1
|
Ding Q, Stander Z, Elizalde BJ, Stelmach ES, Duncan JC, Vidal-Folch N, Hasadsri L, Rumilla KM, Shen W. Thirteen cases support the clinical significance of imprinting center 1 (IC1) microdeletions in Beckwith-Wiedemann syndrome. Clin Epigenetics 2025; 17:67. [PMID: 40301967 PMCID: PMC12039090 DOI: 10.1186/s13148-025-01873-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025] Open
Abstract
Most Beckwith-Wiedemann syndrome (BWS) cases are sporadic; nonetheless, imprinting center 1 (IC1) microdeletions have been suggested as a rare cause of familial BWS, with ~ 20 reported cases. We report 13 cases from nine families with IC1 microdeletions. Recurrent 1.4-kb, 1.8-kb, and 2.2-kb deletions were observed. IC1 hypermethylation was identified in all families, and we established a statistically significant relationship between IC1 microdeletions and hypermethylation (OR: 108.17, p = 2.76e-13). This study confirms IC1 microdeletions as a cause of familial BWS, expands the understanding of their molecular mechanisms, and supports a Likely Pathogenic clinical classification for IC1 microdeletions.
Collapse
Affiliation(s)
- Qiliang Ding
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Zinandre Stander
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Brandon J Elizalde
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Erica S Stelmach
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaime C Duncan
- Division of Genetics, Genomics and Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Noemi Vidal-Folch
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linda Hasadsri
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kandelaria M Rumilla
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Wei Shen
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
2
|
Hara S, Matsuhisa F, Kitajima S, Yatsuki H, Kubiura-Ichimaru M, Higashimoto K, Soejima H. Identification of responsible sequences which mutations cause maternal H19-ICR hypermethylation with Beckwith-Wiedemann syndrome-like overgrowth. Commun Biol 2024; 7:1605. [PMID: 39623082 PMCID: PMC11612015 DOI: 10.1038/s42003-024-07323-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is caused by a gain of methylation (GOM) at the imprinting control region within the Igf2-H19 domain on the maternal allele (H19-ICR GOM). Mutations in the binding sites of several transcription factors are involved in H19-ICR GOM and BWS. However, the responsible sequence(s) for H19-ICR GOM with BWS-like overgrowth has not been identified in mice. Here, we report that a mutation in the SOX-OCT binding site (SOBS) causes partial H19-ICR GOM, which does not extend beyond CTCF binding site 3 (CTS3). Moreover, simultaneously mutating both SOBS and CTS3 causes complete GOM of the entire H19-ICR, leading to the misexpression of the imprinted genes, and frequent BWS-like overgrowth. In addition, CTS3 is critical for CTCF/cohesin-mediated chromatin conformation. These results indicate that SOBS and CTS3 are the sequences in which mutations cause H19-ICR GOM leading to BWS-like overgrowth and are essential for maintaining the unmethylated state of maternal H19-ICR.
Collapse
Affiliation(s)
- Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| | - Fumikazu Matsuhisa
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Shuji Kitajima
- Division of Biological Resources and Development, Analytical Research Center for Experimental Sciences, Saga University, Saga, 849-8501, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Musashi Kubiura-Ichimaru
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, 849-8501, Japan.
