1
|
Lazo PA. VRK2 kinase pathogenic pathways in cancer and neurological diseases. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119949. [PMID: 40187568 DOI: 10.1016/j.bbamcr.2025.119949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/07/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
The VRK2 ser-thr kinase, belonging to the dark kinome, is implicated in the pathogenesis of cancer progression, neurological and psychiatric diseases. The VRK2 gene codes for two isoforms. The main isoform (VRK2A) is mainly located in the cytoplasm, and anchored to different types of membranes, such as the endoplasmic reticulum, mitochondria and nuclear envelope. The VRK2A isoform interacts with signaling modules assembled on scaffold proteins such as JIP1 or KSR1, forming stable complexes and blocking the activation of regulatory signaling pathways by altering their intracellular localization and the balance among them. VRK2 regulates apoptosis, nuclear membrane organization, immune responses, and Cajal bodies. Wild-type VRK2 is overexpressed in tumors and contributes to cancer development. In cells and tumors with low levels of nuclear VRK1, VRK2 generates by alternative splicing a shorter isoform (VRK2B) that lacks the C-terminal hydrophobic tail and permits its relocation to nuclei. Furthermore, rare VRK2 gene variants are associated with different neurological or psychiatric diseases such as schizophrenia, epilepsy, bipolar disorder, depression, autism, circadian clock alterations and insomnia, but their pathogenic mechanism is unknown. These diseases are a likely consequence of an altered balance among different signaling pathways that are regulated by VRK2.
Collapse
Affiliation(s)
- Pedro A Lazo
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007 Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
2
|
Škarica M, Acsadi G, Živković SA. Pontocerebellar Hypoplasia Type 1 and Associated Neuronopathies. Genes (Basel) 2025; 16:585. [PMID: 40428407 DOI: 10.3390/genes16050585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2025] [Revised: 05/11/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Pontocerebellar hypoplasia is a rare neurodegenerative syndrome characterized by severe hypoplasia or atrophy of pons and cerebellum that may be associated with other brain malformations, microcephaly, optic nerve atrophy, dystonia, ataxia and neuromuscular disorders. At this time, there are 17 variants of PCH distinguished by clinical presentation and distinctive radiological and biochemical features in addition to pontine and cerebellar hypoplasia. PCH1 is defined as PCH variant associated with anterior horn degeneration in the spinal cord with muscle weakness and hypotonia, and is associated with recessive variants in genes VRK1, EXOSC3, EXOSC8, EXOSC9 and SLC25A46. Neuromuscular manifestations may clinically present as amyotrophic lateral sclerosis (ALS), motor neuropathy (HMN) or neuronopathy (non-5q spinal muscular atrophy; SMA) or sensorimotor polyneuropathy (HMSN). Physiologic functions of PCH1-associated genes include regulation of RNA metabolism, mitochondrial fission and neuronal migration. Overall, complex phenotypes associated with PCH1 gene variants ranging from PCH and related neurodevelopmental disorders combined with neuromuscular disorders to isolated neuromuscular disorders have variable outcomes with isolated neuromuscular disorders typically having later onset with better outcomes. Improved understanding of pathogenesis of pontocerebellar hypoplasia and its association with motor neuronopathies and peripheral neuropathies may provide us with valuable insights and lead to potential new therapeutic targets for neurodegenerative disorders.
Collapse
Affiliation(s)
- Mario Škarica
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA
| | - Gyula Acsadi
- Division of Neurology, Connecticut Children's Medical Center, St. Hartford, CT 06106, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT 06030, USA
- Department of Neurology, University of Connecticut School of Medicine, Farmington, CT 06030, USA
| | - Sasha A Živković
- Department of Neurology and CMT Program at Yale, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
3
|
Yang L, Zhai H, Tian T, Liu B, Ni X, Xia H. Combinatorial biosynthesis of novel gentamicin derivatives with nonsense mutation readthrough activity and low cytotoxicity. Front Pharmacol 2025; 16:1575840. [PMID: 40342992 PMCID: PMC12059486 DOI: 10.3389/fphar.2025.1575840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
Background Aminoglycosides (AGs) are one of the initial classes of antibiotics that have been used clinically and possess broad spectrum of activity. Nevertheless, their clinical utilization is restricted by safety issues associated with nephrotoxicity and ototoxicity. Methods Glycosyltransferase (GT) KanM2 was introduced into M. echinospora to produce the gentamicin derivatives, in which a kanosamine sugar ring was introduced to replace the garosamine. The premature termination codon (PTC) readthrough activity of genkamicins (GKs) was compared using dual luciferase reporter assay. The toxicity of GK was assessed in vitro in HEK-293 and NCI-H1299 cells and determined based on cell viability calculated after 48 h of treatment with different concentrations of the compounds. The NCI-H1299 cells harbouring the R213X nonsense mutation were treated with different concentrations of the derivatives to compare their expression of p53 proteins. The expression of p53 and its downstream targets p21 and BAX was detected using Western blotting and qRT-PCR in NCI-H1299 cells containing the R213X nonsense mutation treated with different concentrations of GK-Ae and G418. Finally, immunofluorescence and flow cytometry were used to determine the subcellular localization of full-length p53 protein induced by GK-Ae treatment and its effect on apoptosis in cancer cells. Results Eight gentamicin derivatives were obtained in this study. GK-Ae displayed similar PTC readthrough activity and reduced toxicity compared to natural aminoglycoside G418. Moreover, GK-Ae increased the levels of both p53 and its downstream targets p21 and BAX, and promoted apoptosis of cancer cells. Conclusion These results demonstrate the potential of combinatorial biosynthesis to increase the diversity of structures of AGs and provide directions for the development of new AGs with low toxicity and high PTC readthrough activity.
