1
|
Cao D, Chen J, Zhang Y, Rui H, Guang K, Zhang L, Wu R, Nian S, Song X. Application of Metabolomics and Microbiome Analysis for Revealing the Endogenous Mechanism of Baizhu Xiaozhong San in Postpartum Rats with Spleen-qi Deficiency. J Med Food 2025. [PMID: 40238668 DOI: 10.1089/jmf.2024.k.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Postpartum women are in a state of physical weakness and suffering from fatigue. Metabolic disturbances in the postpartum period may lead to an increased prevalence of postpartum depression, hemorrhage, and obesity, underscoring the importance of prioritizing maternal health. The combination (Baizhu Xiaozhong San, BZXZS) of charred Atractylodis macrocephalae Koidz. (Baizhu, BZ) and charred Fructus Aurantii Immaturus (Zhishi, ZS) has primary applications for invigorating the spleen and promoting diuresis. This study utilized serum/spleen metabolomics in conjunction with 16S rDNA sequencing analysis to investigate the endogenous metabolic alterations and intestinal homeostasis in postpartum rats exhibiting spleen-deficiency syndrome (SDS). The pathological symptoms of postpartum SDS rats in the administration groups were gradually restored, in particular, the symptoms of the BZXZS-H group rats improved significantly. As a result, 32 differential metabolites and 7 correlated metabolic pathways (impact value > 0.1) demonstrated the improvement effect of BZXZS on postpartum SDS rats mostly focusing on disorders of energy, carbohydrate, and lipid metabolism. 16S rDNA gene sequencing indicated that BZXZS had a significantly better regulatory effect on Lactobacillus faecis. The findings suggest that BZXZS exerts a positive impact on the intestinal health and the immune system of postpartum SDS rats through an intricate cascade of interactions with various targets.
Collapse
Affiliation(s)
- Di Cao
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Jie Chen
- School of Chinese Materia medica, Guangzhou University of Chinese Medicine, Guang Zhou, China
| | - Yanhua Zhang
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Hao Rui
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Ke Guang
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Le Zhang
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Ruyi Wu
- School of Pharmacy, Wannan Medical College, Wu Hu, China
| | - Sihui Nian
- School of Pharmacy, Wannan Medical College, Wu Hu, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wu Hu, China
| | - Xiaojun Song
- School of Pharmacy, Wannan Medical College, Wu Hu, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine of IHM, Wannan Medical College, Wu Hu, China
| |
Collapse
|
2
|
Jain S, Alshaikh BN, Elmrayed S, Fenton TR. Short- and longer-term growth and development of fat mass in preterm infants. Semin Fetal Neonatal Med 2025:101636. [PMID: 40374495 DOI: 10.1016/j.siny.2025.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2025]
Abstract
Preterm infants typically experience faster growth rates than term-born infants, often doubling their weight in six to eight weeks. However, many face challenges leading to growth faltering and suboptimal neurodevelopment. To achieve optimal growth, these infants often require fortified breastmilk or high-nutrient formula. While meeting nutrition and growth targets are essential, concerns arise about rapid postnatal growth during their catch-up phase, particularly regarding increased body fat at term-corrected age, possibly increasing their risk for obesity and chronic health conditions later. However, evidence suggests that although preterm infants may have higher body fat at term-corrected age, this difference diminishes by three months corrected age, aligning more closely with term-born infants. Systematic reviews of more than 20,000 individuals observed that small for gestational age preterm infants do not have higher adiposity in childhood and adulthood; rather, they exhibit lower body mass indexes, waist circumferences, similar body and visceral fat and blood pressure compared to their appropriate for gestational age preterm-born peers. Therefore, it is reassuring that promoting early growth in preterm infants does not necessitate a trade-off when it comes to supporting long-term metabolic outcomes versus neurodevelopment. Healthcare providers should encourage a responsive feeding approach, even in preterm infants, guided by infants' physiological needs, hunger and satiety once they exhibit feeding cues. This approach respects the child's developmental needs and encourages healthy eating habits, fostering positive parent-child feeding relationships, and ultimately allowing the child to grow and develop to their full potential without compromising their long-term health outcomes.
Collapse
Affiliation(s)
- Shipra Jain
- The Perinatal Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnett Avenue, Cincinnati 45229, Ohio, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Belal N Alshaikh
- Community Health Sciences, O'Brien Institute of Public Health, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada; Neonatal Nutrition and Gastroenterology Program, Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Seham Elmrayed
- Institute of Global Health and Human Ecology, American University in Cairo, Egypt
| | - Tanis R Fenton
- Community Health Sciences, O'Brien Institute of Public Health, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada.