| |
Collapse
|
3
|
Higashimoto K, Sun F, Imagawa E, Saida K, Miyake N, Hara S, Yatsuki H, Kubiura-Ichimaru M, Fujita A, Mizuguchi T, Matsumoto N, Soejima H. Whole-exome sequencing reveals causative genetic variants for several overgrowth syndromes in molecularly negative Beckwith-Wiedemann spectrum. J Med Genet 2024; 61:590-594. [PMID: 38228391 DOI: 10.1136/jmg-2023-109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Background Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations at 11p15. Because approximately 20% of patients test negative via molecular testing of peripheral blood leukocytes, the concept of Beckwith-Wiedemann spectrum (BWSp) was established to encompass a broader cohort with diverse and overlapping phenotypes. The prevalence of other overgrowth syndromes concealed within molecularly negative BWSp remains unexplored. Methods We conducted whole-exome sequencing (WES) on 69 singleton patients exhibiting molecularly negative BWSp. Variants were confirmed by Sanger sequencing or quantitative genomic PCR. We compared BWSp scores and clinical features between groups with classical BWS (cBWS), atypical BWS or isolated lateralised overgrowth (aBWS+ILO) and overgrowth syndromes identified via WES. Results Ten patients, one classified as aBWS and nine as cBWS, showed causative gene variants for Simpson-Golabi-Behmel syndrome (five patients), Sotos syndrome (two), Imagawa-Matsumoto syndrome (one), glycosylphosphatidylinositol biosynthesis defect 11 (one) or 8q duplication/9p deletion (one). BWSp scores did not distinguish between cBWS and other overgrowth syndromes. Birth weight and height in other overgrowth syndromes were significantly larger than in aBWS+ILO and cBWS, with varying intergroup frequencies of clinical features. Conclusion Molecularly negative BWSp encapsulates other syndromes, and considering both WES and clinical features may facilitate accurate diagnosis.
Collapse
Affiliation(s)
- Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Feifei Sun
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Eri Imagawa
- Department of Pediatrics, The Jikei University School of Medicine, Tokyo, Japan
| | - Ken Saida
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Human Genetics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Musashi Kubiura-Ichimaru
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takeshi Mizuguchi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
4
|
Placental Mesenchymal Dysplasia and Beckwith-Wiedemann Syndrome. Cancers (Basel) 2022; 14:cancers14225563. [PMID: 36428656 PMCID: PMC9688415 DOI: 10.3390/cancers14225563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Placental mesenchymal dysplasia (PMD) is characterized by placentomegaly, aneurysmally dilated chorionic plate vessels, thrombosis of the dilated vessels, and large grapelike vesicles, and is often mistaken for partial or complete hydatidiform mole with a coexisting normal fetus. Androgenetic/biparental mosaicism (ABM) has been found in many PMD cases. Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder with complex and diverse phenotypes and an increased risk of developing embryonal tumors. There are five major causative alterations: loss of methylation of imprinting control region 2 (KCNQ1OT1:TSS-DMR) (ICR2-LOM), gain of methylation at ICR1 (H19/IGF2:IG-DMR) (ICR1-GOM), paternal uniparental disomy of 11 (pUPD11), loss-of-function variants of the CDKN1C gene, and paternal duplication of 11p15. Additional minor alterations include genetic variants within ICR1, paternal uniparental diploidy/biparental diploidy mosaicism (PUDM, also called ABM), and genetic variants of KCNQ1. ABM (PUDM) is found in both conditions, and approximately 20% of fetuses from PMD cases are BWS and vice versa, suggesting a molecular link. PMD and BWS share some molecular characteristics in some cases, but not in others. These findings raise questions concerning the timing of the occurrence of the molecularly abnormal cells during the postfertilization period and the effects of these abnormalities on cell fates after implantation.
Collapse
|
5
|
Yang IJ, Tu YA, Pan SP, Huang TC, Chen CL, Lin MW, Tsai YY, Yao YL, Su YN, Chen SU. First report of a successful pregnancy by preimplantation genetic testing for Beckwith-Wiedemann syndrome. Taiwan J Obstet Gynecol 2022; 61:174-179. [PMID: 35181034 DOI: 10.1016/j.tjog.2021.11.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Beckwith-Wiedemann syndrome (BWS) is a rare imprinting gene disorder. Maternal CDKN1C mutation comprises 5% of etiologies of BWS. There is no successful report of preventing BWS by preimplantation genetic testing for monogenic disease (PGT-M) in the literature. Is PGT-M applicable for preventing BWS ? CASE REPORT This 39-year-old woman conceived naturally and delivered a boy who was diagnosed of BWS. The genetic testing of her son revealed CDKN1C gene mutation, and of the mother showed a carrier of the same mutation. She underwent controlled ovarian stimulation, oocyte pickup, and intracytoplasmic sperm injection. Trophectoderm biopsies were performed and samples were checked for PGT. Two wild-type and euploid embryos were thawed and transferred. One intrauterine pregnancy was achieved. The patient delivered a healthy female baby at 37 weeks of gestation. CONCLUSION In this case, we first report a successful pregnancy with a wild-type CDKN1C gene baby achieved by PGT-M.