Collapse
Affiliation(s)
| | | | | | | | - Xianpu Ni
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Huanzhang Xia
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
4
|
Mercan M, Seyhan S, Yayla V. The phenotyping dilemma in VRK1-related motor neuron disease: a Turkish family with young-onset amyotrophic lateral sclerosis caused by a novel mutation. Amyotroph Lateral Scler Frontotemporal Degener 2025:1-18. [PMID: 40085521 DOI: 10.1080/21678421.2025.2477732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/20/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Objective: Vaccinia-related kinase 1 (VRK1)-related disease is an extremely rare autosomal recessive disorder primarily affecting the peripheral and/or central nervous system. In this report, we describe the genetic and clinical features of two siblings from a Turkish family presenting with an amyotrophic lateral sclerosis (ALS) phenotype due to a novel homozygous VRK1 mutation, and discuss the broad phenotypic spectrum associated with pathogenic variants in this gene. Methods: We analyzed the demographic data, clinical histories, neurological examinations, laboratory findings, and genetic results of 53 patients, including our cases, derived from 27 different reports. Results: Whole-exome sequencing identified a novel homozygous missense mutation, c.700A > G (p.Asn234Asp), in the VRK1 gene in two affected siblings. The characteristic features of the ALS phenotype included a recessive inheritance pattern, motor deficits with onset in the lower limbs, pyramidal tract signs, and a muscle magnetic resonance imaging (MRI) pattern demonstrating preferential involvement of the posterior compartments of the leg and thigh. The most common phenotypes associated with VRK1 mutations were ALS (18/53, 34%) and distal hereditary motor neuropathy (dHMN) (14/53, 26.4%), followed by pontocerebellar hypoplasia type 1 (7/53, 13.2%), hereditary motor and sensory neuropathy (5/53, 9.4%), autosomal recessive primary microcephaly with brain malformations (4/53, 7.5%), and spastic paraplegia (2/53, 3.8%). The ALS phenotype exhibited a significantly earlier mean age of onset compared to the dHMN phenotype (p = 0.015; 15.3 ± 11.5 and 27 ± 15.5 years, respectively). Conclusion: Our findings highlight the importance of investigating VRK1 mutations in patients with young-onset familial ALS. Furthermore, this report provides a systematic classification of the phenotype definitions associated with VRK1 mutations.
Collapse
Affiliation(s)
- Metin Mercan
- Department of Neurology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey and
| | - Serhat Seyhan
- Department of Medical Genetics, Memorial Sisli Hospital, Istanbul, Turkey
| | - Vildan Yayla
- Department of Neurology, Bakirkoy Dr. Sadi Konuk Training and Research Hospital, Istanbul, Turkey and
| |
Collapse
|
5
|
Živković SA, Nowak RJ, DiCapua D. CMT2 and distal hereditary motor neuropathy associated with VRK1 variants: Case series. Neuromuscul Disord 2025; 47:105254. [PMID: 39693713 DOI: 10.1016/j.nmd.2024.105254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
Axonal Charcot-Marie-Tooth disease (CMT2) and distal hereditary motor neuropathy (dHMN) are associated with a heterogeneous group of genes encoding proteins that are involved in axonal transport, control of RNA metabolism, mitochondrial dynamics and DNA repair. VRK1 (vaccinia-related kinase 1) is a serine/threonine kinase which is widely expressed in human tissue and plays a role in RNA maturation and processing and in DNA damage response. Variants of VRK1 have been associated with neurodevelopmental and neuromuscular disorders including pontocerebellar hypoplasia, motor neuron disorders and distal hereditary motor neuropathy. We present 3 cases of VRK1-associated neuromuscular disorders without neurodevelopmental abnormalities including CMT2 associated with homozygous variant of VRK1 at Arg387His and dHMN with combination of heterozygous variants at Arg133His and Asp243Asn. While our case series expands the clinical spectrum of VRK1-associated neuromuscular disorders, additional studies are needed to elucidate pathophysiology of neuromuscular disorders associated with VRK1 variants.
Collapse
Affiliation(s)
- Sasha A Živković
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA; CMT Program at Yale University, Department of Neurology, Yale University, New Haven, CT, USA.
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Daniel DiCapua
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
6
|
Campos-Díaz A, Morejón-García P, Monte-Serrano E, Ros-Pardo D, Marcos-Alcalde I, Gómez-Puertas P, Lazo PA. Pathogenic effects of Leu200Pro and Arg387His VRK1 protein variants on phosphorylation targets and H4K16 acetylation in distal hereditary motor neuropathy. J Mol Med (Berl) 2024; 102:801-817. [PMID: 38554151 PMCID: PMC11106162 DOI: 10.1007/s00109-024-02442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/07/2024] [Accepted: 03/21/2024] [Indexed: 04/01/2024]
Abstract
Rare recessive variants in the human VRK1 gene are associated with several motor neuron diseases (MND), such as amyotrophic lateral sclerosis, spinal muscular atrophy, or distal hereditary motor neuropathies (dHMN). A case with dHMN carrying two novel VRK1 gene variants, expressing Leu200Pro (L200P) and Arg387His (R387H) variant proteins, identified that these protein variants are functionally different. The Leu200Pro variant shares with several variants in the catalytic domain the loss of the kinase activity on different substrates, such as histones, p53, or coilin. However, the distal Arg387His variant and the distal Trp375* (W375X) chinese variant, both located at the end of the low complexity C-terminal region and proximal to the termination codon, retain their catalytic activity on some substrates, and mechanistically their functional impairment is different. The L200P variant, as well as most VRK1 pathogenic variants, impairs the phosphorylation of BAF and histone H4K16 acetylation, which are required for DNA attachment to the nuclear envelope and chromatin accessibility to DNA repair mechanisms, respectively. The R387H variant impairs phosphorylation of H2AX, an early step in different types of DNA damage responses. The functional variability of VRK1 protein variants and their different combinations are a likely contributor to the clinical phenotypic heterogeneity of motor neuron and neurological diseases associated with rare VRK1 pathogenic variants. KEY MESSAGES: VRK1 variants implicated in motor neuron diseases are functionally different. The L200P variant is kinase inactive, and the R387H variant is partially active. VRK1 variants alter H4K16 acetylation and loss of coilin and BAF phosphorylation. VRK1 variants alter Cajal bodies and DNA damage responses. VRK1 variant combination determines the neurological phenotype heterogeneity.
