1
|
Liu Y, Li F, Wu B, Huang L, Qi Y. The clathrin adaptor AP1-S1 is associated with immune infiltration and HLA loss, as a potential therapeutic target in lung adenocarcinoma. Int Immunopharmacol 2025; 152:114385. [PMID: 40049084 DOI: 10.1016/j.intimp.2025.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
The clathrin adaptor protein 1 (AP1) plays a pivotal role in the endocytosis of cell surface proteins and transportation between the golgi apparatus and lysosomes. Despite its critical functions, the implications of AP1 dysregulation in human cancers have yet to be elucidated. The structural analysis of AP1 subunits was conducted utilizing data from the Protein Data Bank (PDB), which is composed of four subunits: AP1-S1, AP1-B1, AP1-G1, and AP1-M1. Notably, the expression levels of AP1 subunits exhibit significant variability between tumor and normal tissues across different cancer types using data from the CPTAC, GEO, and TCGA databases. Kaplan-Meier (K-M) curve analysis has revealed that certain AP1 subunits are correlated with patient prognosis in various cancers. For instance, the AP1-S1 subunit is related to poor survival outcomes in head and neck squamous carcinoma, clear cell renal cell carcinoma, and lung adenocarcinoma. Furthermore, the aberrant expression of AP1-S1 demonstrated a negative correlation with immune cells infiltration, particularly in lung adenocarcinoma. Concurrently, a significant negative relationship between AP1-S1 and HLA molecules was observed, indicating a potential mechanism for AP1-induced HLA degradation. In vitro experiments demonstrated that the knockdown of AP1-S1 led to an upregulation of HLA-B protein expression and inhibited the viability, migration, and invasion capabilities of tumor cells in lung adenocarcinoma cell lines, specifically A549 and H1299. Immunohistochemical staining further revealed the abnormal expression of AP1-S1 in lung adenocarcinoma specimens. Through a comprehensive pan-cancer multi-omics analysis and experimental validation, this study explored the prognostic significance of four AP1 subunits. Additionally, it examined the regulatory relationship between AP1-S1 and HLA-B, which may play a role in immune escape. Additionally, the research identified AP1-S1 as a valuable biomarker and a potential target for treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Dong T, Zhou H, Tang J. The Tumor-Suppressive Role of miR-204-5p Through Targeting Ezrin in Breast Cancer: Experimental Evidence From Cell Lines and Clinical Samples. Clin Breast Cancer 2025:S1526-8209(25)00042-4. [PMID: 40253276 DOI: 10.1016/j.clbc.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/17/2025] [Accepted: 02/25/2025] [Indexed: 04/21/2025]
Abstract
INTRODUCTION Breast cancer (BC) remains one of the most prevalent malignancies and leading causes of cancer-related deaths among women worldwide. MicroRNA-204-5p (miR-204-5p) has been implicated in various cancers, where its downregulation is associated with adverse clinicopathological features and poor prognosis. Ezrin, a member of the ERM (Ezrin-Radixin-Moesin) family, links membrane proteins to the actin cytoskeleton and has been reported to play roles in tumor progression. However, the regulatory relationship between miR-204-5p and Ezrin in breast cancer remains unclear. MATERIALS AND METHODS We conducted bioinformatics analyses using the TCGA BRCA dataset and GEO datasets GSE97811 and GSE144534 to evaluate the expression patterns of miR-204-5p and Ezrin. In vitro assays, including cell proliferation, migration, and invasion analyses, were performed to assess the functional effects of miR-204-5p in BC cells. Western blotting and luciferase reporter assays were used to confirm the regulatory relationship between miR-204-5p, Ezrin, and the AKT signaling pathway. RESULTS miR-204-5p was significantly downregulated in breast cancer tissues and was associated with aggressive tumor characteristics and poor patient prognosis. Conversely, Ezrin was upregulated in BC tissues and identified as a direct target of miR-204-5p. Overexpression of miR-204-5p inhibited BC cell proliferation, migration, and invasion, while also reducing Ezrin expression. Mechanistic studies indicated that suppression of Ezrin by miR-204-5p led to downregulation of the AKT signaling pathway. CONCLUSION Our findings demonstrate that miR-204-5p functions as a tumor suppressor in breast cancer by targeting Ezrin and inhibiting the AKT pathway. This suggests a potential therapeutic role for miR-204-5p in the treatment of breast cancer.
Collapse
Affiliation(s)
- Tianfu Dong
- Lianyungang Clinical College of Nanjing Medical University, The First People Hospital of Lianyungang City, Lianyungang, China; Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglei Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
3
|
Balkrishna A, Mittal R, Bishayee A, Kumar AP, Bishayee A. miRNA signatures affecting the survival outcome in distant metastasis of triple-negative breast cancer. Biochem Pharmacol 2025; 231:116683. [PMID: 39608504 DOI: 10.1016/j.bcp.2024.116683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/11/2024] [Accepted: 11/26/2024] [Indexed: 11/30/2024]
Abstract
Triple-negative breast cancer (TNBC) constitutes for 10-15% of all breast cancer cases. Tumor heterogeneity, high invasiveness, distant metastasis, lack of estrogen receptors, progesterone receptors, and human epidermal growth factor receptor 2 expression contribute to TNBC associated with poor overall survival outcomes amongst diseased individuals. The disparity in clinico-pathological and metastatic patterns to distant sites has substantially enhanced the incidences of tumor recurrence. Survival outcomes amongst metastatic TNBC patients are worse in comparison to non-metastatic TNBC counterparts. MicroRNAs (miRNAs) have emerged as significant drivers to function either as oncogene or tumor suppressors by exerting modulating effects on the expression of target genes in the TNBC tumor microenvironment. The pleiotropic nature of miRNAs expands their preclinical and clinical utility in combating both metastatic and non-metastatic TNBC cases and thereby improves their survival outcomes. The present review article aims to highlight the varying survival outcomes in metastatic and non-metastatic TNBC cases. The present review article emphasizes the therapeutic and prognostic potential of miRNAs in TNBC to improve survival outcomes by retarding distant metastasis to lung, bone, brain, and lymph nodes.
Collapse
Affiliation(s)
- Acharya Balkrishna
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249 405, India
| | - Rashmi Mittal
- Patanjali Herbal Research Department, Patanjali Research Institute, Haridwar 249 405, India.
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| |
Collapse
|
4
|
Mitsueda R, Nagata A, Toda H, Tomioka Y, Yasudome R, Kato M, Shinden Y, Nakajo A, Seki N. Identification of Tumor-Suppressive miR-30a-3p Controlled Genes: ANLN as a Therapeutic Target in Breast Cancer. Noncoding RNA 2024; 10:60. [PMID: 39728605 DOI: 10.3390/ncrna10060060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Our recently created RNA-sequence-based microRNA (miRNA) expression signature in breast cancer clinical specimens revealed that some miR-30 family members were significantly downregulated in cancer tissues. Based on TCGA database analyses, we observed that among the miR-30 family members, miR-30a-3p (the passenger strand derived from pre-miR-30a) was significantly downregulated in breast cancer (BC) clinical specimens, and its low expression predicted worse prognoses. Ectopic expression assays showed that miR-30a-3p transfected cancer cells (MDA-MB-157 and MDA-MB-231) had their aggressive phenotypes significantly suppressed, e.g., their proliferation, migration, and invasion abilities. These data indicated that miR-30a-3p acted as a tumor-suppressive miRNA in BC cells. Our subsequent search for miR-30a-3p controlled molecular networks in BC cells yielded a total of 189 genes. Notably, among those 189 genes, cell-cycle-related genes (ANLN, MKI67, CCNB1, NCAPG, ZWINT, E2F7, PDS5A, RIF1, BIRC5, MAD2L1, CACUL1, KIF23, UBE2S, EML4, SEPT10, CLTC, and PCNP) were enriched according to a GeneCodis 4 database analysis. Moreover, the overexpression of four genes (ANLN, CCNB1, BIRC5, and KIF23) significantly predicted worse prognoses for patients with BC according to TCGA analyses. Finally, our assays demonstrated that the overexpression of ANLN had cancer-promoting functions in BC cells. The involvement of miR-30a-3p (the passenger strand) in BC molecular pathogenesis is a new concept in cancer research, and the outcomes of our study strongly indicate the importance of analyzing passenger strands of miRNAs in BC cells.
Collapse
Affiliation(s)
- Reiko Mitsueda
- Department of Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Ayako Nagata
- Department of Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroko Toda
- Department of Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Yuya Tomioka
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Ryutaro Yasudome
- Department of Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Yoshiaki Shinden
- Department of Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Akihiro Nakajo
- Department of Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| |
Collapse
|
5
|
Bermúdez M, Martínez-Barajas MG, Bueno-Urquiza LJ, López-Gutiérrez JA, Villegas-Mercado CE, López-Camarillo C. Role of MicroRNA-204 in Regulating the Hallmarks of Breast Cancer: An Update. Cancers (Basel) 2024; 16:2814. [PMID: 39199587 PMCID: PMC11352763 DOI: 10.3390/cancers16162814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/01/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
microRNA-204-5p (miR-204) is a small noncoding RNA with diverse regulatory roles in breast cancer (BC) development and progression. miR-204 is implicated in the instauration of fundamental traits acquired during the multistep development of BC, known as the hallmarks of cancer. It may act as a potent tumor suppressor by inhibiting key cellular processes like angiogenesis, vasculogenic mimicry, invasion, migration, and metastasis. It achieves this by targeting multiple master genes involved in these processes, including HIF-1α, β-catenin, VEGFA, TGFBR2, FAK, FOXA1, among others. Additionally, miR-204 modulates signaling pathways like PI3K/AKT and interacts with HOTAIR and DSCAM-AS1 lncRNAs, further influencing tumor progression. Beyond its direct effects on tumor cells, miR-204 shapes the tumor microenvironment by regulating immune cell infiltration, suppressing pro-tumorigenic cytokine production, and potentially influencing immunotherapy response. Moreover, miR-204 plays a crucial role in metabolic reprogramming by directly suppressing metabolic genes within tumor cells, indirectly affecting metabolism through exosome signaling, and remodeling metabolic flux within the tumor microenvironment. This review aims to present an update on the current knowledge regarding the role of miR-204 in the hallmarks of BC. In conclusion, miR-204 is a potential therapeutic target and prognostic marker in BC, emphasizing the need for further research to fully elucidate its complex roles in orchestrating aggressive BC behavior.
