1
|
Park KS, Lässer C, Lötvall J. Extracellular vesicles and the lung: from disease pathogenesis to biomarkers and treatments. Physiol Rev 2025; 105:1733-1821. [PMID: 40125970 DOI: 10.1152/physrev.00032.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/14/2024] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nanosized extracellular vesicles (EVs) are released by all cells to convey cell-to-cell communication. EVs, including exosomes and microvesicles, carry an array of bioactive molecules, such as proteins and RNAs, encapsulated by a membrane lipid bilayer. Epithelial cells, endothelial cells, and various immune cells in the lung contribute to the pool of EVs in the lung microenvironment and carry molecules reflecting their cellular origin. EVs can maintain lung health by regulating immune responses, inducing tissue repair, and maintaining lung homeostasis. They can be detected in lung tissues and biofluids such as bronchoalveolar lavage fluid and blood, offering information about disease processes, and can function as disease biomarkers. Here, we discuss the role of EVs in lung homeostasis and pulmonary diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, pulmonary fibrosis, and lung injury. The mechanistic involvement of EVs in pathogenesis and their potential as disease biomarkers are discussed. Finally, the pulmonary field benefits from EVs as clinical therapeutics in severe pulmonary inflammatory disease, as EVs from mesenchymal stem cells attenuate severe respiratory inflammation in multiple clinical trials. Further, EVs can be engineered to carry therapeutic molecules for enhanced and broadened therapeutic opportunities, such as the anti-inflammatory molecule CD24. Finally, we discuss the emerging opportunity of using different types of EVs for treating severe respiratory conditions.
Collapse
Affiliation(s)
- Kyong-Su Park
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Cecilia Lässer
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
2
|
Luu QQ, Kim T, Cao TBT, Choi I, Yang SY, An BS, Hwang DY, Choi Y, Park HS. Therapeutic Potential of Arginine-Loaded Red Blood Cell Nanovesicles Targeting Obese Asthma. Mediators Inflamm 2025; 2025:8248722. [PMID: 40134943 PMCID: PMC11936518 DOI: 10.1155/mi/8248722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/12/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose: The role of the gut microbiomes has been emphasized in the pathogenesis of obese asthma (OA). However, the molecular mechanism of airway dysfunction underlying OA has not yet been fully elucidated. The effects of microbiomes on arginine metabolism in relation to lung functions and a novel method for delivering arginine to lung tissue based on arginine-loaded red blood cell (RBC)-derived nanovesicles (NVs) (NVArg) will be investigated. Materials and Methods: Inflammatory status, amino acid profiles, and microbial diversity were evaluated in 20 adult patients with OA compared to 30 adult patients with non-OA (NOA) and 10 healthy control (HC) groups. Changes in gut or lung microbial composition that altered arginine metabolism in relation to airway inflammation were investigated in an OA mouse model in vivo. Additionally, this study evaluated the delivery of arginine to lung tissue utilizing NVArg in vivo and in vitro. Results: Significantly increased Bacteroides abundance but decreased serum arginine concentration with lower forced exhaled volume at 1 s (FEV1) (%) was noted in the OA group compared to the NOA and HC groups. In mouse experiments, when OA mice were given living bacteria from normal control (NC) mice, lung arginine concentration and airway resistance were restored. However, the administration of arginine or its metabolite (citrulline) did not increase the arginine levels in the lung tissues. We therefore created NVArg, which successfully delivered arginine into the cytoplasm of the airway epithelial cell line in vitro. Oral administration of NVArg for OA mice significantly induced the AMP-activated protein kinase (AMPK) and endothelial nitric oxide synthase (eNOS) pathways in airway epithelial cells, which reduced airway resistance and inflammation. Conclusion: These findings suggest that microbiomes contribute to airway dysfunction by regulating arginine metabolism, whereas NVArg treatment may be a potential option for managing OA.