Collapse
Affiliation(s)
- Aurora Campos-Díaz
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - Eva Monte-Serrano
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain
| | - David Ros-Pardo
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28040, Madrid, Spain
| | - Iñigo Marcos-Alcalde
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28040, Madrid, Spain
| | - Paulino Gómez-Puertas
- Molecular Modeling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28040, Madrid, Spain
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, 37007, Salamanca, Spain.
- Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
7
|
Lazo PA, Morejón-García P. VRK1 variants at the cross road of Cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol Dis 2023; 183:106172. [PMID: 37257665 DOI: 10.1016/j.nbd.2023.106172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Distal hereditary neuropathies and neuro motor diseases are complex neurological phenotypes associated with pathogenic variants in a large number of genes, but in some the origin is unknown. Recently, rare pathogenic variants of the human VRK1 gene have been associated with these neurological phenotypes. All VRK1 pathogenic variants are recessive, and their clinical presentation occurs in either homozygous or compound heterozygous patients. The pathogenic VRK1 gene pathogenic variants are located in three clusters within the protein sequence. The main, and initial, shared clinical phenotype among VRK1 pathogenic variants is a distal progressive loss of motor and/or sensory function, which includes diseases such as spinal muscular atrophy, Charcot-Marie-Tooth, amyotrophic lateral sclerosis and hereditary spastic paraplegia. In most cases, symptoms start early in infancy, or in utero, and are slowly progressive. Additional neurological symptoms vary among non-related patients, probably because of their different VRK1 variants and their genetic background. The underlying common pathogenic mechanism, by its functional impairment, is a likely consequence of the roles that the VRK1 protein plays in the regulation on the stability and assembly of Cajal bodies, which affect RNA maturation and processing, neuronal migration of RNPs along axons, and DNA-damage responses. Alterations of these processes are associated with several neuro sensory or motor syndromes. The clinical heterogeneity of the neurological phenotypes associated with VRK1 is a likely consequence of the protein complexes in which VRK1 is integrated, which include several proteins known to be associated with Cajal bodies and DNA damage responses. Several hereditary distal neurological diseases are a consequence of pathogenic variants in genes that alter these cellular functions. We conclude that VRK1-related distal hereditary neuropathies and motor neuron diseases represent a novel subgroup of Cajal body related neurological syndromes.
Collapse
Affiliation(s)
- Pedro A Lazo
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| | - Patricia Morejón-García
- Molecular Mechanisms of Cancer Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca, Salamanca, Spain; Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain.
| |
Collapse
|
8
|
Recoding of Nonsense Mutation as a Pharmacological Strategy. Biomedicines 2023; 11:biomedicines11030659. [PMID: 36979640 PMCID: PMC10044939 DOI: 10.3390/biomedicines11030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Approximately 11% of genetic human diseases are caused by nonsense mutations that introduce a premature termination codon (PTC) into the coding sequence. The PTC results in the production of a potentially harmful shortened polypeptide and activation of a nonsense-mediated decay (NMD) pathway. The NMD pathway reduces the burden of unproductive protein synthesis by lowering the level of PTC mRNA. There is an endogenous rescue mechanism that produces a full-length protein from a PTC mRNA. Nonsense suppression therapies aim to increase readthrough, suppress NMD, or are a combination of both strategies. Therefore, treatment with translational readthrough-inducing drugs (TRIDs) and NMD inhibitors may increase the effectiveness of PTC suppression. Here we discuss the mechanism of PTC readthrough and the development of novel approaches to PTC suppression. We also discuss the toxicity and bioavailability of therapeutics used to stimulate PTC readthrough.