Collapse
Affiliation(s)
- Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Chihuahua 31000, Mexico;
| | | | - Lesly Jazmín Bueno-Urquiza
- University Center for Health Sciences, University of Guadalajara, Guadalajara 44340, Mexico; (M.G.M.-B.); (L.J.B.-U.)
| | - Jorge Armando López-Gutiérrez
- Faculty of Dentistry, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Mexico;
| | | | - César López-Camarillo
- Genomic Sciences Program, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico
| |
Collapse
|
6
|
Shu L, Tang J, Liu S, Tao Y. Plasma cell signatures predict prognosis and treatment efficacy for lung adenocarcinoma. Cell Oncol (Dordr) 2024; 47:555-571. [PMID: 37814076 DOI: 10.1007/s13402-023-00883-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
PURPOSE This study aims to identify key genes regulating tumor infiltrating plasma cells (PC) and provide new insights for innovative immunotherapy. METHODS Key genes related to PC were identified using machine learning in lung adenocarcinoma (LUAD) patients. A prognostic model called PC scores was developed using TCGA data and validated with GEO cohorts. We assessed the molecular background, immune features, and drug sensitivity of the high PC scores group. Real-time PCR was utilized to assess the expression of hub genes in both localized LUAD patients and LUAD cell lines. RESULTS We constructed PC scores based on seventeen PC-related hub genes (ELOVL6, MFI2, FURIN, DOK1, ERO1LB, CLEC7A, ZNF431, KIAA1324, NUCB2, TXNDC11, ICAM3, CR2, CLIC6, CARNS1, P2RY13, KLF15, and SLC24A4). Higher age, TNM stage, and PC scores independently predicted shorter overall survival. The AUC value of PC scores for one year, three years, and five years of overall survival were 0.713, 0.716, and 0.690, separately. The nomogram model that integrated age, stage, and PC scores showed significantly higher predictive value than stage alone (P < 0.01). High PC scores group exhibited an immune suppressing microenvironment with lower B, CD8 + T, CD4 + T, and dendritic cell infiltration. Docetaxel, gefitinib, and erlotinib had lower IC50 in high PC groups (P < 0.001). After validation through the local cohort and in vitro experiments, we ultimately confirmed three key potential targets: MFI2, KLF15, and CLEC7A. CONCLUSION We proposed a prediction mode which can effectively identify high-risk LUAD patients and found three novel genes closely correlated with PC tumor infiltration.
Collapse
Affiliation(s)
- Long Shu
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Jun Tang
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, The Affiliated Cancer Hospital of Xiangya School of Medicine, Hunan Cancer Hospital, Central South University, Changsha, Hunan, China.
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Ministry of Education, Central South University, Changsha, 410078, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
7
|
Hoshi N, Uemura T, Tachibana K, Abe S, Murakami-Nishimagi Y, Okano M, Noda M, Saito K, Kono K, Ohtake T, Waguri S. Endosomal protein expression of γ1-adaptin is associated with tumor growth activity and relapse-free survival in breast cancer. Breast Cancer 2024; 31:305-316. [PMID: 38265632 PMCID: PMC10902087 DOI: 10.1007/s12282-023-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
BACKGROUND γ1-Adaptin is a subunit of adaptor protein complex-1 (AP-1), which regulates intracellular transport between the trans-Golgi network (TGN) and endosomes. Since expression levels of AP-1 subunits have been reported to be associated with cell proliferation and cancer malignancy, we investigated the relationships between the immunohistochemical expression of γ1-adaptin and both clinicopathological factors and relapse-free survival (RFS) in breast cancer tissue. MATERIALS AND METHODS SK-BR-3 cell line depleted of γ1-adaptin was used for cell proliferation, migration, and invasion assay. Intracellular localization of γ1-adaptin was examined with immunohistochemistry (IHC) using an antibody against γ1-adaptin, and with double immunohistofluorescence (IHF) microscopy using markers for the TGN and endosome. γ1-Adaptin intensities in IHC samples from 199 primary breast cancer patients were quantified and assessed in relation to clinicopathological factors and RFS. RESULTS Cell growth, migration, and invasion of SK-BR-3 cells were significantly suppressed by the depletion of γ1-adaptin. Although the staining patterns in the cancer tissues varied among cases by IHC, double IHF demonstrated that γ1-adaptin was mainly localized in EEA1-positive endosomes, but not in the TGN. γ1-Adaptin intensity was significantly higher in the tumor regions than in non-tumor regions. It was also higher in patients with Ki-67 (high), ER (-), PgR (-), and HER2 (+). Among subtypes of breast cancer, γ1-adaptin intensity was higher in HER2 than in luminal A or luminal B. The results of the survival analysis indicated that high γ1-adaptin intensity was significantly associated with worse RFS, and this association was also observed in group with ER (+), PgR (+), HER2 (-), Ki-67 (high), or luminal B. In addition, the Cox proportional hazards model showed that high γ1-adaptin intensity was an independent prognostic factor. CONCLUSION These results suggest that the endosomal expression of γ1-adaptin is positively correlated with breast cancer malignancy and could be a novel prognostic marker.
Collapse
Affiliation(s)
- Nobuhiro Hoshi
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Takefumi Uemura
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Kazunoshin Tachibana
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Sadahiko Abe
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yuko Murakami-Nishimagi
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Maiko Okano
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masaru Noda
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Katsuharu Saito
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Koji Kono
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Tohru Ohtake
- Department of Breast Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Satoshi Waguri
- Department of Anatomy and Histology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| |
Collapse
|
8
|
Kurozumi S, Seki N, Narusawa E, Honda C, Tokuda S, Nakazawa Y, Yokobori T, Katayama A, Mongan NP, Rakha EA, Oyama T, Fujii T, Shirabe K, Horiguchi J. Identification of MicroRNAs Associated with Histological Grade in Early-Stage Invasive Breast Cancer. Int J Mol Sci 2023; 25:35. [PMID: 38203206 PMCID: PMC10779190 DOI: 10.3390/ijms25010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/11/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024] Open
Abstract
This study aimed to identify microRNAs associated with histological grade using comprehensive microRNA analysis data obtained by next-generation sequencing from early-stage invasive breast cancer. RNA-seq data from normal breast and breast cancer samples were compared to identify candidate microRNAs with differential expression using bioinformatics. A total of 108 microRNAs were significantly differentially expressed in normal breast and breast cancer tissues. Using clinicopathological information and microRNA sequencing data of 430 patients with breast cancer from The Cancer Genome Atlas (TCGA), the differences in candidate microRNAs between low- and high-grade tumors were identified. Comparing the expression of the 108 microRNAs between low- and high-grade cases, 25 and 18 microRNAs were significantly upregulated and downregulated, respectively, in high-grade cases. Clustering analysis of the TCGA cohort using these 43 microRNAs identified two groups strongly predictive of histological grade. miR-3677 is a microRNA upregulated in high-grade breast cancer. The outcome analysis revealed that patients with high miR-3677 expression had significantly worse prognosis than those with low miR-3677 expression. This study shows that microRNAs are associated with histological grade in early-stage invasive breast cancer. These findings contribute to the elucidation of a new mechanism of breast cancer growth regulated by specific microRNAs.
Collapse
Affiliation(s)
- Sasagu Kurozumi
- Department of Breast Surgery, International University of Health and Welfare, Chiba 286-8520, Japan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.F.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Eriko Narusawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.F.)
| | - Chikako Honda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.F.)
| | - Shoko Tokuda
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.F.)
| | - Yuko Nakazawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.F.)
| | - Takehiko Yokobori
- Initiative for Advanced Research, Gunma University, Gunma 371-8511, Japan
| | - Ayaka Katayama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.O.)
| | - Nigel P. Mongan
- Biodiscovery Institute, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Emad A. Rakha
- Academic Unit for Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
- Pathology Department, Hamad Medical Corporation, Doha P.O. Box 3050, Qatar
| | - Tetsunari Oyama
- Department of Diagnostic Pathology, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.O.)
| | - Takaaki Fujii
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.F.)
| | - Ken Shirabe
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma 371-8511, Japan (T.F.)
| | - Jun Horiguchi
- Department of Breast Surgery, International University of Health and Welfare, Chiba 286-8520, Japan
| |
Collapse
|
9
|
Mitsueda R, Toda H, Shinden Y, Fukuda K, Yasudome R, Kato M, Kikkawa N, Ohtsuka T, Nakajo A, Seki N. Oncogenic Targets Regulated by Tumor-Suppressive miR-30c-1-3p and miR-30c-2-3p: TRIP13 Facilitates Cancer Cell Aggressiveness in Breast Cancer. Cancers (Basel) 2023; 15:4189. [PMID: 37627217 PMCID: PMC10453418 DOI: 10.3390/cancers15164189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Accumulating evidence suggests that the miR-30 family act as critical players (tumor-suppressor or oncogenic) in a wide range of human cancers. Analysis of microRNA (miRNA) expression signatures and The Cancer Genome Atlas (TCGA) database revealed that that two passenger strand miRNAs, miR-30c-1-3p and miR-30c-2-3p, were downregulated in cancer tissues, and their low expression was closely associated with worse prognosis in patients with BrCa. Functional assays showed that miR-30c-1-3p and miR-30c-2-3p overexpression significantly inhibited cancer cell aggressiveness, suggesting these two miRNAs acted as tumor-suppressors in BrCa cells. Notably, involvement of passenger strands of miRNAs is a new concept of cancer research. Further analyses showed that seven genes (TRIP13, CCNB1, RAD51, PSPH, CENPN, KPNA2, and MXRA5) were putative targets of miR-30c-1-3p and miR-30c-2-3p in BrCa cells. Expression of seven genes were upregulated in BrCa tissues and predicted a worse prognosis of the patients. Among these genes, we focused on TRIP13 and investigated the functional significance of this gene in BrCa cells. Luciferase reporter assays showed that TRIP13 was directly regulated by these two miRNAs. TRIP13 knockdown using siRNA attenuated BrCa cell aggressiveness. Inactivation of TRIP13 using a specific inhibitor prevented the malignant transformation of BrCa cells. Exploring the molecular networks controlled by miRNAs, including passenger strands, will facilitate the identification of diagnostic markers and therapeutic target molecules in BrCa.
Collapse
Affiliation(s)
- Reiko Mitsueda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (R.M.); (H.T.); (Y.S.); (K.F.); (R.Y.); (T.O.); (A.N.)
