advances in genetic technology over the last six decades that have paralleled the delineation of the phenotype. After mention in the Human Chromosome Newsletter of a child with a visible deletion of the top of a B chromosome group, 4-5, Hirschhorn and colleagues companioned their report with that of Wolf et al. in Humangenetik in 1965, and the condition was recognized and named. The 1960-1970s witnessed the description of many of the now classic chromosome disorders, including WHS, while HRB allowed for the recognition of chromosome syndromes with smaller deletions/duplications. FISH probes, developed in the next two decades, enabled the characterization of the critical region of WHS and improved clinical diagnosis with subtelomeric probes. Cytogenomic microarray in the early-mid 2000s led to both improved diagnosis of WHS patients and documentation of microdeletions of <5 megabases, helping to characterize the critical regions for specific component phenotypes (e.g., seizures, face). Recently exome sequencing technology has led to the discovery of WHS patients with WHSC1 loss of function variants, displaying some cardinal features of the phenotype (face, growth, and developmental delay).
Collapse
Affiliation(s)
- Agatino Battaglia
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
| | - John C Carey
- Department of Pediatrics, Division of Medical Genetics, University of Utah, Utah, USA
| |
Collapse
|
14
|
Loss-of-function and missense variants in NSD2 cause decreased methylation activity and are associated with a distinct developmental phenotype. Genet Med 2021; 23:1474-1483. [PMID: 33941880 PMCID: PMC8354849 DOI: 10.1038/s41436-021-01158-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose Despite a few recent reports of patients harboring truncating variants in NSD2, a gene considered critical for the Wolf–Hirschhorn syndrome (WHS) phenotype, the clinical spectrum associated with NSD2 pathogenic variants remains poorly understood. Methods We collected a comprehensive series of 18 unpublished patients carrying heterozygous missense, elongating, or truncating NSD2 variants; compared their clinical data to the typical WHS phenotype after pooling them with ten previously described patients; and assessed the underlying molecular mechanism by structural modeling and measuring methylation activity in vitro. Results The core NSD2-associated phenotype includes mostly mild developmental delay, prenatal-onset growth retardation, low body mass index, and characteristic facial features distinct from WHS. Patients carrying missense variants were significantly taller and had more frequent behavioral/psychological issues compared with those harboring truncating variants. Structural in silico modeling suggested interference with NSD2’s folding and function for all missense variants in known structures. In vitro testing showed reduced methylation activity and failure to reconstitute H3K36me2 in NSD2 knockout cells for most missense variants. Conclusion NSD2 loss-of-function variants lead to a distinct, rather mild phenotype partially overlapping with WHS. To avoid confusion for patients, NSD2 deficiency may be named Rauch–Steindl syndrome after the delineators of this phenotype.
Collapse
|
15
|
Chen CP, Wang LK, Chern SR, Wu PS, Chen SW, Wu FT, Chen LF, Chen YY, Wang W. Wolf-Hirschhorn syndrome: Prenatal diagnosis and molecular cytogenetic characterization of a de novo distal deletion of 4p (4p16.1 → pter) in a fetus with facial cleft and preaxial polydactyly. Taiwan J Obstet Gynecol 2021; 59:425-431. [PMID: 32416892 DOI: 10.1016/j.tjog.2020.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE We present prenatal diagnosis and molecular cytogenetic characterization of Wolf-Hirschhorn syndrome (WHS) in a fetus with facial cleft and preaxial polydactyly. MATERIALS AND METHODS A 37-year-old woman underwent amniocentesis at 18 weeks of gestation because of advanced maternal age, and the result showed an aberrant chromosome 4 or 46,XX,add(4) (p15.3). The woman consulted our clinics at 22 weeks of gestation and requested for repeat amniocentesis. Prenatal ultrasound revealed intrauterine growth restriction, facial cleft, vermian hypoplasia of cerebellum, micrognathia and absent stomach. Conventional cytogenetic analysis was performed on cultured amniocytes, parental bloods and cord blood. Array comparative genomic hybridization (aCGH) and quantitative fluorescent polymerase chain reaction (QF-PCR) were performed on the DNAs extracted from uncultured amniocytes and parental bloods. Fluorescence in situ hybridization (FISH) analysis was performed on cultured metaphase amniocytes. RESULTS aCGH analysis on uncultured amniocytes revealed arr 4p16.3p16.1 (74,447-8,732,731) × 1.0 [GRCh37 (hg19)] with an 8.66-Mb deletion of 4p16.3-p16.1 encompassing 70 [Online Mendelian Inheritance of in Man (OMIM)] genes including ZNF141, FGFRL1, TACC3, LETM1, NSD2 and NELFA. QF-PCR revealed a paternal origin of the distal 4p deletion. Conventional cytogenetic analysis revealed 46,XX,del(4) (p16.1)dn in the fetus. Metaphase FISH analysis confirmed a 4p16 deletion. The parental karyotypes were normal. The pregnancy was subsequently terminated, and a malformed fetus was delivered with typical WHS facial dysmorphism, bilateral cleft lip and palate, and preaxial polydactyly on the right hand. CONCLUSION aCGH, QF-PCR and FISH help to delineate the nature of a prenatally defected aberrant chromosome, and the acquired information is useful for genetic counseling.