Collapse
|
9
|
The VRK1 chromatin kinase regulates the acetyltransferase activity of Tip60/KAT5 by sequential phosphorylations in response to DNA damage. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194887. [DOI: 10.1016/j.bbagrm.2022.194887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022]
|
10
|
Linville AC, Rico AB, Teague H, Binsted LE, Smith GL, Albarnaz JD, Wiebe MS. Dysregulation of Cellular VRK1, BAF, and Innate Immune Signaling by the Vaccinia Virus B12 Pseudokinase. J Virol 2022; 96:e0039822. [PMID: 35543552 PMCID: PMC9175622 DOI: 10.1128/jvi.00398-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/18/2022] [Indexed: 11/20/2022] Open
Abstract
Poxvirus proteins remodel signaling throughout the cell by targeting host enzymes for inhibition and redirection. Recently, it was discovered that early in infection the vaccinia virus (VACV) B12 pseudokinase copurifies with the cellular kinase VRK1, a proviral factor, in the nucleus. Although the formation of this complex correlates with inhibition of cytoplasmic VACV DNA replication and likely has other downstream signaling consequences, the molecular mechanisms involved are poorly understood. Here, we further characterize how B12 and VRK1 regulate one another during poxvirus infection. First, we demonstrate that B12 is stabilized in the presence of VRK1 and that VRK1 and B12 coinfluence their respective solubility and subcellular localization. In this regard, we find that B12 promotes VRK1 colocalization with cellular DNA during mitosis and that B12 and VRK1 may be tethered cooperatively to chromatin. Next, we observe that the C-terminal tail of VRK1 is unnecessary for B12-VRK1 complex formation or its proviral activity. Interestingly, we identify a point mutation of B12 capable of abrogating interaction with VRK1 and which renders B12 nonrepressive during infection. Lastly, we investigated the influence of B12 on the host factor BAF and antiviral signaling pathways and find that B12 triggers redistribution of BAF from the cytoplasm to the nucleus. In addition, B12 increases DNA-induced innate immune signaling, revealing a new functional consequence of the B12 pseudokinase. Together, this study characterizes the multifaceted roles B12 plays during poxvirus infection that impact VRK1, BAF, and innate immune signaling. IMPORTANCE Protein pseudokinases comprise a considerable fraction of the human kinome, as well as other forms of life. Recent studies have demonstrated that their lack of key catalytic residues compared to their kinase counterparts does not negate their ability to intersect with molecular signal transduction. While the multifaceted roles pseudokinases can play are known, their contribution to virus infection remains understudied. Here, we further characterize the mechanism of how the VACV B12 pseudokinase and human VRK1 kinase regulate one another in the nucleus during poxvirus infection and inhibit VACV DNA replication. We find that B12 disrupts regulation of VRK1 and its downstream target BAF, while also enhancing DNA-dependent innate immune signaling. Combined with previous data, these studies contribute to the growing field of nuclear pathways targeted by poxviruses and provide evidence of unexplored roles of B12 in the activation of antiviral immunity.
Collapse
Affiliation(s)
- Alexandria C. Linville
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Amber B. Rico
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Helena Teague
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lucy E. Binsted
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Geoffrey L. Smith
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Jonas D. Albarnaz
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Matthew S. Wiebe
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
11
|
Budziszewski GR, Zhao Y, Spangler CJ, Kedziora KM, Williams M, Azzam D, Skrajna A, Koyama Y, Cesmat A, Simmons H, Arteaga E, Strauss J, Kireev D, McGinty R. Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucleic Acids Res 2022; 50:4355-4371. [PMID: 35390161 PMCID: PMC9071384 DOI: 10.1093/nar/gkac198] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 12/12/2022] Open
Abstract
A key role of chromatin kinases is to phosphorylate histone tails during mitosis to spatiotemporally regulate cell division. Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase that phosphorylates histone H3 threonine 3 (H3T3) along with other chromatin-based targets. While structural studies have defined how several classes of histone-modifying enzymes bind to and function on nucleosomes, the mechanism of chromatin engagement by kinases is largely unclear. Here, we paired cryo-electron microscopy with biochemical and cellular assays to demonstrate that VRK1 interacts with both linker DNA and the nucleosome acidic patch to phosphorylate H3T3. Acidic patch binding by VRK1 is mediated by an arginine-rich flexible C-terminal tail. Homozygous missense and nonsense mutations of this acidic patch recognition motif in VRK1 are causative in rare adult-onset distal spinal muscular atrophy. We show that these VRK1 mutations interfere with nucleosome acidic patch binding, leading to mislocalization of VRK1 during mitosis, thus providing a potential new molecular mechanism for pathogenesis.
Collapse
Affiliation(s)
| | - Yani Zhao
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Cathy J Spangler
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Katarzyna M Kedziora
- Bioinformatics and Analytics Research Collaborative, University of North Carolina, Chapel Hill, NC, USA
| | - Michael R Williams
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Dalal N Azzam
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Aleksandra Skrajna
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Yuka Koyama
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Andrew P Cesmat
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Holly C Simmons
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Eyla C Arteaga
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Joshua D Strauss
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
| | - Dmitri Kireev
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
| | - Robert K McGinty
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, USA
- Division of Chemical Biology and Medicinal Chemistry, Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
12
|
Demaegd K, Brilstra EH, Hoogendijk JE, de Bie CI, de Pagter MS, van Hecke W, Mühlebner A, van Es MA, Milone M, van Rheenen W. Distal spinal muscular atrophy featured by predominant calf muscle involvement in VRK1 associated disease – case series and review. Neuromuscul Disord 2022; 32:527-532. [DOI: 10.1016/j.nmd.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/13/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022]
|
13
|
Morejon-Garcia P, Keren B, Marcos-Alcalde I, Gomez-Puertas P, Mochel F, Lazo PA. Dysfunctional Homozygous VRK1-D263G Variant Impairs the Assembly of Cajal Bodies and DNA Damage Response in Hereditary Spastic Paraplegia. NEUROLOGY-GENETICS 2021; 7:e624. [PMID: 34504951 PMCID: PMC8422991 DOI: 10.1212/nxg.0000000000000624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Background and Objectives To conduct a genetic and molecular functional study of a family with members affected of hereditary spastic paraplegia (HSP) of unknown origin and carrying a novel pathogenic vaccinia-related kinase 1 (VRK1) variant. Methods Whole-exome sequencing was performed in 2 patients, and their parents diagnosed with HSP. The novel VRK1 variant was detected by whole-exome sequencing, molecularly modeled and biochemically characterized in kinase assays. Functionally, we studied the role of this VRK1 variant in DNA damage response and its effect on the assembly of Cajal bodies (CBs). Results We have identified a very rare homozygous variant VRK1-D263G with a neurologic phenotype associated with HSP and moderate intellectual disability. The molecular modeling of this VRK1 variant protein predicted an alteration in the folding of a loop that interferes with the access to the kinase catalytic site. The VRK1-D263G variant is kinase inactive and does not phosphorylate histones H2AX and H3, transcription factors activating transcription factor 2 and p53, coilin needed for assembly of CBs, and p53 binding protein 1, a DNA repair protein. Functionally, this VRK1 variant protein impairs CB formation and the DNA damage response. Discussion This report expands the neurologic spectrum of neuromotor syndromes associated with a new and rare VRK1 variant, representing a novel pathogenic participant in complicated HSP and demonstrates that CBs and the DNA damage response are impaired in these patients.