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (R.M.); (H.T.); (Y.S.); (K.F.); (R.Y.); (T.O.); (A.N.)
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (R.M.); (H.T.); (Y.S.); (K.F.); (R.Y.); (T.O.); (A.N.)
| | - Kosuke Fukuda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (R.M.); (H.T.); (Y.S.); (K.F.); (R.Y.); (T.O.); (A.N.)
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (R.M.); (H.T.); (Y.S.); (K.F.); (R.Y.); (T.O.); (A.N.)
| | - Mayuko Kato
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.K.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.K.); (N.K.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (R.M.); (H.T.); (Y.S.); (K.F.); (R.Y.); (T.O.); (A.N.)
| | - Akihiro Nakajo
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (R.M.); (H.T.); (Y.S.); (K.F.); (R.Y.); (T.O.); (A.N.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (M.K.); (N.K.)
| |
Collapse
|
10
|
(Stămat) LRB, Dinescu S, Costache M. Regulation of Inflammasome by microRNAs in Triple-Negative Breast Cancer: New Opportunities for Therapy. Int J Mol Sci 2023; 24:ijms24043245. [PMID: 36834660 PMCID: PMC9963301 DOI: 10.3390/ijms24043245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
During the past decade, researchers have investigated the molecular mechanisms of breast cancer initiation and progression, especially triple-negative breast cancer (TNBC), in order to identify specific biomarkers that could serve as feasible targets for innovative therapeutic strategies development. TNBC is characterized by a dynamic and aggressive nature, due to the absence of estrogen, progesterone and human epidermal growth factor 2 receptors. TNBC progression is associated with the dysregulation of nucleotide-binding oligomerization domain-like receptor and pyrin domain-containing protein 3 (NLRP3) inflammasome, followed by the release of pro-inflammatory cytokines and caspase-1 dependent cell death, termed pyroptosis. The heterogeneity of the breast tumor microenvironment triggers the interest of non-coding RNAs' involvement in NLRP3 inflammasome assembly, TNBC progression and metastasis. Non-coding RNAs are paramount regulators of carcinogenesis and inflammasome pathways, which could help in the development of efficient treatments. This review aims to highlight the contribution of non-coding RNAs that support inflammasome activation and TNBC progression, pointing up their potential for clinical applications as biomarkers for diagnosis and therapy.
Collapse
Affiliation(s)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
11
|
Yang F, Bian Z, Xu P, Sun S, Huang Z. MicroRNA-204-5p: A pivotal tumor suppressor. Cancer Med 2023; 12:3185-3200. [PMID: 35908280 PMCID: PMC9939231 DOI: 10.1002/cam4.5077] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/08/2022] [Accepted: 07/03/2022] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding single-stranded RNA molecules with a length of approximately 18-25 nt nucleotides that regulate gene expression post-transcriptionally. MiR-204-5p originates from the sixth intron of the transient receptor potential cation channel subfamily M member 3 (TRPM3) gene. MiR-204-5p is frequently downregulated in various cancer types and is related to the clinicopathological characteristics and prognosis of cancer patients. So far, many studies have determined that miR-204-5p functions as a tumor suppressor for its extensive and powerful capacity to inhibit tumor proliferation, metastasis, autophagy, and chemoresistance in multiple cancer types. MiR-204-5p appears to be a promising prognostic biomarker and a therapeutic target for human cancers. This review summarized the latest advances on the role of miR-204-5p in human cancers.
Collapse
Affiliation(s)
- Fan Yang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zehua Bian
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Peiwen Xu
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Shengbai Sun
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| | - Zhaohui Huang
- Wuxi Cancer InstituteAffiliated Hospital of Jiangnan UniversityWuxiJiangsuChina
- Laboratory of Cancer Epigenetics, Wuxi School of MedicineJiangnan UniversityWuxiJiangsuChina
| |
Collapse
|
12
|
Pei L, Zhu Q, Zhuang X, Ruan H, Zhao Z, Qin H, Lin Q. Identification of leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel prognostic factor for urothelial carcinoma. Transl Oncol 2022; 23:101474. [PMID: 35816851 PMCID: PMC9287365 DOI: 10.1016/j.tranon.2022.101474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/14/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Urothelial carcinoma (UC) is one of the most common cancers worldwide. The biological heterogeneity of UCs causes considerable difficulties in predicting treatment outcomes and usually leads to clinical mismanagement. The identification of more sensitive and efficient predictive biomarkers is important in the diagnosis and classification of UCs. Herein, we report leucine-rich repeat-containing protein 59 (LRRC59) located in the endoplasmic reticulum as a novel predictive factor and potential therapeutic target for UCs. METHODS Using whole-slide image analysis in our cohort of 107 UC samples, we performed immunohistochemistry to evaluate the prognostic value of LRRC59 expression in UCs. In vitro experiments using RNAi were conducted to explore the role of LRRC59 in promoting UC cell proliferation and migration. RESULTS A significant correlation between LRRC59 and unfavorable prognosis of UCs in our cohort was demonstrated. Subsequent clinical analysis also revealed that elevated expression levels of LRRC59 were significantly associated with higher pathological grades and advanced stages of UC. Subsequently, knockdown of LRRC59 in UM-UC-3 and T24 cells using small interfering RNA significantly inhibited cell proliferation and migration, resulting in cell cycle arrest at the G1 phase. Conversely, the overexpression of LRRC59 in UC cells enhanced cell proliferation and migration. An integrated bioinformatics analysis revealed a significant functional network of LRRC59 involving protein misfolding, ER stress, and ubiquitination. Finally, in vitro experiments demonstrated that LRRC59 modulates ER stress signaling. CONCLUSIONS LRRC59 expression was significantly correlated with UC prognosis. LRRC59 might not only serve as a novel prognostic biomarker for risk stratification of patients with UC but also exhibit as a potential therapeutic target in UC that warrants further investigation.
Collapse
Affiliation(s)
- Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Qingfeng Zhu
- Department of Urology, Lishui Municipal Central Hospital, Lishui, China
| | - Xiaoping Zhuang
- Department of Pathology, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou, Guangdong 511436, China
| | - Zhiguang Zhao
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou 325027, China
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qiongqiong Lin
- Department of Pathology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou 325027, China.
| |
Collapse
|
13
|
Palkina N, Aksenenko M, Zemtsov D, Lavrentev S, Zinchenko I, Belenyuk V, Kirichenko A, Savchenko A, Ruksha T. miR-204-5p in vivo inhibition cause diminished CD45RO cells rate in lungs of melanoma B16-bearing mice. Noncoding RNA Res 2022; 7:133-141. [PMID: 35756165 PMCID: PMC9188961 DOI: 10.1016/j.ncrna.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 10/25/2022] Open
|
14
|
mir-204-5p Acts as a Tumor Suppressor by Targeting DNM2 in Osteosarcoma Cells. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8944588. [PMID: 35186244 PMCID: PMC8849813 DOI: 10.1155/2022/8944588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/01/2023]
Abstract
Osteosarcoma is a malignant bone tumor composed of interstitial cells. We aim to seek the function of mir-204-5p/DNM2 in osteosarcoma cells. From April 2017 to August 2019, 58 cases of cancer tissues and paracancer tissues were obtained from patients with osteosarcoma in our hospital. qPCR was used to detect mir-204-5p in excisional cancer tissues and paracarcinoma tissues of osteosarcoma patients. The overexpression vector of mir-204-5p was established and transfected into osteosarcoma cells, and the propagation, invasiveness, migration, and apoptosis of osteosarcoma cells were observed. StarBase was employed to forecast the binding site of mir-204-5p and DNM2. The targeting connection of mir-204-5p with DNM2 was detected via double luciferase reporter gene. mir-204-5p was lessened in osteosarcoma (p < 0.05). mir-204-5p overexpression suppressed propagation and accelerated apoptosis of osteosarcoma cells (p < 0.05). The results of double luciferase reporter gene revealed that the fluorescence activity of mir-204-5p was obviously declined when binding to DNM2 (p < 0.05). mir-204-5p functions as a tumor inhibitor by targeting DNM2 in osteosarcoma cells. Our research is helpful to provide new ideas for clinical treatment.
Collapse
|
15
|
Su Q, Shen H, Gu B, Zhu N. miR-204-5p Hampers Breast Cancer Malignancy and Affects the Cell Cycle by Targeting PRR11. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4010947. [PMID: 35126622 PMCID: PMC8813226 DOI: 10.1155/2022/4010947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To unravel mechanisms of miR-204-5p in breast cancer (BC) cells. METHODS miR-204-5p expression level in BC cell lines was measured by qRT-PCR. Putative binding sites of miR-204-5p on the 3'-untranslated region of PRR11 were predicted by the bioinformatics method and verified by the dual-luciferase method. Protein and mRNA levels of PRR11 in BC were determined by western blot and qRT-PCR. The association between two genes was analyzed by correlation analysis. Cancer cell functions were evaluated through CCK8, flow cytometry, and Transwell approaches. RESULTS Significant downregulation of miR-204-5p was observed in BC tissue and cells. Cell functional experiments showed the inhibition of miR-204-5p on cell behaviors and cell cycle. PRR11 was the downstream target of miR-204-5p. Inhibition of RPP11 could reverse the impacts of the miR-204-5p inhibitor on cell functions of BC. CONCLUSION Our study revealed that the miR-204-5p/PRPP11 axis suppressed BC progression, which may provide a novel insight into the regulatory roles of miR-204-5p.