Collapse
Affiliation(s)
- Ih-Jane Yang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-An Tu
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Song-Po Pan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ting-Chi Huang
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Ling Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Wei Lin
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Yi Tsai
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Lin Yao
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Ning Su
- Sofiva Genomics Co, Ltd., Taipei, Taiwan; Dianthus Maternal Fetal Medicine Clinic, Taipei, Taiwan
| | - Shee-Uan Chen
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Godley LA. Anticipation in hematopoietic malignancies: biology, bias, or both? Leuk Lymphoma 2021; 62:3070-3072. [PMID: 34405775 DOI: 10.1080/10428194.2021.1966789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lucy A Godley
- Departments of Medicine and Human Genetics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Sun F, Hara S, Tomita C, Tanoue Y, Yatsuki H, Higashimoto K, Soejima H. Phenotypically concordant but epigenetically discordant monozygotic dichorionic diamniotic twins with Beckwith-Wiedemann syndrome. Am J Med Genet A 2021; 185:3062-3067. [PMID: 34037318 DOI: 10.1002/ajmg.a.62364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/15/2021] [Accepted: 05/08/2021] [Indexed: 11/07/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an imprinting disorder caused by (epi)genetic alterations. The incidence of monozygotic (MZ) twins in BWS is higher than in the general population. Most MZ twins with BWS are female and have phenotypical discordance: one twin is clinically diagnosed with BWS, while the other shows a mild or normal phenotype. The most frequent (epi)genetic alteration in MZ twins is loss of methylation of imprinting control region 2 (ICR2-LOM) at 11p15.5. Intriguingly, ICR2-LOM is usually found in the peripheral blood leukocytes (PBL) of both twins, even if they are clinically discordant. Here, we present a rare pair of MZ dichorionic diamniotic female twins with BWS and concordant phenotypes (a Beckwith-Wiedemann spectrum score of 5 in each twin). Molecular analysis of genomic DNA from PBL revealed ICR2-LOM in one twin but not the other. Our analyses suggest that ICR2-LOM occurred between days 1 and 3 after fertilization, followed by twinning. We speculate that during embryogenesis, ICR2-LOM cells were distributed to the hematopoietic stem cells in different ratios in the two fetuses, and also to commonly affected tissues, such as the tongue, in similar ratios, although we were unable to analyze any tissues other than PBL.
Collapse
Affiliation(s)
- Feifei Sun
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Satoshi Hara
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Chiyoko Tomita
- Department of Neonatology, Yokohama City Seibu Hospital, St. Marianna University School of Medicine, Yokohama, Japan
| | - Yuka Tanoue
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|
8
|
Higashimoto K, Watanabe H, Tanoue Y, Tonoki H, Tokutomi T, Hara S, Yatsuki H, Soejima H. Hypomethylation of a centromeric block of ICR1 is sufficient to cause Silver-Russell syndrome. J Med Genet 2020; 58:422-425. [PMID: 32447322 PMCID: PMC8142445 DOI: 10.1136/jmedgenet-2020-106907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/15/2022]
Abstract
Silver-Russell syndrome (SRS) is a representative imprinting disorder. A major cause is the loss of methylation (LOM) of imprinting control region 1 (ICR1) within the IGF2/H19 domain. ICR1 is a gametic differentially methylated region (DMR) consisting of two repeat blocks, with each block including three CTCF target sites (CTSs). ICR1-LOM on the paternal allele allows CTCF to bind to CTSs, resulting in IGF2 repression on the paternal allele and biallelic expression of H19. We analysed 10 differentially methylated sites (DMSs) (ie, seven CTSs and three somatic DMRs within the IGF2/H19 domain, including two IGF2-DMRs and the H19-promoter) in five SRS patients with ICR1-LOM. Four patients showed consistent hypomethylation at all DMSs; however, one exhibited a peculiar LOM pattern, showing LOM at the centromeric region of the IGF2/H19 domain but normal methylation at the telomeric region. This raised important points: there may be a separate regulation of DNA methylation for the two repeat blocks within ICR1; there is independent control of somatic DMRs under each repeat block; sufficient IGF2 repression to cause SRS phenotypes occurs by LOM only in the centromeric block; and the need for simultaneous methylation analysis of several DMSs in both blocks for a correct molecular diagnosis.