Collapse
Affiliation(s)
- Patricia Morejon-Garcia
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Boris Keren
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Iñigo Marcos-Alcalde
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Paulino Gomez-Puertas
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Fanny Mochel
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| | - Pedro A Lazo
- Molecular Mechanisms of Cancer Program (P.M.-G., P.A.L.), Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Salamanca; Instituto de Investigación Biomédica de Salamanca (IBSAL) (P.M.-G., P.A.L.), Hospital Universitario de Salamanca, Spain; Genetics Department (B.K.), La Pitié-Salpêtrière Hospital, APHP. Sorbonne Université, Paris, France; Molecular Modelling Group (I.M.-A.), Centro de Biología Molecular "Severo Ochoa". CSIC - Universidad Autónoma de Madrid, Spain; Biosciences Research Institute (I.M.-A., P.G.-P.), School of Experimental Sciences, Universidad Francisco de Vitoria, Madrid, Spain; and Sorbonne Université - Université Pierre et Marie Curie (F.M.), Institut du Cerveau et de la Moelle épinière, INSERM U-1127, CNRS-UMR 7225, Paris, France
| |
Collapse
|
14
|
Sung A, Moretti P, Shaibani A. Adult-Onset Spinal Muscular Atrophy due to Mutations in the VRK1 Gene. NEUROLOGY-GENETICS 2021; 7:e599. [PMID: 34169149 PMCID: PMC8220962 DOI: 10.1212/nxg.0000000000000599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 03/23/2021] [Indexed: 11/15/2022]
Abstract
Objective To expand our knowledge of the range of clinical phenotypes associated with vaccinia-related kinase 1 (VRK1) gene mutations. Methods We present clinical and molecular data of 2 individuals with slowly progressive weakness and a clinical syndrome consistent with adult-onset spinal muscular atrophy without pontocerebellar atrophy. Results Genetic testing revealed likely pathogenic variants in the VRK1 gene in both subjects. One individual carried homozygous p.R321C (c.961 C>T), likely pathogenic variants. The other carried compound heterozygous p.V236M (c.706 G>A) and p.R321C (c.961 C>T), likely pathogenic variants. Notably, both patients were of Hispanic descent. Conclusions We report 2 cases with VRK1 mutations presenting as adult-onset spinal muscular atrophy without pontocerebellar hypoplasia and review the current literature of similar cases. Our report expands the clinical spectrum of neurologic disorders associated with VRK1 mutations.
Collapse
Affiliation(s)
- Angela Sung
- Department of Neurology (A. Sung), University of California San Diego; Department of Neurology (P.M.), University of Utah Health Science Center; George E. Wahlen VA Medical Center (P.M.), Salt Lake City, UT; and Nerve and Muscle Center of Texas (A. Shaibani), Houston
| | - Paolo Moretti
- Department of Neurology (A. Sung), University of California San Diego; Department of Neurology (P.M.), University of Utah Health Science Center; George E. Wahlen VA Medical Center (P.M.), Salt Lake City, UT; and Nerve and Muscle Center of Texas (A. Shaibani), Houston
| | - Aziz Shaibani
- Department of Neurology (A. Sung), University of California San Diego; Department of Neurology (P.M.), University of Utah Health Science Center; George E. Wahlen VA Medical Center (P.M.), Salt Lake City, UT; and Nerve and Muscle Center of Texas (A. Shaibani), Houston
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Hereditary motor neuropathies (HMN) comprise a broad genotypic and phenotypic spectrum of rare, progressively disabling diseases manifesting with length-dependent muscle weakness and atrophy. To date, more than half of the cases cannot be genetically explained. To provide symptomatic and disease-modifying treatments in the future, a better understanding of disease mechanisms is required. RECENT FINDINGS By whole exome and genome sequencing, the discovery of several novel genes (SCO2, TDRKH, SPTAN1, CADM3, and SORD) involved in the pathogenesis of HMN has now relevantly changed the pathophysiological knowledge. This recent success in causative understanding has mainly been driven by the development of functional models including cell culture, animal, and patient-derived induced pluripotent stem cell platforms. These models have an important impact on therapeutic advances including broader approaches to prevent or reverse axonal degeneration and individualized gene silencing attempts using sequence-specific RNA degradation mechanisms. SUMMARY In rare diseases such as HMN, the recent development of genetic sequencing and data interpretation methods has enabled a broader diagnostic approach, whereas treatment strategies are becoming more individualized. Significant milestones have been reached in the discovery of new genes, the establishment of functional disease models, and the preclinical development of mechanistic-based therapies.