Collapse
Affiliation(s)
- Qunxue Su
- Department of Pathology, The Second People's Hospital of Kunshan, Kunshan, 215300 Jiangsu, China
| | - Hao Shen
- Department of Pathology, The Second People's Hospital of Kunshan, Kunshan, 215300 Jiangsu, China
| | - Bei Gu
- Department of Breast, The Second People's Hospital of Kunshan, Kunshan, 215300 Jiangsu, China
| | - Ning Zhu
- Department of Pathology, The Second People's Hospital of Kunshan, Kunshan, 215300 Jiangsu, China
| |
Collapse
|
16
|
Metabotropic Glutamate Receptor 8 Is Regulated by miR-33a-5p and Functions as an Oncogene in Breast Cancer. JOURNAL OF ONCOLOGY 2021; 2021:8002087. [PMID: 34950209 PMCID: PMC8691986 DOI: 10.1155/2021/8002087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 01/24/2023]
Abstract
It has been reported that glutamate metabotropic receptor 8 (GRM8) is closely implicated in the progression of human neuroblastoma, lung cancer, and glioma, but its role in breast cancer remains unknown. Thus, the present study was performed to uncover it. Immunohistochemistry, real-time PCR (RT-PCR), and western blotting experiments were performed to test GRM8 expression levels in tissues and cells. Cell functions were assessed by Cell Count Kit 8 (CCK-8), flow cytometry, wound healing, transwell chambers, and in vivo xenotransplantation experiments. The relationship between miR-33a-5p and GRM8 was evaluated by luciferase gene reporter and western blotting assay. The results showed that GRM8 expression was increased in breast cancer tissues and cells, which was closely associated with lower overall survival rate. Ectopic expression of GRM8 significantly enhanced cell growth, migration, and invasion and tumorigenesis and repressed cell apoptosis. In addition, GRM8 was under the negative regulation of miR-33a-5p, which was downregulated in breast cancer tissues and served as a tumor suppressor. Moreover, overexpression of GRM8 abrogated the inhibitive role of miR-33a-5p played in breast cancer. Collectively, this study reveals that GRM8 functions as an oncogene in breast cancer and is regulated by miR-33a-5p.
Collapse
|
17
|
Mizuno K, Tanigawa K, Misono S, Suetsugu T, Sanada H, Uchida A, Kawano M, Machida K, Asai S, Moriya S, Inoue H, Seki N. Regulation of Oncogenic Targets by Tumor-Suppressive miR-150-3p in Lung Squamous Cell Carcinoma. Biomedicines 2021; 9:biomedicines9121883. [PMID: 34944699 PMCID: PMC8698895 DOI: 10.3390/biomedicines9121883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 01/02/2023] Open
Abstract
Several recent studies have shown that both strands of certain miRNAs derived from miRNA duplexes are involved in cancer pathogenesis. Our own recent studies revealed that both strands of the miR-150 duplex act as tumor-suppressive miRNAs in lung adenocarcinoma (LUAD) through the targeting of several oncogenes. The aim of the study here was to further investigate the tumor-suppressive roles of miR-150-3p (the passenger strand) in lung squamous cell carcinoma (LUSQ) and its control of cancer-promoting genes in LUSQ cells. The downregulation of miR-150-3p in LUSQ tissues was confirmed by data in The Cancer Genome Atlas (TCGA). The ectopic expression of miR-150-3p attenuated cancer cell aggressive features, e.g., cell cycle arrest, migration and invasive abilities. Our target search strategy successfully identified a total of 49 putative targets that were listed as subjects of miR-150-3p regulation in LUSQ cells. Interestingly, among these targets, 17 genes were categorized as related to the “cell cycle” based on Gene Ontology (GO) classification, namely CENPA, CIT, CCNE1, CCNE2, TIMELESS, BUB1, MCM4, HELLS, SKA3, CDCA2, FANCD2, NUF2, E2F2, SUV39H2, CASC5, ZWILCH and CKAP2). Moreover, we show that the expression of HELLS (helicase, lymphoid specific) is directly controlled by miR-150-3p, and its expression promotes the malignant phenotype of LUSQ cells.
Collapse
Affiliation(s)
- Keiko Mizuno
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Kengo Tanigawa
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Shunsuke Misono
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Takayuki Suetsugu
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Hiroki Sanada
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Akifumi Uchida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Minami Kawano
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Kentaro Machida
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan;
| | - Hiromasa Inoue
- Department of Pulmonary Medicine, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (K.M.); (K.T.); (S.M.); (T.S.); (H.S.); (A.U.); (M.K.); (K.M.); (H.I.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba 260-8670, Japan;
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
18
|
Shin J, Nile A, Oh JW. Role of adaptin protein complexes in intracellular trafficking and their impact on diseases. Bioengineered 2021; 12:8259-8278. [PMID: 34565296 PMCID: PMC8806629 DOI: 10.1080/21655979.2021.1982846] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
Adaptin proteins (APs) play a crucial role in intracellular cell trafficking. The 'classical' role of APs is carried out by AP1‒3, which bind to clathrin, cargo, and accessory proteins. Accordingly, AP1-3 are crucial for both vesicle formation and sorting. All APs consist of four subunits that are indispensable for their functions. In fact, based on studies using cells, model organism knockdown/knock-out, and human variants, each subunit plays crucial roles and contributes to the specificity of each AP. These studies also revealed that the sorting and intracellular trafficking function of AP can exert varying effects on pathology by controlling features such as cell development, signal transduction related to the apoptosis and proliferation pathways in cancer cells, organelle integrity, receptor presentation, and viral infection. Although the roles and functions of AP1‒3 are relatively well studied, the functions of the less abundant and more recently identified APs, AP4 and AP5, are still to be investigated. Further studies on these APs may enable a better understanding and targeting of specific diseases.APs known or suggested locations and functions.
Collapse
Affiliation(s)
- Juhyun Shin
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Arti Nile
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| | - Jae-Wook Oh
- Department of Stem Cell and Regenerative Biotechnology and Animal Resources Research Center, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
19
|
Pereira Zambalde E, Bayraktar R, Schultz Jucoski T, Ivan C, Rodrigues AC, Mathias C, knutsen E, Silveira de Lima R, Fiori Gradia D, de Souza Fonseca Ribeiro EM, Hannash S, Adrian Calin G, Carvalhode Oliveira J. A novel lncRNA derived from an ultraconserved region: lnc- uc.147, a potential biomarker in luminal A breast cancer. RNA Biol 2021; 18:416-429. [PMID: 34387142 PMCID: PMC8677017 DOI: 10.1080/15476286.2021.1952757] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/02/2021] [Accepted: 07/04/2021] [Indexed: 02/06/2023] Open
Abstract
The human genome contains 481 ultraconserved regions (UCRs), which are genomic stretches of over 200 base pairs conserved among human, rat, and mouse. The majority of these regions are transcriptionally active (T-UCRs), and several have been found to be differentially expressed in tumours. Some T-UCRs have been functionally characterized, but of those few have been associated to breast cancer (BC). Using TCGA data, we found 302 T-UCRs related to clinical features in BC: 43% were associated with molecular subtypes, 36% with oestrogen-receptor positivity, 17% with HER2 expression, 12% with stage, and 10% with overall survival. The expression levels of 12 T-UCRs were further analysed in a cohort of 82 Brazilian BC patients using RT-qPCR. We found that uc.147 is high expressed in luminal A and B patients. For luminal A, a subtype usually associated with better prognosis, high uc.147 expression was associated with a poor prognosis and suggested as an independent prognostic factor. The lncRNA from uc.147 (lnc-uc.147) is located in the nucleus. Northern blotting results show that uc.147 is a 2,8 kb monoexonic trancript, and its sequence was confirmed by RACE. The silencing of uc.147 increases apoptosis, arrests cell cycle, and reduces cell viability and colony formation in BC cell lines. Additionally, we identifed 19 proteins that interact with lnc-uc.147 through mass spectrometry and demonstrated a high correlation of lnc-uc.147 with the neighbour gene expression and miR-18 and miR-190b. This is the first study to analyse the expression of all T-UCRs in BC and to functionally assess the lnc-uc.147.
Collapse
Affiliation(s)
- Erika Pereira Zambalde
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Recep Bayraktar
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Tayana Schultz Jucoski
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Cristina Ivan
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ana Carolina Rodrigues
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Carolina Mathias
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | - Erik knutsen
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Medical Biology, Faculty of Health Sciences, UiT - the Arctic University of Norway, Tromsø, Norway
| | | | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| | | | - Samir Hannash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Adrian Calin
- Department of Experimental Therapeutics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Center for RNA Interference and Non-coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaqueline Carvalhode Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Universidade Federal Do Paraná, Curitiba, PR, Brazil
| |
Collapse
|
20
|
MicroRNA-Based Risk Score for Predicting Tumor Progression Following Radioactive Iodine Ablation in Well-Differentiated Thyroid Cancer Patients: A Propensity-Score Matched Analysis. Cancers (Basel) 2021; 13:cancers13184649. [PMID: 34572876 PMCID: PMC8468667 DOI: 10.3390/cancers13184649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/07/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The three-tiered American Thyroid Association (ATA) risk stratification helps clinicians tailor decisions regarding follow-up modalities and the need for postoperative radioactive iodine (RAI) ablation and radiotherapy. However, a significant number of well-differentiated thyroid cancers (DTC) progress after treatment. Current follow-up modalities have also been proposed to detect disease relapse and recurrence but have failed to be sufficiently sensitive or specific to detect, monitor, or determine progression. Therefore, we assessed the predictive accuracy of the microRNA-based risk score in DTC with and without postoperative RAI. We confirm the prognostic role of triad biomarkers (miR-2f04, miR-221, and miR-222) with higher sensitivity and specificity for predicting disease progression than the ATA risk score. Compared to indolent tumors, a higher risk score was found in progressive samples and was associated with shorter survival. Consequently, our prognostic microRNA signature and nomogram provide a clinically practical and reliable ancillary measure to determine the prognosis of DTC patients. Abstract To identify molecular markers that can accurately predict aggressive tumor behavior at the time of surgery, a propensity-matching score analysis of archived specimens yielded two similar datasets of DTC patients (with and without RAI). Bioinformatically selected microRNAs were quantified by qRT-PCR. The risk score was generated using Cox regression and assessed using ROC, C-statistic, and Brier-score. A predictive Bayesian nomogram was established. External validation was performed, and causal network analysis was generated. Within the eight-year follow-up period, progression was reported in 51.5% of cases; of these, 48.6% had the T1a/b stage. Analysis showed upregulation of miR-221-3p and miR-222-3p and downregulation of miR-204-5p in 68 paired cancer tissues (p < 0.001). These three miRNAs were not differentially expressed in RAI and non-RAI groups. The ATA risk score showed poor discriminative ability (AUC = 0.518, p = 0.80). In contrast, the microRNA-based risk score showed high accuracy in predicting tumor progression in the whole cohorts (median = 1.87 vs. 0.39, AUC = 0.944) and RAI group (2.23 vs. 0.37, AUC = 0.979) at the cutoff >0.86 (92.6% accuracy, 88.6% sensitivity, 97% specificity) in the whole cohorts (C-statistics = 0.943/Brier = 0.083) and RAI subgroup (C-statistic = 0.978/Brier = 0.049). The high-score group had a three-fold increased progression risk (hazard ratio = 2.71, 95%CI = 1.86–3.96, p < 0.001) and shorter survival times (17.3 vs. 70.79 months, p < 0.001). Our prognostic microRNA signature and nomogram showed excellent predictive accuracy for progression-free survival in DTC.