| |
Collapse
|
3
|
Le TT, Andreani GA, Mahmood S, Patel MS, Rideout TC. Influence of Maternal Alpha-Lipoic Acid Supplementation on Postpartum Body Weight and Metabolic Health in Rats with Obesity. J Diet Suppl 2025; 22:417-432. [PMID: 40150966 PMCID: PMC12018130 DOI: 10.1080/19390211.2025.2483267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
We examined the influence of dietary α-lipoic acid (LA; R enantiomer) supplementation in obese-complicated pregnancies on maternal postpartum body weight and metabolic health. Forty-eight female Sprague-Dawley rats were randomized into three dietary groups throughout pre-pregnancy, gestation, and lactation: (i) a low-calorie control diet (CON); (ii) a high calorie obesity-inducing diet (HC); or (iii) the HC diet with 0.25% LA (HC+LA). Following offspring weaning, all mothers were switched to the CON diet for a postpartum period of 140 days to assess maternal body weight and markers of metabolic health. HC-fed mothers showed excessive (p < 0.05) gestational weight gain (GWG), higher (p < 0.05) postpartum body weight, reduced (p < 0.05) glycemic control (lower glucose:insulin ratio) and higher (p = 0.06) hepatic cholesterol concentration versus CON mothers. In contrast, HC+LA mothers demonstrated lower (p < 0.05) body weight throughout the experimental period compared with HC mothers, primarily due to a marked reduction in GWG. Although LA did not protect (p > 0.05) against reduced glycemic control, it did alter several aspects of lipid metabolism including reduced serum HDL-C and a lower concentration of hepatic cholesterol which was mediated partly through a reduction in low-density lipoprotein receptor expression. We conclude that maternal obesity during pregnancy leads to a longer-term detrimental impact on weight gain and glycemic control, even after switching to a low-calorie postpartum diet. Maternal LA supplementation may be able to partially offset these effects, likely by protecting against excessive GWG during pregnancy. However, further work is required to determine the consequences of reduced serum HDL-C in LA-supplemented mothers.
Collapse
Affiliation(s)
- Truc T.K. Le
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| | - Gabriella A. Andreani
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| | - Saleh Mahmood
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| | - Mulchand S. Patel
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA 14214
| | - Todd C. Rideout
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA 14214
| |
Collapse
|
4
|
Zhang H, Zhang L, Zhao X, Ma Y, Sun D, Bai Y, Liu W, Liang X, Liang H. Folic Acid Prevents High-Fat Diet-Induced Postpartum Weight Retention in Rats, Which Is Associated with a Reduction in Endoplasmic Reticulum Stress-Mediated Hepatic Lipogenesis. Nutrients 2024; 16:4377. [PMID: 39770997 PMCID: PMC11676124 DOI: 10.3390/nu16244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Proactively preventing postpartum weight retention (PPWR) is one of the effective intervention strategies to reduce the occurrence of obesity in women. Population studies have shown that serum folate levels are closely related to body weight. The regulation of folic acid on lipid metabolism has been fully confirmed in both in vivo and in vitro studies. For many years, folic acid supplementation has been widely used in periconceptional women due to its role in preventing fetal neural tube defects. However, whether folic acid supplementation prior to and throughout pregnancy exerts preventive effects on PPWR remains uncertain. This study aims to investigate the preventive effect of folic acid on PPWR in rats and further explore the underlying mechanisms. METHODS In this study, pregnant rats were administered one of the dietary schedules: control diet (CON), high-fat diet (HF), control diet combined with folic acid (FA) and high-fat diet combined with folic acid (HF + FA). RESULTS We discovered that folic acid supplementation inhibited high-fat diet-induced elevations in body weight, visceral fat weight, liver weight, hepatic lipid levels and serum lipid levels at 1 week post-weaning (PW). Western blot analysis showed that folic acid supplementation inhibited the expression of endoplasmic reticulum (ER) stress-specific proteins including GRP78, PERK, eIF2α, IRE1α, XBP1 and ATF6, subsequently decreasing the expression of proteins related to lipid synthesis including SREBP-1c, ACC1 and FAS. CONCLUSIONS In conclusion, folic acid supplementation prior to and throughout pregnancy exerts preventive effects on high-fat diet-induced PPWR in rats, and the mechanism is associated with the inhibition of ER stress-mediated lipogenesis signaling pathways in the liver. Folic acid supplementation may serve as a potential strategy for preventing PPWR. In the future, the effectiveness of folic acid in PPWR prevention can be further verified by population studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (H.Z.); (L.Z.); (X.Z.); (Y.M.); (D.S.); (Y.B.); (W.L.); (X.L.)