Collapse
|
16
|
Lawrence AK, Whitehead MT, Kruszka P, Sanapo L, Yano S, Tanpaiboon P, Muenke M, Fraser JL, du Plessis AJ. Prenatal diagnosis of diencephalic-mesencephalic junction dysplasia: Fetal magnetic resonance imaging phenotypes, genetic diagnoses, and outcomes. Prenat Diagn 2021; 41:778-790. [PMID: 33522008 DOI: 10.1002/pd.5909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/17/2020] [Accepted: 12/28/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Report a single-center 12-year experience in the fetal diagnosis of diencephalic-mesencephalic junction dysplasia (DMJD) to expand the phenotype with Magnetic resonance imaging (MRI)-based classification, evaluate genetic etiologies, and ascertain outcomes. METHODS Retrospective medical record and imaging review of all fetal MRI exams with DMJD were performed at our institution. RESULTS Thirty-three pregnancies with fetal MRI findings of DMJD at 24 (18-37) weeks gestational age were studied; 70% were referred for fetal hydrocephalus. Three fetal MRI patterns were recognized. Type A (butterfly/hypothalamus-midbrain union) was seen in two cases (6%), Type B (partial thalamus-midbrain union) in 22 fetuses (70%), and Type C (complete/near complete midbrain-thalamic continuity) in nine fetuses (24%). L1CAM mutations were identified in four cases, and biallelic VRK1 variants in another. Among 14 live-born cases, 11 survived infancy, and 10 underwent postnatal brain MRI which confirmed the fetal MRI diagnosis in all but one case. Development was delayed in all surviving infants, most with additional neurological sequelae. CONCLUSIONS DMJD may be identified by prenatal MRI as early as 18 weeks gestation. We propose three distinct phenotypic forms of DMJD, Types A-C. Next-generation sequencing provides an underlying molecular diagnosis in some patients, but further studies on associated genetic diagnoses and clinical outcomes are indicated.
Collapse
Affiliation(s)
- Anne K Lawrence
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, USA.,George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Matthew T Whitehead
- George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA.,Division of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, District of Columbia, USA
| | - Paul Kruszka
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Laura Sanapo
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, USA.,George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Sho Yano
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Pranoot Tanpaiboon
- Rare Disease Institute, Division of Genetics and Metabolism, Children's National Hospital, Washington, District of Columbia, USA
| | - Maximilian Muenke
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jamie L Fraser
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, USA.,Rare Disease Institute, Division of Genetics and Metabolism, Children's National Hospital, Washington, District of Columbia, USA
| | - Adre J du Plessis
- Prenatal Pediatrics Institute, Children's National Hospital, Washington, District of Columbia, USA.,George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
17
|
Pibiri I, Melfi R, Tutone M, Di Leonardo A, Pace A, Lentini L. Targeting Nonsense: Optimization of 1,2,4-Oxadiazole TRIDs to Rescue CFTR Expression and Functionality in Cystic Fibrosis Cell Model Systems. Int J Mol Sci 2020; 21:ijms21176420. [PMID: 32899265 PMCID: PMC7504161 DOI: 10.3390/ijms21176420] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/26/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF) patients develop a severe form of the disease when the cystic fibrosis transmembrane conductance regulator (CFTR) gene is affected by nonsense mutations. Nonsense mutations are responsible for the presence of a premature termination codon (PTC) in the mRNA, creating a lack of functional protein. In this context, translational readthrough-inducing drugs (TRIDs) represent a promising approach to correct the basic defect caused by PTCs. By using computational optimization and biological screening, we identified three new small molecules showing high readthrough activity. The activity of these compounds has been verified by evaluating CFTR expression and functionality after treatment with the selected molecules in cells expressing nonsense–CFTR–mRNA. Additionally, the channel functionality was measured by the halide sensitive yellow fluorescent protein (YFP) quenching assay. All three of the new TRIDs displayed high readthrough activity and low toxicity and can be considered for further evaluation as a therapeutic approach toward the second major cause of CF.
Collapse
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Correspondence: (I.P.); (L.L.); Tel.: +39-091-238-97545 (I.P.); +39-091-238-97341 (L.L.)
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Centro di OncoBiologia Sperimentale (COBS), via San Lorenzo Colli, 90145 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy; (R.M.); (M.T.); (A.D.L.); (A.P.)
- Correspondence: (I.P.); (L.L.); Tel.: +39-091-238-97545 (I.P.); +39-091-238-97341 (L.L.)
| |
Collapse
|
18
|
Marcos AT, Martín‐Doncel E, Morejón‐García P, Marcos‐Alcalde I, Gómez‐Puertas P, Segura‐Puimedon M, Armengol L, Navarro‐Pando JM, Lazo PA. VRK1 (Y213H) homozygous mutant impairs Cajal bodies in a hereditary case of distal motor neuropathy. Ann Clin Transl Neurol 2020; 7:808-818. [PMID: 32365420 PMCID: PMC7261760 DOI: 10.1002/acn3.51050] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/27/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Distal motor neuropathies with a genetic origin have a heterogeneous clinical presentation with overlapping features affecting distal nerves and including spinal muscular atrophies and amyotrophic lateral sclerosis. This indicates that their genetic background is heterogeneous. PATIENT AND METHODS In this work, we have identified and characterized the genetic and molecular base of a patient with a distal sensorimotor neuropathy of unknown origin. For this study, we performed whole-exome sequencing, molecular modelling, cloning and expression of mutant gene, and biochemical and cell biology analysis of the mutant protein. RESULTS A novel homozygous recessive mutation in the human VRK1 gene, coding for a chromatin kinase, causing a substitution (c.637T > C; p.Tyr213His) in exon 8, was detected in a patient presenting since childhood a progressive distal sensorimotor neuropathy and spinal muscular atrophy syndrome, with normal intellectual development. Molecular modelling predicted this mutant VRK1 has altered the kinase activation loop by disrupting its interaction with the C-terminal regulatory region. The p.Y213H mutant protein has a reduced kinase activity with different substrates, including histones H3 and H2AX, proteins involved in DNA damage responses, such as p53 and 53BP1, and coilin, the scaffold for Cajal bodies. The mutant VRK1(Y213H) protein is unable to rescue the formation of Cajal bodies assembled on coilin, in the absence of wild-type VRK1. CONCLUSION The VRK1(Y213H) mutant protein alters the activation loop, impairs the kinase activity of VRK1 causing a functional insufficiency that impairs the formation of Cajal bodies assembled on coilin, a protein that regulates SMN1 and Cajal body formation.