Collapse
|
21
|
Impact of Oncogenic Targets by Tumor-Suppressive miR-139-5p and miR-139-3p Regulation in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:ijms22189947. [PMID: 34576110 PMCID: PMC8469660 DOI: 10.3390/ijms22189947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/11/2021] [Accepted: 09/12/2021] [Indexed: 12/13/2022] Open
Abstract
We newly generated an RNA-sequencing-based microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC). Analysis of the signature revealed that both strands of some miRNAs, including miR-139-5p (the guide strand) and miR-139-3p (the passenger strand) of miR-139, were downregulated in HNSCC tissues. Analysis of The Cancer Genome Atlas confirmed the low expression levels of miR-139 in HNSCC. Ectopic expression of these miRNAs attenuated the characteristics of cancer cell aggressiveness (e.g., cell proliferation, migration, and invasion). Our in silico analyses revealed a total of 28 putative targets regulated by pre-miR-139 (miR-139-5p and miR-139-3p) in HNSCC cells. Of these, the GNA12 (guanine nucleotide-binding protein subunit alpha-12) and OLR1 (oxidized low-density lipoprotein receptor 1) expression levels were identified as independent factors that predicted patient survival according to multivariate Cox regression analyses (p = 0.0018 and p = 0.0104, respectively). Direct regulation of GNA12 and OLR1 by miR-139-3p in HNSCC cells was confirmed through luciferase reporter assays. Moreover, overexpression of GNA12 and OLR1 was detected in clinical specimens of HNSCC through immunostaining. The involvement of miR-139-3p (the passenger strand) in the oncogenesis of HNSCC is a new concept in cancer biology. Our miRNA-based strategy will increase knowledge on the molecular pathogenesis of HNSCC.
Collapse
|
22
|
Hozaka Y, Kita Y, Yasudome R, Tanaka T, Wada M, Idichi T, Tanabe K, Asai S, Moriya S, Toda H, Mori S, Kurahara H, Ohtsuka T, Seki N. RNA-Sequencing Based microRNA Expression Signature of Colorectal Cancer: The Impact of Oncogenic Targets Regulated by miR-490-3p. Int J Mol Sci 2021; 22:ijms22189876. [PMID: 34576039 PMCID: PMC8469425 DOI: 10.3390/ijms22189876] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/24/2022] Open
Abstract
To elucidate novel aspects of the molecular pathogenesis of colorectal cancer (CRC), we have created a new microRNA (miRNA) expression signature based on RNA-sequencing. Analysis of the signature showed that 84 miRNAs were upregulated, and 70 were downregulated in CRC tissues. Interestingly, our signature indicated that both guide and passenger strands of some miRNAs were significantly dysregulated in CRC tissues. These findings support our earlier data demonstrating the involvement of miRNA passenger strands in cancer pathogenesis. Our study focused on downregulated miR-490-3p and investigated its tumor-suppressive function in CRC cells. We successfully identified a total of 38 putative oncogenic targets regulated by miR-490-3p in CRC cells. Among these targets, the expression of three genes (IRAK1: p = 0.0427, FUT1: p = 0.0468, and GPRIN2: p = 0.0080) significantly predicted 5-year overall survival of CRC patients. Moreover, we analyzed the direct regulation of IRAK1 by miR-490-3p, and its resultant oncogenic function in CRC cells. Thus, we have clarified a part of the molecular pathway of CRC based on the action of tumor-suppressive miR-490-3p. This new miRNA expression signature of CRC will be a useful tool for elucidating new molecular pathogenesis in this disease.
Collapse
Affiliation(s)
- Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Kan Tanabe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Shinichiro Mori
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (Y.H.); (Y.K.); (R.Y.); (T.T.); (M.W.); (T.I.); (K.T.); (H.T.); (S.M.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Correspondence: ; Tel.: +81-43-226-2971
| |
Collapse
|
23
|
Dubovtseva IY, Aksenenko MB, Nikolaeva ED, Averchuk AS, Moshev AV, Savchenko AA, Markova SV, Ruksha TG. FOXC1-Mediated Effects of miR-204-5p on Melanoma Cell Proliferation. Mol Biol 2021. [DOI: 10.1134/s0026893321020199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
24
|
Adaptor Protein Complex 1 Sigma 3 Is Highly Expressed in Glioma and Could Enhance Its Progression. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5086236. [PMID: 34367317 PMCID: PMC8346305 DOI: 10.1155/2021/5086236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/11/2021] [Indexed: 11/17/2022]
Abstract
Introduction Glioma is the widely occurring deadly neoplasm induced by glial cell canceration in the central nervous system, including the brain and spinal cord. The function of AP1S3 is special in numerous diseases, but its exact role in glioma remains unknown. Methods Bioinformatics analysis was performed at the beginning. Based on TCGA database, differentially expressed genes were obtained. Protein-protein interaction (PPI) network analysis is performed by STRING. The annotation, visualization, and synthesis (DAVID) discovery database program was used for gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The Kaplan-Meier curve was plotted to determine the prognostic value of AP1S3 Also, in vitro experiments were conducted in our research. Results 4370 differentially expressed genes were identified. 215 key genes were screened by protein-protein interaction (PPI) analysis; AP1S3 had a higher degree. The top five enriched pathways related to AP1S3 contain protein processing in the endoplasmic reticulum (ER), extracellular matrix receptor (ECM receptor) interaction, focal adhesion, advanced glycation end product (AGE) receptor for AGE (RAGE) signaling pathway in diabetic complications, and mRNA surveillance pathway. Additionally, the AP1S3 level was dramatically upregulated in glioblastoma (GBM) samples, but greatly reduced in low-grade glioma (LGG) samples when compared to that in normal tissues. The Kaplan-Meier curve data showed that AP1S3 was closely related to the disease-free survival (DFS) of glioma. Our data suggested that the expression of AP1S3 was increased in glioma in comparison with normal tissues, in line with the data of clinical samples. What was more, our data demonstrated that the reduction of AP1S3 in glioma cells could result in the inhibition of cell proliferation, invasion, and migration. Conclusion Collectively, our results implied that AP1S3 was a promising biomarker of glioma diagnosis and displayed as an oncogene in glioma.
Collapse
|
25
|
Oshima S, Asai S, Seki N, Minemura C, Kinoshita T, Goto Y, Kikkawa N, Moriya S, Kasamatsu A, Hanazawa T, Uzawa K. Identification of Tumor Suppressive Genes Regulated by miR-31-5p and miR-31-3p in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:6199. [PMID: 34201353 PMCID: PMC8227492 DOI: 10.3390/ijms22126199] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/27/2022] Open
Abstract
We identified the microRNA (miRNA) expression signature of head and neck squamous cell carcinoma (HNSCC) tissues by RNA sequencing, in which 168 miRNAs were significantly upregulated, including both strands of the miR-31 duplex (miR-31-5p and miR-31-3p). The aims of this study were to identify networks of tumor suppressor genes regulated by miR-31-5p and miR-31-3p in HNSCC cells. Our functional assays showed that inhibition of miR-31-5p and miR-31-3p attenuated cancer cell malignant phenotypes (cell proliferation, migration, and invasion), suggesting that they had oncogenic potential in HNSCC cells. Our in silico analysis revealed 146 genes regulated by miR-31 in HNSCC cells. Among these targets, the low expression of seven genes (miR-31-5p targets: CACNB2 and IL34; miR-31-3p targets: CGNL1, CNTN3, GAS7, HOPX, and PBX1) was closely associated with poor prognosis in HNSCC. According to multivariate Cox regression analyses, the expression levels of five of those genes (CACNB2: p = 0.0189; IL34: p = 0.0425; CGNL1: p = 0.0014; CNTN3: p = 0.0304; and GAS7: p = 0.0412) were independent prognostic factors in patients with HNSCC. Our miRNA signature and miRNA-based approach will provide new insights into the molecular pathogenesis of HNSCC.
Collapse
Affiliation(s)
- Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Takashi Kinoshita
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Yusuke Goto
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
| | - Naoko Kikkawa
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan; (S.A.); (T.K.); (Y.G.); (N.K.)
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (S.O.); (C.M.); (A.K.); (K.U.)
| |
Collapse
|
26
|
Majed SO, Mustafa SA. MACE-Seq-based coding RNA and TrueQuant-based small RNA profile in breast cancer: tumor-suppressive miRNA-1275 identified as a novel marker. BMC Cancer 2021; 21:473. [PMID: 33910530 PMCID: PMC8082896 DOI: 10.1186/s12885-021-08218-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/19/2021] [Indexed: 12/30/2022] Open
Abstract
Introduction Disruption of cellular processes in the breast by abnormally expressed miRNA is characterized to develop cancer. We aimed to identify the differential expression of small RNAs (sRNAs) and mRNAs in formalin-fixed paraffin-embedded (FFPE) tissue of the breast cancer (BC) and normal adjacent tissue (NAT). Another aim is to determine the differential expression of miR-1275 as a novel biomarker for BC and also identify its target genes. Methods TrueQuant method for analysis of sRNA expression and MACE-sequencing method for analysis of gene expression were used analyzing. The RT-qPCR technique was used to confirm miR-1275 down expression. Target genes of miR-1275 were computationally identified using target prediction sites and also the expression level of them was experimentally determined among the expressed genes. Results TrueQuant findings showed that 1400 sRNAs were differentially expressed in the FFPE tissue of two Kurdish cases with BC, as compared to NAT. Among the sRNAs, 29 small RNAs were shown to be significantly downregulated in BC cells. The RT-qPCR results confirmed that miR-1275 was significantly down-expressed in 20 Kurdish cases with BC compared to NAT. However, Overall survival (OS) analysis revealed that the correlation between the expression level of miR-1275 and clinical significance was highly corrected in cases with BC (OS rate: P = 0.0401). The MACE-seq results revealed that 26,843 genes were differentially expressed in the BC tissue compared to NAT, but 7041 genes were displayed in a scatter plot. Furthermore, putative target genes (DVL3, PPP2R2D, THSD4, CREB1, SYT7, and PRKACA) were computationally identified as direct targets of miR-1275 in several target predicted sites. The MACE-seq results revealed that the expression level of these targets was increased in BC tissue compared to NAT. The level of these targets was negatively associated with miR-1275 expression. Finally, the role of down-regulated miR-1275 on its targets in biological mechanisms of BC cells was identified; including cell growth, proliferation, movement, invasion, metastasis, and apoptosis. Conclusion Down-expressed miR-1275, a tumor suppressor, is a novel biomarker for early detection of BC. DVL3, PPP2R2D, THSD4, CREB1, SYT7, and PRKACA are newly identified to be targeted by miR-1275.