Collapse
Affiliation(s)
- Chih-Ping Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan; Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung, Taiwan; Institute of Clinical and Community Health Nursing, National Yang-Ming University, Taipei, Taiwan; Department of Obstetrics and Gynecology, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Liang-Kai Wang
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Schu-Rern Chern
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | | | - Shin-Wen Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Fang-Tzu Wu
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Li-Feng Chen
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Yi Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Wayseen Wang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan; Department of Bioengineering, Tatung University, Taipei, Taiwan
| |
Collapse
|
16
|
5q35 duplication presents with psychiatric and undergrowth phenotypes mediated by NSD1 overexpression and mTOR signaling downregulation. Hum Genet 2021; 140:681-690. [PMID: 33389145 DOI: 10.1007/s00439-020-02240-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/15/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Nuclear receptor binding SET domain protein 1, NSD1, encodes a histone methyltransferase H3K36. NSD1 is responsible for the phenotype of the reciprocal 5q35.2q35.3 microdeletion-microduplication syndromes. We expand the phenotype and demonstrate the functional role of NSD1 in microduplication 5q35 syndrome. METHODS Through an international collaboration, we report nine new patients, contributing to the emerging phenotype, highlighting psychiatric phenotypes in older affected individuals. Focusing specifically on the undergrowth phenotype, we have modeled the effects of Mes-4/NSD overexpression in Drosophila melanogaster. RESULTS The individuals (including a family) from diverse backgrounds with duplications ranging in size from 0.6 to 4.5 Mb, have a consistent undergrowth phenotype. Mes-4 overexpression in the developing wing causes undergrowth, increased H3K36 methylation, and increased apoptosis. We demonstrate that altering the levels of insulin receptor (IR) rescues the apoptosis and the wing undergrowth phenotype, suggesting changes in mTOR pathway signaling. Leucine supplementation rescued Mes-4/NSD induced cell death, demonstrating decreased mTOR signaling caused by NSD1. CONCLUSION Given that we show mTOR inhibition as a likely mechanism and amelioration of the phenotype by leucine supplementation in a fly model, we suggest further studies should evaluate the therapeutic potential of leucine or branched chain amino acids as an adjunct possible treatment to ameliorate human growth and psychiatric phenotypes and propose inclusion of 5q35-microduplication as part of the differential diagnosis for children and adults with delayed bone age, short stature, microcephaly, developmental delay, and psychiatric phenotypes.
Collapse
|
17
|
Hu X, Wu D, Li Y, Wei L, Li X, Qin M, Li H, Li M, Chen S, Gong C, Shen Y. The first familial NSD2 cases with a novel variant in a Chinese father and daughter with atypical WHS facial features and a 7.5-year follow-up of growth hormone therapy. BMC Med Genomics 2020; 13:181. [PMID: 33276791 PMCID: PMC7716467 DOI: 10.1186/s12920-020-00831-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 11/23/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wolf-Hirschhorn syndrome is a well-characterized genomic disorder caused by 4p16.3 deletions. Wolf-Hirschhorn syndrome patients exhibit characteristic facial dysmorphism, growth retardation, developmental delay, intellectual disability and seizure disorders. Recently, NSD2 gene located within the 165 kb Wolf-Hirschhorn syndrome critical region was identified as the key causal gene responsible for most if not all phenotypes of Wolf-Hirschhorn syndrome. So far, eight NSD2 loss of function variants have been reported in patients from different parts of the world, all were de novo variants. METHODS In our study, we performed whole exome sequencing for two patients from one family. We also reviewed more NSD2 mutation cases in pervious literature. RESULTS A novel loss of function NSD2 variant, c.1577dupG (p.Asn527Lysfs*14), was identified in a Chinese family in the proband and her father both affected with intellectual disability. After reviewing more NSD2 mutation cases in pervious literature, we found none of them had facial features that can be recognized as Wolf-Hirschhorn syndrome. In addition, we have given our proband growth hormone and followed up with this family for 7.5 years. CONCLUSIONS Here we reported the first familial NSD2 variant and the long-term effect of growth hormone therapy for patients. Our results suggested NSD2 mutation might cause a distinct intellectual disability and short stature syndrome.