Collapse
Affiliation(s)
- Quoc Quang Luu
- Department of Oral and Maxillofacial Surgery, Loma Linda University School of Dentistry, Loma Linda, California, USA
| | - Taejune Kim
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Thi Bich Tra Cao
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Injung Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Seung Yun Yang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Beum-Soo An
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang, Republic of Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
3
|
Jadamba B, Jin Y, Lee H. Harmonising cellular conversations: decoding the vital roles of extracellular vesicles in respiratory system intercellular communications. Eur Respir Rev 2024; 33:230272. [PMID: 39537245 PMCID: PMC11558538 DOI: 10.1183/16000617.0272-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 08/22/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) released by various cells play crucial roles in intercellular communication within the respiratory system. This review explores the historical context and significance of research into extracellular vesicles. Categorised into exosomes (sized 30-150 nm), microvesicles (sized 50-1000 nm) and apoptotic bodies (sized 500-2000nm), based on their generation mechanisms, extracellular vesicles carry diverse cargoes of biomolecules, including proteins, lipids and nucleic acids. Respiratory ailments are the primary contributors to both mortality and morbidity across various populations globally, significantly impacting public health. Recent studies have underscored the pivotal role of extracellular vesicles, particularly their cargo content, in mediating intercellular communication between lung cells in respiratory diseases. This comprehensive review provides insights into extracellular vesicle mechanisms and emphasises their significance in major respiratory conditions, including acute lung injury, COPD, pulmonary hypertension, pulmonary fibrosis, asthma and lung cancer.
Collapse
Affiliation(s)
- Budjav Jadamba
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Heedoo Lee
- Department of Biology and Chemistry, Changwon National University, Changwon, Korea
| |
Collapse
|
4
|
Humaira, Ahmad I, Shakir HA, Khan M, Franco M, Irfan M. Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects. J Basic Microbiol 2024; 64:e2400221. [PMID: 39148315 DOI: 10.1002/jobm.202400221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/14/2024] [Accepted: 07/28/2024] [Indexed: 08/17/2024]
Abstract
Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, "bacterial extracellular vesicles" (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30-150 nm), microvesicles (100-1000 nm), apoptotic bodies (1000-5000 nm), and oncosomes (1000-10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.
Collapse
Affiliation(s)
- Humaira
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hafiz Abdullah Shakir
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Muhammad Khan
- Institute of Zoology, Faculty of Life Science, University of the Punjab New Campus, Lahore, Pakistan
| | - Marcelo Franco
- Department of Exact Science, State University of Santa Cruz, Ilheus, Brazil
| | - Muhammad Irfan
- Department of Biotechnology, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
5
|
Wang Y, Li C, Wu F, Mao J, Zhu J, Xie H, Zhou X, Wen C, Tian J. The negative effects of extracellular vesicles in the immune system. Front Immunol 2024; 15:1410273. [PMID: 39372421 PMCID: PMC11449741 DOI: 10.3389/fimmu.2024.1410273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Immunity is a critical self-defense mechanism of the human body, wherein immune cells and immune molecules play a crucial role. Extracellular vesicles (EVs), derived from immune cells or other cells, play a significant role in tumors, autoimmune diseases and other immune-related disorders by serving as carriers and facilitating intercellular communication through the transfer of cargoes. Numerous studies have revealed that EVs can exacerbate disease development by modulating immune responses. Therefore, this paper focuses on the effects of EVs on the number, activity and function of different types of immune cells and the release of immune molecules (such as cytokines, antigens, antibodies, etc) in various diseases, as well as the roles of EVs associated with different types of immune cells in various diseases. We aim to provide a comprehensive review of the negative effects that EVs play in the immune system to provide more ideas and strategies for the management of clinical immune diseases.