Collapse
Affiliation(s)
- Sevan Omer Majed
- Biology Department, College of Education, Salahaddin University-Erbil, Erbil, Iraq.
| | - Suhad Asad Mustafa
- Research Center, Molecular Genetics lab, Salahaddin University-Erbil, Erbil, Iraq
| |
Collapse
|
27
|
Yao M, Wang S, Chen L, Wei B, Fu P. Research on correlations of miR-585 expression with progression and prognosis of triple-negative breast cancer. Clin Exp Med 2021; 22:201-207. [PMID: 33826023 DOI: 10.1007/s10238-021-00704-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022]
Abstract
Triple-negative breast cancer is a special type of breast cancer, characterized by younger onset age, shorter survival period, higher malignant degree, higher mortality, recurrence and metastasis. Triple-negative breast cancer is more harmful to women's life and health, compared with other types of breast cancer. This paper mainly studied the role of miR-585 in triple-negative breast cancer. Real-time quantitative PCR was used to detect the expression of miR-585 in triple-negative breast cancer cell lines and tissues. Kaplan-Meier curve and Cox proportional hazards model analysis were used to investigate the prognostic value of miR-585 in triple-negative breast cancer. CCK-8 and Transwell assays were used to detect cell proliferation, invasion and migration. miR-585 was significantly down-regulated in triple-negative breast cancer cells and tissues. The low expression of miR-585 has been shown to be significantly associated with poor prognosis in triple-negative breast cancer patients. Abnormally low expression of miR-585 can promote cell proliferation, migration and invasion. Overall, abnormally low expression of miR-585 is associated with prognosis and progression of triple-negative breast cancer. miR-585 may serve as a prognostic biomarker for patients with triple-negative breast cancer and it is expected to be a new method and strategy for the treatment of triple-negative breast cancer.
Collapse
Affiliation(s)
- Minya Yao
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Shuqian Wang
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Luyan Chen
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Bajin Wei
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qinchun Road, Hangzhou, 310003, Zhejiang Province, P.R. China.
| |
Collapse
|
28
|
Liu J, Zhao G, Liu XL, Zhang G, Zhao SQ, Zhang SL, Luo LH, Yin DC, Zhang CY. Progress of non-coding RNAs in triple-negative breast cancer. Life Sci 2021; 272:119238. [PMID: 33600860 DOI: 10.1016/j.lfs.2021.119238] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023]
Abstract
Non-coding RNAs (ncRNAs) include miRNA, lncRNA, and circRNA. NcRNAs are involved in multiple biological processes, including chromatin remodeling, signal transduction, post-transcriptional modification, cell autophagy, carbohydrate metabolism, and cell cycle regulation. Triple negative breast cancer (TNBC) is notorious for high invasiveness and metastasis, poor prognosis, and high mortality, and it is the most malignant breast cancer, while the effective targets for TNBC treatment are still lacking. NcRNAs act as oncogenes or suppressor genes, as well as promote or inhibit the occurrence and development of TNBC. Here, we reviewed some important miRNAs, lncRNAs, circRNAs, their target(s) and molecular mechanisms in TNBC. It is benefited to understand the occurrence and development of TNBC, further some ncRNAs might be potential targets for TNBC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Gang Zhao
- Breast Surgery, The First Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Xin-Li Liu
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Ge Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Qi Zhao
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Shi-Long Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Li-Heng Luo
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| | - Chen-Yan Zhang
- Institute for Special Environmental Biophysics, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, Shaanxi, PR China.
| |
Collapse
|
29
|
Shinden Y, Hirashima T, Nohata N, Toda H, Okada R, Asai S, Tanaka T, Hozaka Y, Ohtsuka T, Kijima Y, Seki N. Molecular pathogenesis of breast cancer: impact of miR-99a-5p and miR-99a-3p regulation on oncogenic genes. J Hum Genet 2020; 66:519-534. [PMID: 33177704 DOI: 10.1038/s10038-020-00865-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 12/23/2022]
Abstract
Our recent research has revealed that passenger strands of certain microRNAs (miRNAs) function as tumor-suppressive miRNAs in cancer cells, e.g., miR-101-5p, miR-143-5p, miR-144-5p, miR-145-3p, and miR-150-3p. Thus, they are important in cancer pathogenesis. Analysis of the miRNA expression signature of breast cancer (BrCa) showed that the expression levels of two miRNAs derived from pre-miR-99a (miR-99a-5p and miR-99a-3p) were suppressed in cancerous tissues. The aim of this study was to identify oncogenic genes controlled by pre-miR-99a that are closely involved in the molecular pathogenesis of BrCa. A total of 113 genes were identified as targets of pre-miR-99a regulation (19 genes modulated by miR-99a-5p, and 95 genes regulated by miR-99a-3p) in BrCa cells. Notably, FAM64A was targeted by both of the miRNAs. Among these targets, high expression of 16 genes (C5orf22, YOD1, SLBP, F11R, C12orf49, SRPK1, ZNF250, ZNF695, CDK1, DNMT3B, TRIM25, MCM4, CDKN3, PRPS, FAM64A, and DESI2) significantly predicted reduced survival of BrCa patients based upon The Cancer Genome Atlas (TCGA) database. In this study, we focused on FAM64A and investigated the relationship between FAM64A expression and molecular pathogenesis of BrCa subtypes. The upregulation of FAM64A was confirmed in BrCa clinical specimens. Importantly, the expression of FAM64A significantly differed between patients with Luminal-A and Luminal-B subtypes. Our data strongly suggest that the aberrant expression of FAM64A is involved in the malignant transformation of BrCa. Our miRNA-based approaches (identification of tumor-suppressive miRNAs and their controlled targets) will provide novel information regarding the molecular pathogenesis of BrCa.
Collapse
Affiliation(s)
- Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tadahiro Hirashima
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | | | - Hiroko Toda
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuko Kijima
- Department of Breast Surgery, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
30
|
FAM64A: A Novel Oncogenic Target of Lung Adenocarcinoma Regulated by Both Strands of miR-99a ( miR-99a-5p and miR-99a-3p). Cells 2020; 9:cells9092083. [PMID: 32932948 PMCID: PMC7564711 DOI: 10.3390/cells9092083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 08/28/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most aggressive cancer and the prognosis of these patients is unfavorable. We revealed that the expression levels of both strands of miR-99a (miR-99a-5p and miR-99a-3p) were significantly suppressed in several cancer tissues. Analyses of large The Cancer Genome Atlas (TCGA) datasets showed that reduced miR-99a-5p or miR-99a-3p expression is associated with worse prognoses in LUAD patients (disease-free survival (DFS): p = 0.1264 and 0.0316; overall survival (OS): p = 0.0176 and 0.0756, respectively). Ectopic expression of these miRNAs attenuated LUAD cell proliferation, suggesting their tumor-suppressive roles. Our in silico analysis revealed 23 putative target genes of pre-miR-99a in LUAD cells. Among these targets, high expressions of 19 genes were associated with worse prognoses in LUAD patients (OS: p < 0.05). Notably, FAM64A was regulated by both miR-99a-5p and miR-99a-3p in LUAD cells, and its aberrant expression was significantly associated with poor prognosis in LUAD patients (OS: p = 0.0175; DFS: p = 0.0276). FAM64A knockdown using siRNAs suggested that elevated FAM64A expression contributes to cancer progression. Aberrant FAM64A expression was detected in LUAD tissues by immunostaining. Taken together, our miRNA-based analysis might be effective for identifying prognostic and therapeutic molecules in LUAD.
Collapse
|
31
|
Shimomura H, Okada R, Tanaka T, Hozaka Y, Wada M, Moriya S, Idichi T, Kita Y, Kurahara H, Ohtsuka T, Seki N. Role of miR-30a-3p Regulation of Oncogenic Targets in Pancreatic Ductal Adenocarcinoma Pathogenesis. Int J Mol Sci 2020; 21:E6459. [PMID: 32899691 PMCID: PMC7555373 DOI: 10.3390/ijms21186459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Our recent studies have implicated some passenger strands of miRNAs in the molecular pathogenesis of human cancers. Analysis of the microRNA (miRNA) expression signature in pancreatic ductal adenocarcinoma (PDAC) has shown that levels of miR-30a-3p, the passenger strand derived from pre-mir-30a, are significantly downregulated in PDAC tissues. This study aimed to identify the oncogenes closely involved in PDAC molecular pathogenesis under the regulation of miR-30a-3p. Ectopic expression assays showed that miR-30a-3p expression inhibited the aggressiveness of the PDAC cells, suggesting that miR-30a-3p acts as a tumor-suppressive miRNA in PDAC cells. We further identified 102 putative targets of miR-30a-3p regulation in PDAC cells by combining in silico analysis with gene expression data. Of these, ten genes (EPS8, HMGA2, ENDOD1, SLC39A10, TGM2, MGLL, SERPINE1, ITGA2, DTL, and UACA) were independent prognostic factors in multivariate analysis of survival of patients with PDAC (p < 0.01). We also investigated the oncogenic function of the integrin ITGA2 in PDAC cell lines. The integrin family comprises cell adhesion molecules expressed as heterodimeric, transmembrane proteins on the surface of various cells. Overexpression of ITGA2/ITGB1 (an ITGA2 binding partner) was detected in the PDAC clinical specimens. The knockdown of ITGA2 expression attenuated the malignant phenotypes of the PDAC cells. Together, results from these microRNA-based approaches can accelerate our understanding of PDAC molecular pathogenesis.
Collapse
Affiliation(s)
- Hiroki Shimomura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Takako Tanaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Yuto Hozaka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan; (H.S.); (T.T.); (Y.H.); (M.W.); (T.I.); (Y.K.); (H.K.); (T.O.)