Collapse
Affiliation(s)
- Xuyun Hu
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.,Genetics and Birth Defects Control Center, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Wu
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 South Lishi Road, Xicheng District, Beijing, 100045, PR China
| | - Yuchuan Li
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 South Lishi Road, Xicheng District, Beijing, 100045, PR China
| | - Liya Wei
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 South Lishi Road, Xicheng District, Beijing, 100045, PR China
| | - Xiaoqiao Li
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 South Lishi Road, Xicheng District, Beijing, 100045, PR China
| | - Miao Qin
- Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 South Lishi Road, Xicheng District, Beijing, 100045, PR China
| | - Hongdou Li
- Obstetrics Gynecology Hospital, The Institute of Reproduction and Developmental Biology, Fudan University, Shanghai, 200011, China
| | - Mengting Li
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530023, Guangxi, China
| | - Shaoke Chen
- The second affiliated hospital of Guangxi Medical University, Nanning, 530000, Guangxi, China
| | - Chunxiu Gong
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Pediatric Research Institute; MOE Key Laboratory of Major Diseases in Children, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China. .,Department of Endocrinology, Genetics and Metabolism, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, No.56 South Lishi Road, Xicheng District, Beijing, 100045, PR China.
| | - Yiping Shen
- Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530023, Guangxi, China. .,Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China. .,Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
18
|
Marakhonov AV, Voskresenskaya AA, Ballesta MJ, Konovalov FA, Vasilyeva TA, Blanco-Kelly F, Pozdeyeva NA, Kadyshev VV, López-González V, Guillen E, Ayuso C, Zinchenko RA, Corton M. Expanding the phenotype of CRYAA nucleotide variants to a complex presentation of anterior segment dysgenesis. Orphanet J Rare Dis 2020; 15:207. [PMID: 32791987 PMCID: PMC7427288 DOI: 10.1186/s13023-020-01484-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mutations in CRYAA, which encodes the α-crystallin protein, are associated with a spectrum of congenital cataract-microcornea syndromes. RESULTS In this study, we performed clinical examination and subsequent genetic analysis in two unrelated sporadic cases of different geographical origins presenting with a complex phenotype of ocular malformation. Both cases manifested bilateral microphthalmia and severe anterior segment dysgenesis, primarily characterized by congenital aphakia, microcornea, and iris hypoplasia/aniridia. NGS-based analysis revealed two novel single nucleotide variants occurring de novo and affecting the translation termination codon of the CRYAA gene, c.520T > C and c.521A > C. Both variants are predicted to elongate the C-terminal protein domain by one-third of the original length. CONCLUSIONS Our report not only expands the mutational spectrum of CRYAA but also identifies the genetic cause of the unusual ocular phenotype described in this report.
Collapse
Affiliation(s)
- Andrey V Marakhonov
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation.
| | - Anna A Voskresenskaya
- Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Maria Jose Ballesta
- Medical Genetics Department, University Hospital Virgen de la Arrixaca, Murcia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
| | - Fedor A Konovalov
- Independent Clinical Bioinformatics Laboratory, Moscow, Russian Federation
| | - Tatyana A Vasilyeva
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Fiona Blanco-Kelly
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos n° 2, 28040, Madrid, Spain
| | - Nadezhda A Pozdeyeva
- Cheboksary Branch of the S. Fyodorov Eye Microsurgery Federal State Institution, Cheboksary, Russian Federation
| | - Vitaly V Kadyshev
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Vanesa López-González
- Medical Genetics Department, University Hospital Virgen de la Arrixaca, Murcia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
| | - Encarna Guillen
- Medical Genetics Department, University Hospital Virgen de la Arrixaca, Murcia, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
| | - Carmen Ayuso
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos n° 2, 28040, Madrid, Spain
| | - Rena A Zinchenko
- Research Centre for Medical Genetics, Moskvorechie Str., 1, Moscow, Russian Federation
| | - Marta Corton
- Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII - Instituto de Salud Carlos III, Madrid, Spain.