Collapse
Affiliation(s)
- Yang Wang
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Cuifang Li
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feifeng Wu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jueyi Mao
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Junquan Zhu
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haotian Xie
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xin Zhou
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Chuan Wen
- Department of Pediatrics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jidong Tian
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
6
|
Lv J, Xiong X. Extracellular Vesicle microRNA: A Promising Biomarker and Therapeutic Target for Respiratory Diseases. Int J Mol Sci 2024; 25:9147. [PMID: 39273095 PMCID: PMC11395461 DOI: 10.3390/ijms25179147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Respiratory diseases, including chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and coronavirus pneumonia, present a major global health challenge. Current diagnostic and therapeutic options for these diseases are limited, necessitating the urgent development of novel biomarkers and therapeutic strategies. In recent years, microRNAs (miRNAs) within extracellular vesicles (EVs) have received considerable attention due to their crucial role in intercellular communication and disease progression. EVs are membrane-bound structures released by cells into the extracellular environment, encapsulating a variety of biomolecules such as DNA, RNA, lipids, and proteins. Specifically, miRNAs within EVs, known as EV-miRNAs, facilitate intercellular communication by regulating gene expression. The expression levels of these miRNAs can reflect distinct disease states and significantly influence immune cell function, chronic airway inflammation, airway remodeling, cell proliferation, angiogenesis, epithelial-mesenchymal transition, and other pathological processes. Consequently, EV-miRNAs have a profound impact on the onset, progression, and therapeutic responses of respiratory diseases, with great potential for disease management. Synthesizing the current understanding of EV-miRNAs in respiratory diseases such as COPD, asthma, lung cancer, and novel coronavirus pneumonia, this review aims to explore the potential of EV-miRNAs as biomarkers and therapeutic targets and examine their prospects in the diagnosis and treatment of these respiratory diseases.
Collapse
Affiliation(s)
- Jiaxi Lv
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Xianzhi Xiong
- Department of Pulmonary and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
- Department of Respiratory and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
7
|
Sim S, Park HJ, Kim YK, Choi Y, Park HS. Lactobacillus paracasei-derived extracellular vesicles alleviate neutrophilic asthma by inhibiting the JNK pathway in airway epithelium. Allergol Int 2024; 73:302-312. [PMID: 37953104 DOI: 10.1016/j.alit.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Lactobacillus paracasei has been known to reduce airway resistance and inflammation in asthma. However, the therapeutic effect of its extracellular vesicles (EVs) in patients with asthma remains unclear. METHODS To validate the clinical relevance of L. paracasei-derived EVs (LpEV) in asthma, the composition of gut microbial EVs was verified by metagenomics in LPS-induced C57BL/6 mice. The components of proteins and metabolites in LpEV were identified by peptide mass fingerprinting and metabolomic analysis. The serum levels of specific IgG1 or IgG4 antibodies to LpEV were compared by ELISA between patients with eosinophilic asthma (EA, n = 10) and those with neutrophilic asthma (NA, n = 10) as well as with healthy controls (HCs, n = 10). Finally, therapeutic effects of LpEV and their metabolites in asthma were validated in vivo/in vitro. RESULTS Significantly lower proportions of EVs derived from Lactobacillus at the genus level were noted in mice with NA than in control mice. Moreover, the serum levels of LpEV-specific IgG4, but not IgG1, were lower in patients with NA than in those with EA or in HCs and positively correlated with FEV1 (%) values. In addition, oral administration of LpEV reduced airway resistance and inflammation in mice with NA. Finally, LpEV and their 3 metabolites (dodecanoic acid, palmitoleic acid, and D-(-)-tagatose) significantly inhibited JNK phosphorylation/IL-8 production in airway epithelium in vitro. CONCLUSIONS These findings suggest that LpEV may have a therapeutic potential targeting NA by suppressing the JNK pathway and proinflammatory cytokine production in airway epithelium.
Collapse
Affiliation(s)
- Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea
| | | | | | - Youngwoo Choi
- Department of Biomaterials Science, College of Natural Resources and Life Science, Pusan National University, Miryang, South Korea.