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan;
| |
Collapse
|
32
|
Kawagoe K, Wada M, Idichi T, Okada R, Yamada Y, Moriya S, Okubo K, Matsushita D, Arigami T, Kurahara H, Maemura K, Natsugoe S, Seki N. Regulation of aberrantly expressed SERPINH1 by antitumor miR-148a-5p inhibits cancer cell aggressiveness in gastric cancer. J Hum Genet 2020; 65:647-656. [PMID: 32235846 DOI: 10.1038/s10038-020-0746-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/21/2022]
Abstract
RNA-sequencing-based microRNA (miRNA) expression signatures have revealed that miR-148a-5p (the passenger strand of the miR-148a-duplex) is downregulated in various kinds of cancer tissues. Analysis of The Cancer Genome Atlas (TCGA) database showed that low expression of miR-148a-5p was predictive of a lower survival rate (p = 0.041) in patients with gastric cancer (GC). Downregulation of miR-148a-5p was confirmed in GC clinical specimens, and its ectopic expression attenuated GC cell proliferation. Our search for miRNA target genes identified a total of 18 oncogenic targets of miR-148a-5p in GC cells. Among these targets, high expression levels of six genes (THBS2, P4HA3, SERPINH1, CDH11, BCAT1, and KCNG3) were closely associated with a poor prognosis (10-year survival rates) in GC patients (p < 0.05) according to TCGA database analyses. Furthermore, we focused on SERPINH1 as a chaperone protein involved in collagen folding in humans. Aberrant expression of SERPINH1 (mRNA and protein levels) was confirmed in GC clinical specimens. Knockdown assays of SERPINH1 using siRNAs resulted in inhibition of the aggressive phenotype of GC cells. Exploring the molecular networks controlled by miRNAs (including miRNA passenger strands) will broaden our understanding of the molecular pathogenesis of GC.
Collapse
Affiliation(s)
- Kosuke Kawagoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Reona Okada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Shogo Moriya
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba, Japan
| | - Keishi Okubo
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Daisuke Matsushita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takaaki Arigami
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
33
|
Toda H, Seki N, Kurozumi S, Shinden Y, Yamada Y, Nohata N, Moriya S, Idichi T, Maemura K, Fujii T, Horiguchi J, Kijima Y, Natsugoe S. RNA-sequence-based microRNA expression signature in breast cancer: tumor-suppressive miR-101-5p regulates molecular pathogenesis. Mol Oncol 2020; 14:426-446. [PMID: 31755218 PMCID: PMC6998431 DOI: 10.1002/1878-0261.12602] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/05/2019] [Accepted: 11/19/2019] [Indexed: 12/24/2022] Open
Abstract
Aberrantly expressed microRNA (miRNA) are known to disrupt intracellular RNA networks in cancer cells. Exploring miRNA-dependent molecular networks is a major challenge in cancer research. In this study, we performed RNA-sequencing of breast cancer (BrCa) clinical specimens to identify tumor-suppressive miRNA in BrCa. In total, 64 miRNA were identified as candidate tumor-suppressive miRNA in BrCa cells. Analysis of our BrCa signature revealed that several miRNA duplexes (guide strand/passenger strand) derived from pre-miRNA were downregulated in BrCa tissues (e.g. miR-99a-5p/-3p, miR-101-5p/-3p, miR-126-5p/-3p, miR-143-5p/-3p, and miR-144-5p/-3p). Among these miRNA, we focused on miR-101-5p, the passenger strand of pre-miR-101, and investigated its tumor-suppressive roles and oncogenic targets in BrCa cells. Low expression of miR-101-5p predicted poor prognosis in patients with BrCa (overall survival rate: P = 0.0316). Ectopic expression of miR-101-5p attenuated aggressive phenotypes, e.g. proliferation, migration, and invasion, in BrCa cells. Finally, we identified seven putative oncogenic genes (i.e. High Mobility Group Box 3, Epithelial splicing regulatory protein 1, GINS complex subunit 1 (GINS1), Tumor Protein D52, Serine/Arginine-Rich Splicing Factor Kinase 1, Vang-like protein 1, and Mago Homolog B) regulated by miR-101-5p in BrCa cells. The expression of these target genes was associated with the molecular pathogenesis of BrCa. Furthermore, we explored the oncogenic roles of GINS1, whose function had not been previously elucidated, in BrCa cells. Aberrant expression of GINS1 mRNA and protein was observed in BrCa clinical specimens, and high GINS1 expression significantly predicted poor prognosis in patients with BrCa (overall survival rate: P = 0.0126). Knockdown of GINS1 inhibited the malignant features of BrCa cells. Thus, identification of tumor-suppressive miRNA and molecular networks controlled by these miRNA in BrCa cells may be an effective strategy for elucidation of the molecular pathogenesis of this disease.
Collapse
Affiliation(s)
- Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Naohiko Seki
- Department of Functional GenomicsChiba University Graduate School of MedicineJapan
| | - Sasagu Kurozumi
- Department of General Surgical ScienceGunma University Graduate School of MedicineJapan
| | - Yoshiaki Shinden
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Yasutaka Yamada
- Department of Functional GenomicsChiba University Graduate School of MedicineJapan
| | | | - Shogo Moriya
- Department of Biochemistry and GeneticsChiba University Graduate School of MedicineJapan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| | - Takaaki Fujii
- Department of General Surgical ScienceGunma University Graduate School of MedicineJapan
| | - Jun Horiguchi
- Department of Breast SurgeryInternational University of Health and WelfareChibaJapan
| | - Yuko Kijima
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
- Department of Breast SurgeryFujita Health UniversityAichiJapan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid SurgeryGraduate School of Medical and Dental SciencesKagoshima UniversityJapan
| |
Collapse
|
34
|
Liu G, Wang P, Zhang H. MiR-6838-5p suppresses cell metastasis and the EMT process in triple-negative breast cancer by targeting WNT3A to inhibit the Wnt pathway. J Gene Med 2019; 21:e3129. [PMID: 31693779 DOI: 10.1002/jgm.3129] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/19/2019] [Accepted: 09/18/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) has become a common tumor that harms women's physical and mental health, as characterized by a relatively rapid recurrence and a high incidence of brain metastasis. Research increasingly suggests that microRNAs play key roles in the progress of TNBC. However, the function of miR-6838-5p in TNBC has not yet been reported, and requires additional exploration. METHODS In the present study, we uncovered miR-6838-5p expression in TNBC cells via a quantitative reverse transcriptase-polymerase chain reaction. Functionally, the impacts of up-regulated or down-regulated miR-6838-5p on TNBC invasiveness, Wnt pathway activation and epithelial-mesenchymal transition (EMT) were investigated via transwell and western blot assays. Mechanical analyses were utilized to unmask the miR-6838-5p mechanism in TNBC, including luciferase reporter, western blot and RIP assays. Rescue assays manifested the miR-6838-5p/WNT3A network in TNBC invasiveness through the Wnt pathway. RESULTS Under-expressed miR-6838-5p was found in TNBC cells. Up-regulation of miR-6838-5p suppressed TNBC cell invasion, migration and blockade of the Wnt pathway. However, down-regulation of miR-6838-5p led to opposite results. Furthermore, we found, via luciferase reporter, western blot and RIP assays, that miR-6838-5p could bind with WNT3A and negatively regulate WNT3A expression. Through rescue experiments, we demonstrated that the overexpression of WNT3A partially rescued the miR-6838-5p overexpression-mediated inhibitory effect, and knockdown of WNT3A partially rescued the miR-6838-5p suppression-mediated promotive effect on the progression of TNBC. CONCLUSIONS In summary, the results of the present study indicate that miR-6838-5p suppresses cell proliferation, metastasis and the EMT process in TNBC by targeting WNT3A to inhibit the Wnt pathway, which may provide a new insight into the therapeutic strategies of TNBC.
Collapse
Affiliation(s)
- Guozhu Liu
- Department 1 of Breast Surgery, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Ping Wang
- Department 1 of Breast Surgery, Linyi Cancer Hospital, Linyi, Shandong, China
| | - Hao Zhang
- Department of Oncological Radiotherapy, Wenzhou Central Hospital, Zhejiang Province, China
| |
Collapse
|
35
|
Tang J, Li Z, Zhu Q, Wen W, Wang J, Xu J, Wu W, Zhu Y, Xu H, Chen L. miR-204-5p regulates cell proliferation, invasion, and apoptosis by targeting IL-11 in esophageal squamous cell carcinoma. J Cell Physiol 2019; 235:3043-3055. [PMID: 31544245 DOI: 10.1002/jcp.29209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Esophageal cancer (EC) is the world's eighth most common malignant neoplasm and is ranked as the sixth leading cause of death related to cancer. Aberrant microRNA (miRNA) expression has been reported to be associated with esophageal squamous cell carcinoma. However, the molecular mechanism of miR-204-5p in esophageal squamous cell carcinoma (ESCC) is not clear. Therefore, the aim of this study was to investigate the potential role of miR-204-5p in ESCC. In the present study, we found that miR-204-5p could affect ESCC proliferation, invasion, apoptosis, and cell cycle in cell and mouse models. A dual-luciferase reporter assay showed that miR-204-5p expression was negatively correlated with interleukin-11 (IL-11) expression. IL-11 overexpression reversed the suppressive effects of miR-204-5p in the cell lines. These results indicated that miR-204-5p functions as a tumor suppressor by directly targeting IL-11 in ESCC.
Collapse
Affiliation(s)
- Jianwei Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weibin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yining Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Honglei Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
36
|
Involvement of Dual Strands of miR-143 ( miR-143-5p and miR-143-3p) and Their Target Oncogenes in the Molecular Pathogenesis of Lung Adenocarcinoma. Int J Mol Sci 2019; 20:ijms20184482. [PMID: 31514295 PMCID: PMC6770575 DOI: 10.3390/ijms20184482] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 12/24/2022] Open
Abstract
Our analyses of tumor-suppressive microRNAs (miRNAs) and their target oncogenes have identified novel molecular networks in lung adenocarcinoma (LUAD). Moreover, our recent studies revealed that some passenger strands of miRNAs contribute to cancer cell malignant transformation. Downregulation of both strands of the miR-143 duplex was observed in LUAD clinical specimens. Ectopic expression of these miRNAs suppressed malignant phenotypes in cancer cells, suggesting that these miRNAs have tumor-suppressive activities in LUAD cells. Here, we evaluated miR-143-5p molecular networks in LUAD using genome-wide gene expression and miRNA database analyses. Twenty-two genes were identified as potential miR-143-5p-controlled genes in LUAD cells. Interestingly, the expression of 11 genes (MCM4, RAD51, FAM111B, CLGN, KRT80, GPC1, MTL5, NETO2, FANCA, MTFR1, and TTLL12) was a prognostic factor for the patients with LUAD. Furthermore, knockdown assays using siRNAs showed that downregulation of MCM4 suppressed cell growth, migration, and invasion in LUAD cells. Aberrant expression of MCM4 was confirmed in the clinical specimens of LUAD. Thus, we showed that miR-143-5p and its target genes were involved in the molecular pathogenesis of LUAD. Identification of tumor-suppressive miRNAs and their target oncogenes may be an effective strategy for elucidation of the molecular oncogenic networks of this disease.