- Department of Genetics & Genomics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos n° 2, 28040, Madrid, Spain.
| |
Collapse
|
19
|
Liu W, Fang Y, Shi Y, Cheng Y, Sun C, Cui D. The interaction of histone modification related H3F3B and NSD2 genes increases the susceptibility to schizophrenia in a Chinese population. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109918. [PMID: 32169559 DOI: 10.1016/j.pnpbp.2020.109918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
The role of histone modifications in the pathogenesis of schizophrenia has been proposed previously. H3F3B is a member of the histone 3. NSD2 is a histone methyltransferase that mediates dimethylation of Histone 3 lysine 36 (H3K36me2). The aim of the current study was to explore the associations between SNPs within H3F3B gene (rs60700976, rs3214028) and NSD2 gene (rs13148597, rs75820801) and the susceptibility to schizophrenia in a Chinese population. A total of 810 patients and 490 healthy controls were recruited and genetic association analyses were performed. The H3F3B gene polymorphisms rs3214028 and rs60700976 were significantly associated with schizophrenia. Rs60700976 was also associated with psychotic symptoms in schizophrenia patients. Furthermore, we found the interaction between NSD2 gene and H3F3B gene was related to the susceptibility to schizophrenia. The corresponding best three-locus model was H3F3B (rs60700976) - NSD2 (rs75820801, rs13148597), and the high-risk genotype combination was rs13148597(CC)- rs60700976(GG)-rs75820801(TT) (OR = 1.388[1.091-1.766], P = .007). The low-risk genotype combination was rs13148597(CC)-rs60700976(GG)-rs75820801(CT) (OR = 0.57 [0.330-0.985], P = .042). Our findings provided the preliminary evidence that the histone modification related H3F3B and NSD2 genes may confer the susceptibility to schizophrenia in a Chinese population.
Collapse
Affiliation(s)
- Wenxin Liu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yu Fang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Shi
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Cheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanwen Sun
- College of Life Sciences, Shanghai Normal University, Shanghai, China.
| | - Donghong Cui
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Brain Science and Technology Research Center, Shanghai Jiao Tong University, China.
| |
Collapse
|
20
|
Suzuki T, Suzuki T, Raveau M, Miyake N, Sudo G, Tsurusaki Y, Watanabe T, Sugaya Y, Tatsukawa T, Mazaki E, Shimohata A, Kushima I, Aleksic B, Shiino T, Toyota T, Iwayama Y, Nakaoka K, Ohmori I, Sasaki A, Watanabe K, Hirose S, Kaneko S, Inoue Y, Yoshikawa T, Ozaki N, Kano M, Shimoji T, Matsumoto N, Yamakawa K. A recurrent PJA1 variant in trigonocephaly and neurodevelopmental disorders. Ann Clin Transl Neurol 2020; 7:1117-1131. [PMID: 32530565 PMCID: PMC7359110 DOI: 10.1002/acn3.51093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 05/10/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Neurodevelopmental disorders (NDDs) often associate with epilepsy or craniofacial malformations. Recent large-scale DNA analyses identified hundreds of candidate genes for NDDs, but a large portion of the cases still remain unexplained. We aimed to identify novel candidate genes for NDDs. METHODS We performed exome sequencing of 95 patients with NDDs including 51 with trigonocephaly and subsequent targeted sequencing of additional 463 NDD patients, functional analyses of variant in vitro, and evaluations of autism spectrum disorder (ASD)-like phenotypes and seizure-related phenotypes in vivo. RESULTS We identified de novo truncation variants in nine novel genes; CYP1A1, C14orf119, FLI1, CYB5R4, SEL1L2, RAB11FIP2, ZMYND8, ZNF143, and MSX2. MSX2 variants have been described in patients with cranial malformations, and our present patient with the MSX2 de novo truncation variant showed cranial meningocele and partial epilepsy. MSX2 protein is known to be ubiquitinated by an E3 ubiquitin ligase PJA1, and interestingly we found a PJA1 hemizygous p.Arg376Cys variant recurrently in seven Japanese NDD patients; five with trigonocephaly and one with partial epilepsy, and the variant was absent in 886 Japanese control individuals. Pja1 knock-in mice carrying p.Arg365Cys, which is equivalent to p.Arg376Cys in human, showed a significant decrease in PJA1 protein amount, suggesting a loss-of-function effect of the variant. Pja1 knockout mice displayed moderate deficits in isolation-induced ultrasonic vocalizations and increased seizure susceptibility to pentylenetetrazole. INTERPRETATION These findings propose novel candidate genes including PJA1 and MSX2 for NDDs associated with craniofacial abnormalities and/or epilepsy.