Collapse
Affiliation(s)
- Ana T. Marcos
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
| | - Elena Martín‐Doncel
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Patricia Morejón‐García
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| | - Iñigo Marcos‐Alcalde
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
- School of Experimental SciencesBiosciences Research InstituteUniversidad Francisco de VitoriaPozuelo de Alarcón, MadridSpain
| | - Paulino Gómez‐Puertas
- Molecular Modelling GroupCentro de Biología Molecular “Severo Ochoa”CSIC‐Universidad Autónoma de Madrid, CantoblancoMadridSpain
| | - María Segura‐Puimedon
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - Lluis Armengol
- Quantitative Genomic Medicine Laboratories, qGenomicsEspluges de LlobregatBarcelonaSpain
| | - José M. Navarro‐Pando
- Unidad de GenéticaInstituto para el Estudio de la Biología de la Reproducción Humana (INEBIR)SevillaSpain
- Cátedra de Reproducción y Genética HumanaFacultad de Ciencias de la SaludUniversidad Europea del AtlánticoSantanderSpain
- Fundación Universitaria Iberoamericana (FUNIBER)BarcelonaSpain
| | - Pedro A. Lazo
- Molecular Mechanisms of Cancer ProgramInstituto de Biología Molecular y Celular del CáncerConsejo Superior de Investigaciones Científicas (CSIC)Universidad de SalamancaSalamancaSpain
- Instituto de Investigación Biomédica de Salamanca (IBSAL)Hospital Universitario de SalamancaSalamancaSpain
| |
Collapse
|
19
|
Greenbaum L, Barel O, Nikitin V, Hersalis-Eldar A, Kol N, Reznik-Wolf H, Dominissini D, Pras E, Dori A. Identification of a homozygous VRK1 mutation in two patients with adult-onset distal hereditary motor neuropathy. Muscle Nerve 2020; 61:395-400. [PMID: 31837156 DOI: 10.1002/mus.26779] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 12/04/2019] [Accepted: 12/07/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Adult-onset hereditary motor neuropathies are caused by mutations in multiple genes. Mutations within the vaccinia-related kinase 1 (VRK1) gene were associated with a wide spectrum of recessively inherited motor neuropathies, characterized by childhood to early adulthood age of onset and an occasionally non-lower motor neuron involvement. METHODS We describe two patients with adult-onset (aged 48 and 40 years) length-dependent motor neuropathy from unrelated consanguineous families of Moroccan Jewish descent. One also demonstrated mild nocturnal respiratory difficulty and sensory symptoms. Whole-exome sequencing (WES) was performed. RESULTS A homozygous mutation in VRK1 (c.1160G>A (p.Arg387His)), shared by both patients, was identified. This rare mutation segregated with the disease in the two families, and was absent in 120 controls of Jewish Moroccan origin. CONCLUSIONS Our findings support VRK1 as a causative gene for adult-onset distal hereditary motor neuropathy, and indicate its relevance for evaluation of individuals with similar motor impairment.
Collapse
Affiliation(s)
- Lior Greenbaum
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ortal Barel
- Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Vera Nikitin
- Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| | | | - Nitzan Kol
- Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Haike Reznik-Wolf
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel
| | - Dan Dominissini
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Cancer Research Center and Wohl Institute for Translational Medicine, Sheba Medical Center, Tel Hashomer, Israel
| | - Elon Pras
- The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Dori
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Neurology, Sheba Medical Center, Tel Hashomer, Israel
| |
Collapse
|
20
|
Sedghi M, Moslemi AR, Olive M, Etemadifar M, Ansari B, Nasiri J, Emrahi L, Mianesaz HR, Laing NG, Tajsharghi H. Motor neuron diseases caused by a novel VRK1 variant - A genotype/phenotype study. Ann Clin Transl Neurol 2019; 6:2197-2204. [PMID: 31560180 PMCID: PMC6856620 DOI: 10.1002/acn3.50912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/16/2019] [Accepted: 09/11/2019] [Indexed: 12/12/2022] Open
Abstract
Background Motor neuron disorders involving upper and lower neurons are a genetically and clinically heterogenous group of rare neuromuscular disorders with overlap among spinal muscular atrophies (SMAs) and amyotrophic lateral sclerosis (ALS). Classical SMA caused by recessive mutations in SMN1 is one of the most common genetic causes of mortality in infants. It is characterized by degeneration of anterior horn cells in the spinal cord, leading to progressive muscle weakness and atrophy. Non‐SMN1‐related spinal muscular atrophies are caused by variants in a number of genes, including VRK1, encoding the vaccinia‐related kinase 1 (VRK1). VRK1 variants have been segregated with motor neuron diseases including SMA phenotypes or hereditary complex motor and sensory axonal neuropathy (HMSN), with or without pontocerebellar hypoplasia or microcephaly. Results Here, we report an association of a novel homozygous splice variant in VRK1 (c.1159 + 1G>A) with childhood‐onset SMA or juvenile lower motor disease with brisk tendon reflexes without pontocerebellar hypoplasia and normal intellectual ability in a family with five affected individuals. We show that the VRK1 splice variant in patients causes decreased splicing efficiency and a mRNA frameshift that escapes the nonsense‐mediated decay machinery and results in a premature termination codon. Conclusions Our findings unveil the impact of the variant on the VRK1 transcript and further support the implication of VRK1 in the pathogenesis of lower motor neuron diseases.