Collapse
|
37
|
Ahluwalia P, Mondal AK, Bloomer C, Fulzele S, Jones K, Ananth S, Gahlay GK, Heneidi S, Rojiani AM, Kota V, Kolhe R. Identification and Clinical Validation of a Novel 4 Gene-Signature with Prognostic Utility in Colorectal Cancer. Int J Mol Sci 2019; 20:ijms20153818. [PMID: 31387239 PMCID: PMC6696416 DOI: 10.3390/ijms20153818] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/31/2019] [Accepted: 08/02/2019] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is a high burden disease with several genes involved in tumor progression. The aim of the present study was to identify, generate and clinically validate a novel gene signature to improve prediction of overall survival (OS) to effectively manage colorectal cancer. We explored The Cancer Genome Atlas (TCGA), COAD and READ datasets (597 samples) from The Protein Atlas (TPA) database to extract a total of 595 candidate genes. In parallel, we identified 29 genes with perturbations in > 6 cancers which are also affected in CRC. These genes were entered in cBioportal to generate a 17 gene panel with highest perturbations. For clinical validation, this gene panel was tested on the FFPE tissues of colorectal cancer patients (88 patients) using Nanostring analysis. Using multivariate analysis, a high prognostic score (composite 4 gene signature-DPP7/2, YWHAB, MCM4 and FBXO46) was found to be a significant predictor of poor prognosis in CRC patients (HR: 3.42, 95% CI: 1.71-7.94, p < 0.001 *) along with stage (HR: 4.56, 95% CI: 1.35-19.15, p = 0.01 *). The Kaplan-Meier analysis also segregated patients on the basis of prognostic score (log-rank test, p = 0.001 *). The external validation using GEO dataset (GSE38832, 122 patients) corroborated the prognostic score (HR: 2.7, 95% CI: 1.99-3.73, p < 0.001 *). Additionally, higher score was able to differentiate stage II and III patients (130 patients) on the basis of OS (HR: 2.5, 95% CI: 1.78-3.63, p < 0.001 *). Overall, our results identify a novel 4 gene prognostic signature that has clinical utility in colorectal cancer.
Collapse
Affiliation(s)
- Pankaj Ahluwalia
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Ashis K Mondal
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Chance Bloomer
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sadanand Fulzele
- Department of Orthopedics, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Kimya Jones
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Sudha Ananth
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Gagandeep K Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Saleh Heneidi
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Amyn M Rojiani
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA
| | - Vamsi Kota
- Department of Medicine, Hematology Oncology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Ravindra Kolhe
- Department of Pathology, Anatomic Pathology Section, Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
38
|
Wang C, Xu C, Niu R, Hu G, Gu Z, Zhuang Z. MiR-890 inhibits proliferation and invasion and induces apoptosis in triple-negative breast cancer cells by targeting CD147. BMC Cancer 2019; 19:577. [PMID: 31196010 PMCID: PMC6567604 DOI: 10.1186/s12885-019-5796-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 06/05/2019] [Indexed: 12/03/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) is a type of breast cancer with a high degree of malignancy. Because of the remarkable biological characteristics of high invasion, metastasis and recurrence, TNBC is often accompanied by a poor prognosis. As a molecular characteristic of TNBC, high expression of CD147 has been confirmed by a large number of studies. However, the mechanism of CD147 expression regulation in TNBC remains elusive. In this study, we investigated the roles of miR-890 in inhibiting CD147. Methods Quantitative Reverse Transcription-Polymerase Chain Reaction (qRT-PCR) was used to detect CD147 mRNA and miR-890 level, and western blotting was used to detect CD147 protein. Bioinformatics screening and 3′-Untranslated Region (3′-UTR) luciferase assays were used to analyze the microRNAs (miRNA) binding site. Cell proliferation, apoptosis and invasion were assessed by using CCK-8, flow cytometry and transwell assays. Results The upregulation of miR-890 inhibited cell proliferation and invasion, induced apoptosis in MDA-MB-231 and HCC-70 TNBC cells by negatively regulating its target gene, CD147, and the upregulation of CD147 rescued the inhibitory effects of miR-890. miR-890 targeted CD147 by binding to its 3′-UTR. Further results showed that the upregulation of miR-890 also inhibited the expression of MMPs, the downstream genes of CD147, and promoted the cleavage of Caspase-3. The CD147 recovery experiment was further confirmed by the activity changes in the downstream MMPs of CD147. In addition, it was confirmed that the effect of CD147 in promoting TNBC cell proliferation and invasion, inhibiting apoptosis was related to the change in caspase-3 activity. Conclusion The downregulation of miR-890 is the potential cause of high CD147 expression in TNBC, which can promote the malignant transformation of TNBC.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Breast surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.,Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai, 200020, China
| | - Cheng Xu
- Department of Breast Surgery, Yangpu Hospital, Tongji University School of Medicine, Shanghai, 200090, China
| | - Ruijie Niu
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai, 200020, China
| | - Guangfu Hu
- Department of Breast Surgery, Central Hospital of Huangpu District, Shanghai, 200020, China
| | - Zhangyuan Gu
- Department of Breast surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China
| | - Zhigang Zhuang
- Department of Breast surgery, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200040, China.
| |
Collapse
|
39
|
Molecular Pathogenesis of Gene Regulation by the miR-150 Duplex: miR-150-3p Regulates TNS4 in Lung Adenocarcinoma. Cancers (Basel) 2019; 11:cancers11050601. [PMID: 31052206 PMCID: PMC6562801 DOI: 10.3390/cancers11050601] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 12/17/2022] Open
Abstract
Based on our miRNA expression signatures, we focused on miR-150-5p (the guide strand) and miR-150-3p (the passenger strand) to investigate their functional significance in lung adenocarcinoma (LUAD). Downregulation of miR-150 duplex was confirmed in LUAD clinical specimens. In vitro assays revealed that ectopic expression of miR-150-5p and miR-150-3p inhibited cancer cell malignancy. We performed genome-wide gene expression analyses and in silico database searches to identify their oncogenic targets in LUAD cells. A total of 41 and 26 genes were identified as miR-150-5p and miR-150-3p targets, respectively, and they were closely involved in LUAD pathogenesis. Among the targets, we investigated the oncogenic roles of tensin 4 (TNS4) because high expression of TNS4 was strongly related to poorer prognosis of LUAD patients (disease-free survival: p = 0.0213 and overall survival: p = 0.0003). Expression of TNS4 was directly regulated by miR-150-3p in LUAD cells. Aberrant expression of TNS4 was detected in LUAD clinical specimens and its aberrant expression increased the aggressiveness of LUAD cells. Furthermore, we identified genes downstream from TNS4 that were associated with critical regulators of genomic stability. Our approach (discovery of anti-tumor miRNAs and their target RNAs for LUAD) will contribute to the elucidation of molecular networks involved in the malignant transformation of LUAD.
Collapse
|
40
|
Fukuhisa H, Seki N, Idichi T, Kurahara H, Yamada Y, Toda H, Kita Y, Kawasaki Y, Tanoue K, Mataki Y, Maemura K, Natsugoe S. Gene regulation by antitumor miR-130b-5p in pancreatic ductal adenocarcinoma: the clinical significance of oncogenic EPS8. J Hum Genet 2019; 64:521-534. [DOI: 10.1038/s10038-019-0584-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 12/15/2022]
|
41
|
Khalid M, Idichi T, Seki N, Wada M, Yamada Y, Fukuhisa H, Toda H, Kita Y, Kawasaki Y, Tanoue K, Kurahara H, Mataki Y, Maemura K, Natsugoe S. Gene Regulation by Antitumor miR-204-5p in Pancreatic Ductal Adenocarcinoma: The Clinical Significance of Direct RACGAP1 Regulation. Cancers (Basel) 2019; 11:cancers11030327. [PMID: 30866526 PMCID: PMC6468488 DOI: 10.3390/cancers11030327] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/03/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Previously, we established a microRNA (miRNA) expression signature in pancreatic ductal adenocarcinoma (PDAC) tissues using RNA sequencing and found significantly reduced expression of miR-204-5p. Here, we aimed to investigate the functional significance of miR-204-5p and to identify miR-204-5p target genes involved in PDAC pathogenesis. Cancer cell migration and invasion were significantly inhibited by ectopic expression of miR-204-5p in PDAC cells. Comprehensive gene expression analyses and in silico database searches revealed 25 putative targets regulated by miR-204-5p in PDAC cells. Among these target genes, high expression levels of RACGAP1, DHRS9, AP1S3, FOXC1, PRP11, RHBDL2 and MUC4 were significant predictors of a poor prognosis of patients with PDAC. In this study, we focused on RACGAP1 (Rac guanosine triphosphatase-activating protein 1) because its expression was most significantly predictive of PDAC pathogenesis (overall survival rate: p = 0.0000548; disease-free survival rate: p = 0.0014). Overexpression of RACGAP1 was detected in PDAC clinical specimens, and its expression enhanced the migration and invasion of PDAC cells. Moreover, downstream genes affected by RACGAP1 (e.g., MMP28, CEP55, CDK1, ANLN and S100A14) are involved in PDAC pathogenesis. Our strategy to identify antitumor miRNAs and their target genes will help elucidate the molecular pathogenesis of PDAC.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Naohiko Seki
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Masumi Wada
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yasutaka Yamada
- Department of Functional Genomics, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan.
| | - Haruhi Fukuhisa
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Hiroko Toda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yota Kawasaki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Kiyonori Tanoue
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Yuko Mataki
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Kosei Maemura
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical Sciences, Kagoshima University, Kagoshima 890-8580, Japan.
| |
Collapse
|