Collapse
Affiliation(s)
- Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, 467-8601, Japan.,Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Toshifumi Suzuki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.,Department of Obstetrics and Gynecology, Juntendo University Faculty of Medicine, Tokyo, 113-8421, Japan
| | - Matthieu Raveau
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Genki Sudo
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshinori Tsurusaki
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.,Faculty of Nutritional Science, Sagami Women's University, Sagamihara, Kanagawa, 252-0383, Japan
| | - Takaki Watanabe
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuki Sugaya
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tetsuya Tatsukawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Emi Mazaki
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Atsushi Shimohata
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Aichi, 466-8560, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tomoko Shiino
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Kentaro Nakaoka
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Iori Ohmori
- Department of Special Needs Education, Okayama University Graduate School of Education, Okayama, 700-8530, Japan
| | - Aya Sasaki
- Department of Pathology and Laboratory Medicine, Tokyo Dental College Ichikawa General Hospital, Ichikawa, Chiba, 272-8513, Japan
| | - Ken Watanabe
- Section of Bone Function, Department of Bone and Joint Diseases, National Center for Geriatrics and Gerontology (NCGG), Obu, Aichi, 474-8511, Japan
| | - Shinichi Hirose
- Department of Pediatrics, School of Medicine and Research Institute for the Molecular Pathomechanisms of Epilepsy, Fukuoka University, Fukuoka, Fukuoka, 814-0180, Japan
| | - Sunao Kaneko
- Department of Neuropsychiatry, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, 036-8562, Japan.,North Tohoku Epilepsy Center, Minato Hospital, Hachinohe, 031-0813, Japan
| | - Yushi Inoue
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Aoi-ku, Shizuoka, 420-8688, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Takeyoshi Shimoji
- Department of Neurosurgery, Okinawa Pref. Nanbu Medical Center and Children's Medical Center, Arakawa Haebaru, Okinawa, 901-1193, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya, Aichi, 467-8601, Japan.,Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
21
|
Viakhireva I, Musatova E, Bessonova L, Shcherbatyuk Y, Korobkov S, Zhikriveckaya S, Sofronova Y, Mironova I, Khmelkova D, Konovalov F, Baranova A, Pomerantseva E, Skoblov M. Novel intronic variant in PALB2 gene and effective prevention of Fanconi anemia in family. Fam Cancer 2020; 19:241-246. [PMID: 32052252 DOI: 10.1007/s10689-020-00165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
Abstract
Despite the acceptance of NextGen sequencing as a diagnostic modality suitable for probands and carriers of Mendelian diseases, its efficiency in identifying causal mutations is limited by both technical aspects of variant call algorithms and by imperfect, consensus-based criteria for assessing the pathogenicity of the findings. Here we describe the medical history of the family with a child born with Fanconi anemia. In this case, typical diagnostic routines were complicated by unusual combination of mutations. PALB2 variant NM_024675.3:c.172_175delTTGT (p.Gln60Argfs) in maternal sample, previously classified as a definitely pathogenic frameshift mutation, was in compound heterozygous state with PALB2 NM_024675.3:c.3114-16_3114-11del (p.Asn1039Glyfs*7), which led to validated PALB2 exon 11 skipping event in paternal locus. Findings enabled the development of the PGТ and successful selection of two mutation-free embryos. We show that even in absence of definitive exome findings, clinician-guided research inquiries into the structure and function of the suspected loci allow definitive diagnosis. Described case provides an example of a crucial input of an investigational workflow in genetic prognosis and successful PGT.