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, South Korea; Department of Biomedical Science, Graduate School of Ajou University, Suwon, South Korea.
| |
Collapse
|
8
|
Quoc QL, Choi Y, Hur GY, Park HS. New targets for type 2-low asthma. Korean J Intern Med 2024; 39:215-227. [PMID: 38317271 PMCID: PMC10918384 DOI: 10.3904/kjim.2023.299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 02/07/2024] Open
Abstract
Asthma is characterized by airway obstruction and inflammation, and presents significant diagnostic and treatment challenges. The concept of endotypes has improved understanding of the mechanisms of asthma and has stimulated the development of effective treatment strategies. Sputum profiles may be used to classify asthma into two major inflammatory types: type 2-high (T2H) and type 2-low (T2L) asthma. T2H, characterized by elevated type 2 inflammation, has been extensively studied and several effective biologic treatments have been developed. However, managing T2L is more difficult due to the lack of reliable biomarkers for accurate diagnosis and classification. Additionally, conventional anti-inflammatory therapy does not completely control the symptoms of T2L; therefore, further research is needed to identify effective biologic treatments. This review provides new insights into the clinical characteristics and underlying mechanisms of severe T2L and investigates potential therapeutic approaches to control the disease.
Collapse
Affiliation(s)
- Quang Luu Quoc
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon,
Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon,
Korea
| | - Youngwoo Choi
- Department of Biomaterials Science (BK21 FOUR Program), College of Natural Resources and Life Science, Pusan National University, Miryang,
Korea
| | - Gyu-Young Hur
- Department of Internal Medicine, Korea University College of Medicine, Seoul,
Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon,
Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon,
Korea
| |
Collapse
|
9
|
Chen W, Sun J, Mao Y, Tang Y, Wang J, Liu Z. Endogenously Gated DNA Walking Machine for Prescreened MicroRNA Detection in Extracellular Vesicles. Anal Chem 2024; 96:2244-2252. [PMID: 38253329 DOI: 10.1021/acs.analchem.3c05595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Tumor-derived extracellular vesicle (T-EV) microRNAs have been investigated as promising biomarkers in clinical diagnosis as well as disease progression monitoring. However, the expression profiles of microRNA in different tissues vary widely, the precise monitoring of microRNA levels in EVs originating from diseased tissues is susceptible to background interference, thus remains a challenge. Conventional assays require extensive processing, such as EV isolation and even sample lysis, which is both slow and laborious, and the cumbersome pretreatment could spoil the downstream analysis. To address this issue, we developed a generalizable strategy for T-EVs-selective activation and therefore specific amplified microRNA imaging. The conditional signal amplification is established by integrating a traditional DNA walker system with endogenously activated motif to achieve sensitized microRNA imaging in T-EVs. The preorganized endogenous activation with additional sensing criteria narrowed the scope against the complex specimens, and the amplified sensing with reduced off-target signals was supposed to be sensitive to monitor the tiny changes of microRNA expression during the disease course, which holds great potential for accurate diagnosis and prognosis.