Collapse
Affiliation(s)
- Ken Higashimoto
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hijiri Watanabe
- Department of Pediatrics, Amakusa Medical Center, Amakusa, Japan
| | - Yuka Tanoue
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hidefumi Tonoki
- Medical Genetics Center, Department of Pediatrics, Tenshi Hospital, Sapporo, Japan
| | - Tomoharu Tokutomi
- Department of Clinical Genetics, School of Medicine, Iwate Medical University, Morioka, Japan
| | - Satoshi Hara
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics & Epigenetics, Department of Biomolecular Sciences, Saga University Faculty of Medicine, Saga, Japan
| |
Collapse
|
9
|
Watanabe H, Higashimoto K, Miyake N, Morita S, Horii T, Kimura M, Suzuki T, Maeda T, Hidaka H, Aoki S, Yatsuki H, Okamoto N, Uemura T, Hatada I, Matsumoto N, Soejima H. DNA methylation analysis of multiple imprinted DMRs in Sotos syndrome reveals IGF2-DMR0 as a DNA methylation-dependent, P0 promoter-specific enhancer. FASEB J 2019; 34:960-973. [PMID: 31914674 PMCID: PMC6973060 DOI: 10.1096/fj.201901757r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 11/11/2022]
Abstract
Haploinsufficiency of NSD1, which dimethylates histone H3 lysine 36 (H3K36), causes Sotos syndrome (SoS), an overgrowth syndrome. DNMT3A and DNMT3B recognizes H3K36 trimethylation (H3K36me3) through PWWP domain to exert de novo DNA methyltransferase activity and establish imprinted differentially methylated regions (DMRs). Since decrease of H3K36me3 and genome‐wide DNA hypomethylation in SoS were observed, hypomethylation of imprinted DMRs in SoS was suggested. We explored DNA methylation status of 28 imprinted DMRs in 31 SoS patients with NSD1 defect and found that hypomethylation of IGF2‐DMR0 and IG‐DMR in a substantial proportion of SoS patients. Luciferase assay revealed that IGF2‐DMR0 enhanced transcription from the IGF2 P0 promoter but not the P3 and P4 promoters. Chromatin immunoprecipitation‐quantitative PCR (ChIP‐qPCR) revealed active enhancer histone modifications at IGF2‐DMR0, with high enrichment of H3K4me1 and H3 lysine 27 acetylation (H3K27ac). CRISPR‐Cas9 epigenome editing revealed that specifically induced hypomethylation at IGF2‐DMR0 increased transcription from the P0 promoter but not the P3 and P4 promoters. NSD1 knockdown suggested that NSD1 targeted IGF2‐DMR0; however, IGF2‐DMR0 DNA methylation and IGF2 expression were unaltered. This study could elucidate the function of IGF2‐DMR0 as a DNA methylation dependent, P0 promoter‐specific enhancer. NSD1 may play a role in the establishment or maintenance of IGF2‐DMR0 methylation during the postimplantation period.
Collapse
Affiliation(s)
- Hidetaka Watanabe
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan.,Department of Plastic and Reconstructive Surgery, Saga University Hospital, Saga, Japan
| | - Ken Higashimoto
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Sumiyo Morita
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takuro Horii
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Mika Kimura
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Takayuki Suzuki
- Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Toshiyuki Maeda
- Department of Pediatrics, Faculty of Medicine, Saga University, Saga, Japan
| | - Hidenori Hidaka
- Department of Internal Medicine and Gastrointestinal Endoscopy, Faculty of Medicine, Saga University, Saga, Japan
| | - Saori Aoki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Hitomi Yatsuki
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Japan
| | - Tetsuji Uemura
- Department of Plastic and Reconstructive Surgery, Saga University Hospital, Saga, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hidenobu Soejima
- Division of Molecular Genetics and Epigenetics, Department of Biomolecular Sciences, Faculty of Medicine, Saga University, Saga, Japan
| |
Collapse
|