Collapse
Affiliation(s)
- I Viakhireva
- Research Centre for Medical Genetics, Moskvorechie, 1, Moscow, Russian Federation, 115522
| | - E Musatova
- Research Centre for Medical Genetics, Moskvorechie, 1, Moscow, Russian Federation, 115522.,Center of Genetics and Reproductive Medicine "Genetico", LLC, 3 b1, Gubkina str, Moscow, Russian Federation, 119333
| | - L Bessonova
- Research Centre for Medical Genetics, Moskvorechie, 1, Moscow, Russian Federation, 115522
| | - Y Shcherbatyuk
- Hospital Lapino, MD Medical Group, 111, 1-Ye Uspenskoye Shosse, Lapino, Moskovskaya region, Russian Federation, 143081
| | - S Korobkov
- Hospital Lapino, MD Medical Group, 111, 1-Ye Uspenskoye Shosse, Lapino, Moskovskaya region, Russian Federation, 143081
| | - S Zhikriveckaya
- Center of Genetics and Reproductive Medicine "Genetico", LLC, 3 b1, Gubkina str, Moscow, Russian Federation, 119333
| | - Ya Sofronova
- Center of Genetics and Reproductive Medicine "Genetico", LLC, 3 b1, Gubkina str, Moscow, Russian Federation, 119333
| | - I Mironova
- Center of Genetics and Reproductive Medicine "Genetico", LLC, 3 b1, Gubkina str, Moscow, Russian Federation, 119333
| | - D Khmelkova
- Genomed, Ltd, 8 b5, Podol'skoye Shosse, Moscow, Russian Federation, 115093
| | - F Konovalov
- Genomed, Ltd, 8 b5, Podol'skoye Shosse, Moscow, Russian Federation, 115093
| | - A Baranova
- Research Centre for Medical Genetics, Moskvorechie, 1, Moscow, Russian Federation, 115522.,Chronic Metabolic and Rare Diseases Systems Biology Initiative (ChroMe RaDSBIn), School of Systems Biology, George Mason University, 4400 University Dr, Fairfax, VA, 22030, USA
| | - E Pomerantseva
- Center of Genetics and Reproductive Medicine "Genetico", LLC, 3 b1, Gubkina str, Moscow, Russian Federation, 119333
| | - M Skoblov
- Research Centre for Medical Genetics, Moskvorechie, 1, Moscow, Russian Federation, 115522.
| |
Collapse
|
22
|
Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol 2019; 26:880-889. [PMID: 31582846 DOI: 10.1038/s41594-019-0298-7] [Citation(s) in RCA: 292] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/05/2019] [Accepted: 08/12/2019] [Indexed: 12/24/2022]
Abstract
The precise temporal and spatial coordination of histone lysine methylation dynamics across the epigenome regulates virtually all DNA-templated processes. A large number of histone lysine methyltransferase (KMT) enzymes catalyze the various lysine methylation events decorating the core histone proteins. Mutations, genetic translocations and altered gene expression involving these KMTs are frequently observed in cancer, developmental disorders and other pathologies. Therapeutic compounds targeting specific KMTs are currently being tested in the clinic, although overall drug discovery in the field is relatively underdeveloped. Here we review the biochemical and biological activities of histone KMTs and their connections to human diseases, focusing on cancer. We also discuss the scientific and clinical challenges and opportunities in studying KMTs.
Collapse
|
23
|
Yamamoto-Shimojima K, Kouwaki M, Kawashima Y, Itomi K, Momosaki K, Ozasa S, Okamoto N, Yokochi K, Yamamoto T. Natural histories of patients with Wolf-Hirschhorn syndrome derived from variable chromosomal abnormalities. Congenit Anom (Kyoto) 2019; 59:169-173. [PMID: 30378700 DOI: 10.1111/cga.12318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/01/2018] [Accepted: 10/26/2018] [Indexed: 11/28/2022]
Abstract
Wolf-Hirschhorn syndrome (WHS) is a subtelomeric deletion syndrome affecting the short arm of chromosome 4. The main clinical features are a typical craniofacial appearance, growth deficiency, developmental delays, and seizures. Previous genotype-phenotype correlation analyses showed some candidate regions for each clinical finding. The WHS critical region has been narrowed into the region 2 Mb from the telomere, which includes LETM1 and WHSC1; however, this region is insufficient to cause "typical WHS facial appearance". In this study, we identified 10 patients with a deletion involving 4p16.3. Five patients showed pure terminal deletions and three showed unbalanced translocations. The remaining patients showed an interstitial deletion and a suspected inverted-duplication-deletion. Among 10 patients, one patient did not show "typical WHS facial appearance" although his interstitial deletion included LETM1 and WHSC1. On the other hand, another patient exhibited "typical WHS facial appearance" although her small deletion did not include LETM1 and WHSC1. Instead, FGFRL1 was considered as the candidate for this finding. The largest deletion of 34.7 Mb was identified in a patient with the most severe phenotype of WHS.