Collapse
Affiliation(s)
- Weiming Chen
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Jiale Sun
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Yuqing Mao
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Yuhao Tang
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Jing Wang
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| | - Zhihong Liu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, Wuhan 430062, P. R. China
| |
Collapse
|
10
|
Xie J, Li Q, Nie S. Bacterial extracellular vesicles: An emerging postbiotic. Trends Food Sci Technol 2024; 143:104275. [DOI: 10.1016/j.tifs.2023.104275] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Shin D, Kim J, Lee JH, Kim JI, Oh YM. Profiling of Microbial Landscape in Lung of Chronic Obstructive Pulmonary Disease Patients Using RNA Sequencing. Int J Chron Obstruct Pulmon Dis 2023; 18:2531-2542. [PMID: 38022823 PMCID: PMC10644840 DOI: 10.2147/copd.s426260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Purpose The aim of the study was to use RNA sequencing (RNA-seq) data of lung from chronic obstructive pulmonary disease (COPD) patients to identify the bacteria that are most commonly detected. Additionally, the study sought to investigate the differences in these infections between normal lung tissues and those affected by COPD. Patients and Methods We re-analyzed RNA-seq data of lung from 99 COPD patients and 93 non-COPD smokers to determine the extent to which the metagenomes differed between the two groups and to assess the reliability of the metagenomes. We used unmapped reads in the RNA-seq data that were not aligned to the human reference genome to identify more common infections in COPD patients. Results We identified 18 bacteria that exhibited significant differences between the COPD and non-COPD smoker groups. Among these, Yersinia enterocolitica was found to be more than 30% more abundant in COPD. Additionally, we observed difference in detection rate based on smoking history. To ensure the accuracy of our findings and distinguish them from false positives, we double-check the metagenomic profile using Basic Local Alignment Search Tool (BLAST). We were able to identify and remove specific species that might have been misclassified as other species in Kraken2 but were actually Staphylococcus aureus, as identified by BLAST analysis. Conclusion This study highlighted the method of using unmapped reads, which were not typically used in sequencing data, to identify microorganisms present in patients with lung diseases such as COPD. This method expanded our understanding of the microbial landscape in COPD and provided insights into the potential role of microorganisms in disease development and progression.
Collapse
Affiliation(s)
- Dongjin Shin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Juhyun Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jang Ho Lee
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Jong-Il Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Genomic Medicine Institute, Seoul National University, Seoul, Republic of Korea
- Seoul National University Cancer Research Institute, Seoul, Republic of Korea
| | - Yeon-Mok Oh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
12
|
Koprivica I, Stanisavljević S, Mićanović D, Jevtić B, Stojanović I, Miljković Đ. ILC3: a case of conflicted identity. Front Immunol 2023; 14:1271699. [PMID: 37915588 PMCID: PMC10616800 DOI: 10.3389/fimmu.2023.1271699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
Innate lymphoid cells type 3 (ILC3s) are the first line sentinels at the mucous tissues, where they contribute to the homeostatic immune response in a major way. Also, they have been increasingly appreciated as important modulators of chronic inflammatory and autoimmune responses, both locally and systemically. The proper identification of ILC3 is of utmost importance for meaningful studies on their role in immunity. Flow cytometry is the method of choice for the detection and characterization of ILC3. However, the analysis of ILC3-related papers shows inconsistency in ILC3 phenotypic definition, as different inclusion and exclusion markers are used for their identification. Here, we present these discrepancies in the phenotypic characterization of human and mouse ILC3s. We discuss the pros and cons of using various markers for ILC3 identification. Furthermore, we consider the possibilities for the efficient isolation and propagation of ILC3 from different organs and tissues for in-vitro and in-vivo studies. This paper calls upon uniformity in ILC3 definition, isolation, and propagation for the increased possibility of confluent interpretation of ILC3's role in immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
13
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
14
|
Choi Y, Park HS, Kim YK. Bacterial Extracellular Vesicles: A Candidate Molecule for the Diagnosis and Treatment of Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2023; 15:279-289. [PMID: 37188485 DOI: 10.4168/aair.2023.15.3.279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/11/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023]
Abstract
Extracellular vesicles (EVs) are an end product released from almost all living cells such as eukaryotic cells and bacteria. These membrane vesicles containing proteins, lipids, and nucleic acids are mainly involved in intracellular communications through the transfer of their components from donor to acceptor cells. Moreover, EVs have been implicated in many functions in response to environmental changes, contributing to health and disease; bacterial EVs depending on their specific parental bacterium have diverse effects on immune responses to play a beneficial or pathogenic role in patients with various allergic and immunologic diseases. As bacterial EVs are a completely new area of investigation in this field, we highlight our current understanding of bacterial EVs and discuss their diagnostic and therapeutic potentials (as immunomodulators) for targeting asthma and atopic dermatitis.
Collapse
Affiliation(s)
- Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea.
| | | |
Collapse
|