Collapse
Affiliation(s)
- Maryam Sedghi
- Medical Genetics Laboratory, Alzahra University Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali-Reza Moslemi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Montse Olive
- Institute of Neuropathology, Department of Pathology, Institut Investigació Biomèdica de Bellvitge (IDIBELL)-Hospital de Bellvitge, Hospitalet de Llobregat, 08907, Barcelona, Spain.,Neuromuscular Unit, Department of Neurology, Institut Investigació Biomèdica de Bellvitge-(IDIBELL)-Hospital de Bellvitge, Hospitalet de Llobregat, 08907, Barcelona, Spain
| | - Masoud Etemadifar
- Department of Functional Neursurgery, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Behnaz Ansari
- Department of Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jafar Nasiri
- Department of Pediatric Neurology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Emrahi
- Department of Pathology, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Hamid-Reza Mianesaz
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nigel G Laing
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia
| | - Homa Tajsharghi
- Centre for Medical Research, The University of Western Australia and the Harry Perkins Institute for Medical Research, Nedlands, Western Australia, Australia.,School of Health Sciences, Division Biomedicine and Translational Medicine, University of Skovde, Skovde, Sweden
| |
Collapse
|
21
|
Campofelice A, Lentini L, Di Leonardo A, Melfi R, Tutone M, Pace A, Pibiri I. Strategies against Nonsense: Oxadiazoles as Translational Readthrough-Inducing Drugs (TRIDs). Int J Mol Sci 2019; 20:ijms20133329. [PMID: 31284579 PMCID: PMC6651739 DOI: 10.3390/ijms20133329] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/24/2022] Open
Abstract
This review focuses on the use of oxadiazoles as translational readthrough-inducing drugs (TRIDs) to rescue the functional full-length protein expression in mendelian genetic diseases caused by nonsense mutations. These mutations in specific genes generate premature termination codons (PTCs) responsible for the translation of truncated proteins. After a brief introduction on nonsense mutations and their pathological effects, the features of various classes of TRIDs will be described discussing differences or similarities in their mechanisms of action. Strategies to correct the PTCs will be presented, particularly focusing on a new class of Ataluren-like oxadiazole derivatives in comparison to aminoglycosides. Additionally, recent results on the efficiency of new candidate TRIDs in restoring the production of the cystic fibrosis transmembrane regulator (CFTR) protein will be presented. Finally, a prospectus on complementary strategies to enhance the effect of TRIDs will be illustrated together with a conclusive paragraph about perspectives, opportunities, and caveats in developing small molecules as TRIDs.
Collapse
Affiliation(s)
- Ambra Campofelice
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Laura Lentini
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Aldo Di Leonardo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Raffaella Melfi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università Degli Studi di Palermo, Viale delle Scienze Ed. 16-17, 90128 Palermo, Italy.
| |
Collapse
|
22
|
El-Bazzal L, Rihan K, Bernard-Marissal N, Castro C, Chouery-Khoury E, Desvignes JP, Atkinson A, Bertaux K, Koussa S, Lévy N, Bartoli M, Mégarbané A, Jabbour R, Delague V. Loss of Cajal bodies in motor neurons from patients with novel mutations in VRK1. Hum Mol Genet 2019; 28:2378-2394. [DOI: 10.1093/hmg/ddz060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/17/2019] [Accepted: 03/18/2019] [Indexed: 12/31/2022] Open
Abstract
Abstract
Distal hereditary motor neuropathies (dHMNs) are a heterogeneous group of diseases, resembling Charcot–Marie–Tooth syndromes, but characterized by an exclusive involvement of the motor part of the peripheral nervous system.
Here, we describe two new compound heterozygous mutations in VRK1, the vaccinia-related kinase 1 gene, in two siblings from a Lebanese family, affected with dHMN associated with upper motor neurons (MNs) signs. The mutations lead to severely reduced levels of VRK1 by impairing its stability, and to a shift of nuclear VRK1 to cytoplasm. Depletion of VRK1 from the nucleus alters the dynamics of coilin, a phosphorylation target of VRK1, by reducing its stability through increased proteasomal degradation. In human-induced pluripotent stem cell-derived MNs from patients, we demonstrate that this drop in VRK1 levels leads to Cajal bodies (CBs) disassembly and to defects in neurite outgrowth and branching. Mutations in VRK1 have been previously reported in several neurological diseases affecting lower or both upper and lower MNs. Here, we describe a new phenotype linked to VRK1 mutations, presenting as a classical slowly progressive motor neuropathy, beginning in the second decade of life, with associated upper MN signs. We provide, for the first time, evidence for a role of VRK1 in regulating CB assembly in MNs. The observed MN defects are consistent with a length dependent axonopathy affecting lower and upper MNs, and we propose that diseases due to mutations in VRK1 should be grouped under a unique entity named `VRK1-related motor neuron disease’.
Collapse
Affiliation(s)
- Lara El-Bazzal
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - Khalil Rihan
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | | | | | - Eliane Chouery-Khoury
- Unité de Génétique Médicale, Université Saint Joseph, Campus des Sciences Médicales, Beirut, Lebanon
| | | | | | - Karine Bertaux
- Medical Genetics, Biological Resource Center—Tissue, DNA, Cells, CRB TAC, La Timone Children’s Hospital, Marseille, France
| | - Salam Koussa
- Department of Neurology, Lebanese University Hospital-Geitaoui, Beirut, Lebanon
| | - Nicolas Lévy
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
- Department of Medical Genetics, Children’s Hospital La Timone, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, Inserm, MMG, U 1251, Marseille, France
| | - André Mégarbané
- Centre Médical et Psychopédagogique, Beirut, Lebanon
- Institut Jérôme Lejeune, Paris, France
| | - Rosette Jabbour
- Neurology Division, Department of Internal Medicine, St George Hospital University Medical Center, University of Balamand, Beirut, Lebanon
| | | |
Collapse
|