Collapse
Affiliation(s)
| | - Masanori Kouwaki
- Department of Neonatology, Toyohashi Municipal Hospital, Toyohashi, Japan
| | - Yuki Kawashima
- Department of Pediatrics, Tottori University, Yonago, Japan
| | - Kazuya Itomi
- Department of Neurology, Aichi Children's Health and Medical Center, Obu, Japan
| | - Ken Momosaki
- Department of Pediatrics, Kumamoto University, Kumamoto, Japan
| | - Shiro Ozasa
- Department of Pediatrics, Kumamoto University, Kumamoto, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Kenji Yokochi
- Department of Pediatrics, Seirei Mikatahara General Hospital, Hamamatsu, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
24
|
Jiang Y, Sun H, Lin Q, Wang Z, Wang G, Wang J, Jiang F, Yao R. De novo truncating variant in NSD2gene leading to atypical Wolf-Hirschhorn syndrome phenotype. BMC MEDICAL GENETICS 2019; 20:134. [PMID: 31382906 PMCID: PMC6683463 DOI: 10.1186/s12881-019-0863-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/23/2019] [Indexed: 12/20/2022]
Abstract
Background Wolf-Hirschhorn syndrome (WHS) is a contiguous gene syndrome caused by partial 4p deletion highly variable in size in individual patients. The core WHS phenotype is defined by the association of growth delay, typical facial characteristics, intellectual disability and seizures. The WHS critical region (WHSCR) has been narrowed down and NSD2 falls within this 200 kb region. Only four patients with NSD2 variants have been documented with phenotypic features in detail. Case presentation Herein, we report the case of a 12-year-old boy with developmental delay. He had dysmorphic facial features including wide-spaced eyes, prominent nasal bridge continuing to forehead, abnormal teething and micrognathia. He also had mild clinodactyly of both hands. Using whole-exome sequencing, we identified a pathogenic mutation in NSD2 [c.4029_4030insAA, p.Glu1344Lysfs*49] isolated from peripheral blood DNA. Sanger confirmation of this variant revealed it as a de novo truncating variant in the family. Conclusion Here, we reported a boy with de novo truncating variant in NSD2 with atypical clinical features comparing with 4p16.3 deletion related WHS. Our finding further supported the pathogenesis of truncating variants in NSD2 and delineated the possible symptom spectrum caused by these variants.
Collapse
Affiliation(s)
- Yanrui Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, 200127, People's Republic of China
| | - Huizhen Sun
- Department of Urology, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, People's Republic of China
| | - Qingmin Lin
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, 200127, People's Republic of China
| | - Zengge Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Guanghai Wang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, 200127, People's Republic of China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China
| | - Fan Jiang
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China. .,MOE-Shanghai Key Laboratory of Children's Environmental Health, Shanghai, 200127, People's Republic of China.
| | - Ruen Yao
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, 1678 Dongfang Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
25
|
Barrie ES, Alfaro MP, Pfau RB, Goff MJ, McBride KL, Manickam K, Zmuda EJ. De novo loss-of-function variants in NSD2 ( WHSC1) associate with a subset of Wolf-Hirschhorn syndrome. Cold Spring Harb Mol Case Stud 2019; 5:mcs.a004044. [PMID: 31171569 PMCID: PMC6672030 DOI: 10.1101/mcs.a004044] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/06/2019] [Indexed: 11/25/2022] Open
Abstract
Wolf–Hirschhorn syndrome (WHS) is a rare but recurrent microdeletion syndrome associated with hemizygosity of an interstitial segment of Chromosome 4 (4p16.3). Consistent with historical reports in which overlapping deletions defined a minimal critical region in WHS patients, recent reports from exome sequence analysis have provided further evidence that haploinsufficiency of a specific gene within this critical region, NSD2 (WHSC1), is causal for many features of the syndrome. In this report, we describe three unrelated patients with loss-of-function alterations in NSD2 who presented clinically with WHS features including intrauterine growth retardation and global developmental delay. Two of the three patients also had overlapping features of failure to thrive, short stature, constipation, and hypotonia. This series adds additional cases to expand the phenotypic spectrum of WHS and reports novel NSD2 variants.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43215, USA
| | - Maria P Alfaro
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43215, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Ruthann B Pfau
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43215, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | - Kim L McBride
- Division of Genetic and Genomic Medicine.,Center for Cardiovascular Research, Nationwide Children's Hospital, Columbus, Ohio 43205, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Kandamurugu Manickam
- Division of Genetic and Genomic Medicine.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Erik J Zmuda
- The Institute for Genomic Medicine at Nationwide Children's Hospital, Columbus, Ohio 43215, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Rudenskaya GE, Marakhonov AV, Shchagina OA, Lozier ER, Dadali EL, Akimova IA, Petrova NV, Konovalov FA. Ataxia with Oculomotor Apraxia Type 4 with PNKP Common "Portuguese" and Novel Mutations in Two Belarusian Families. J Pediatr Genet 2019; 8:58-62. [PMID: 31061747 DOI: 10.1055/s-0039-1684008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Ataxia with oculomotor apraxia type 4 (AOA4) is a rare autosomal recessive, PNKP -related disorder delineated in 2015 in Portugal. We diagnosed AOA4 by next generation sequencing (NGS) followed by Sanger's sequencing in three boys from two unrelated Belarusian families. In both families, one of the heterozygous PNKP mutations was c.1123G>T, common in Portuguese patients; biallelic mutations, c.1270_1283dup14 and c.1029+2T>C, respectively, were novel. These are the first reported AOA4 Slavic cases and the first with a "Portuguese" PNKP mutation outside Portugal. Distinction in two brothers was microcephaly but their disease was not severe in contrast to PNKP -related "microcephaly, seizures, and developmental delay" and reported cases with features of both phenotypes.
Collapse
Affiliation(s)
- Galina E Rudenskaya
- Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Andrey V Marakhonov
- Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Olga A Shchagina
- Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Ekaterina R Lozier
- Independent Clinical Bioinformatics Laboratory, Moscow, Russian Federation
| | - Elena L Dadali
- Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Irina A Akimova
- Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Nika V Petrova
- Department of Genetic Counseling, Research Centre for Medical Genetics, Moscow, Russian Federation
| | - Fedor A Konovalov
- Independent Clinical Bioinformatics Laboratory, Moscow, Russian Federation
| |
Collapse
|
27
|
Boczek NJ, Lahner CA, Nguyen TM, Ferber MJ, Hasadsri L, Thorland EC, Niu Z, Gavrilova RH. Developmental delay and failure to thrive associated with a loss-of-function variant in WHSC1 (NSD2). Am J Med Genet A 2018; 176:2798-2802. [PMID: 30345613 DOI: 10.1002/ajmg.a.40498] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/12/2018] [Accepted: 07/14/2018] [Indexed: 11/07/2022]
Abstract
Wolf-Hirschhorn syndrome (WHS) is a microdeletion syndrome characterized by distinctive facial features consisting of "Greek warrior helmet" appearance, prenatal and postnatal growth deficiency, developmental disability, and seizures. This disorder is caused by heterozygous deletions on chromosome 4p16.3 often identified by cytogenetic techniques. Many groups have attempted to identify the critical region within this deletion to establish which genes are responsible for WHS. Herein, clinical whole exome sequencing (WES) was performed on a child with developmental delays, mild facial dysmorphisms, short stature, failure to thrive, and microcephaly, and revealed a de novo frameshift variant, c.1676_1679del (p.Arg559Tfs*38), in WHSC1 (NSD2). While WHSC1 falls within the WHS critical region, individuals with only disruption of this gene have only recently been described in the literature. Loss-of-function de novo variations in WHSC1 were identified in large developmental delay, autism, diagnostic, and congenital cardiac cohorts, as well as recent case reports, suggesting that de novo loss-of-function WHSC1 variants may be related to disease. These findings, along with our patient suggest that loss-of-function variation in WHSC1 may lead to a mild form of Wolf-Hirschhorn syndrome, and also may suggest that the developmental delays, facial dysmorphisms, and short stature seen in WHS may be due to disruption of WHSC1 gene.
Collapse
Affiliation(s)
- Nicole J Boczek
- Department of Laboratory Medicine and Pathology; Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Carrie A Lahner
- Department of Laboratory Medicine and Pathology; Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Thuy-Mi Nguyen
- Department of Laboratory Medicine and Pathology; Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Matthew J Ferber
- Department of Laboratory Medicine and Pathology; Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology; Genomics Laboratory, Mayo Clinic, Rochester, Minnesota
| | - Erik C Thorland
- Department of Laboratory Medicine and Pathology; Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Zhiyv Niu
- Department of Laboratory Medicine and Pathology; Genomics Laboratory, Mayo Clinic, Rochester, Minnesota.,Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota
| | - Ralitza H Gavrilova
- Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|