| |
Collapse
|
5
|
Cetin AK, Buyukdere Y, Gulec A, Akyol A. Taurine supplementation reduces adiposity and hepatic lipid metabolic activity in adult offspring following maternal cafeteria diet. Nutr Res 2023; 117:15-29. [PMID: 37423013 DOI: 10.1016/j.nutres.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Maternal taurine supplementation has been shown to exert protective effects following a maternal obesogenic diet on offspring growth and metabolism. However, the long-term effects of maternal cafeteria diet on adiposity, metabolic profile, and hepatic gene expression patterns following supplementation of taurine in adult offspring remains unclear. In this study, we hypothesized that exposure to maternal taurine supplementation would modulate the effects of maternal cafeteria diet by reducing adiposity and hepatic gene expression patterns involved in lipid metabolism in adult offspring. Female Wistar rats were fed a control diet, control diet supplemented with 1.5% taurine in drinking water, cafeteria diet (CAF) or CAF supplemented with taurine (CAFT) from weaning. After 8 weeks, all animals were mated and maintained on the same diets during pregnancy and lactation. After weaning, all offspring were fed with control chow diet until the age of 20 weeks. Despite similar body weights, CAFT offspring had significantly lower fat deposition and body fat when compared with CAF offspring. Microarray analysis revealed that genes (Akr1c3, Cyp7a1, Hsd17b6, Cd36, Acsm3, and Aldh1b1) related to steroid hormone biosynthesis, cholesterol metabolism, peroxisome proliferator-activated receptor signaling pathway, butanoate metabolism, and fatty acid degradation were down-regulated in CAFT offspring. The current study shows that exposure to maternal cafeteria diet promoted adiposity and taurine supplementation reduced lipid deposition and in both male and female offspring and led to alterations in hepatic gene expression patterns, reducing the detrimental effects of maternal cafeteria diet.
Collapse
Affiliation(s)
- Arzu Kabasakal Cetin
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Yucel Buyukdere
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Atila Gulec
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey
| | - Asli Akyol
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, 06100 Sihhiye, Ankara, Turkey.
| |
Collapse
|
6
|
Saavedra-Peña RDM, Taylor N, Flannery C, Rodeheffer MS. Estradiol cycling drives female obesogenic adipocyte hyperplasia. Cell Rep 2023; 42:112390. [PMID: 37053070 PMCID: PMC10567995 DOI: 10.1016/j.celrep.2023.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/21/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
White adipose tissue (WAT) distribution is sex dependent. Adipocyte hyperplasia contributes to WAT distribution in mice driven by cues in the tissue microenvironment, with females displaying hyperplasia in subcutaneous and visceral WAT, while males and ovariectomized females have visceral WAT (VWAT)-specific hyperplasia. However, the mechanism underlying sex-specific hyperplasia remains elusive. Here, transcriptome analysis in female mice shows that high-fat diet (HFD) induces estrogen signaling in adipocyte precursor cells (APCs). Analysis of APCs throughout the estrous cycle demonstrates increased proliferation only when proestrus (high estrogen) coincides with the onset of HFD feeding. We further show that estrogen receptor α (ERα) is required for this proliferation and that estradiol treatment at the onset of HFD feeding is sufficient to drive it. This estrous influence on APC proliferation leads to increased obesity driven by adipocyte hyperplasia. These data indicate that estrogen drives ERα-dependent obesogenic adipocyte hyperplasia in females, exacerbating obesity and contributing to the differential fat distribution between the sexes.
Collapse
Affiliation(s)
- Rocío Del M Saavedra-Peña
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Natalia Taylor
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Clare Flannery
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT 06520, USA; Section of Endocrinology and Metabolism, Yale University, New Haven, CT 06520, USA
| | - Matthew S Rodeheffer
- Department of Comparative Medicine, Yale University, New Haven, CT 06520, USA; Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA; Yale Center for Molecular and Systems Metabolism, Yale University, New Haven, CT 06520, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Kladnicka I, Bludovska M, Plavinova I, Muller L, Mullerova D. Obesogens in Foods. Biomolecules 2022; 12:biom12050680. [PMID: 35625608 PMCID: PMC9138445 DOI: 10.3390/biom12050680] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/07/2023] Open
Abstract
Obesogens, as environmental endocrine-disrupting chemicals, are supposed to have had an impact on the prevalence of rising obesity around the world over the last forty years. These chemicals are probably able to contribute not only to the development of obesity and metabolic disturbances in individuals, but also in their progeny, having the capability to epigenetically reprogram genetically inherited set-up points for body weight and body composition control during critical periods of development, such as fetal, early life, and puberty. In individuals, they may act on myriads of neuro-endocrine–immune metabolic regulatory pathways, leading to pathophysiological consequences in adipogenesis, lipogenesis, lipolysis, immunity, the influencing of central appetite and energy expenditure regulations, changes in gut microbiota–intestine functioning, and many other processes. Evidence-based medical data have recently brought much more convincing data about associations of particular chemicals and the probability of the raised risk of developing obesity. Foods are the main source of obesogens. Some obesogens occur naturally in food, but most are environmental chemicals, entering food as a foreign substance, whether in the form of contaminants or additives, and they are used in a large amount in highly processed food. This review article contributes to a better overview of obesogens, their occurrence in foods, and their impact on the human organism.
Collapse
Affiliation(s)
- Iva Kladnicka
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
- Correspondence: ; Tel.: +420-377-593-193
| | - Monika Bludovska
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Institute of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic
| | - Iveta Plavinova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
| | - Ludek Muller
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| | - Dana Mullerova
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, 301 00 Pilsen, Czech Republic; (M.B.); (I.P.); (D.M.)
- Department of Cybernetics, European Centre of Excellence New Technologies for the Information Society, University of West Bohemia, 301 00 Pilsen, Czech Republic;
| |
Collapse
|
8
|
Leuthardt AS, Bayer J, Monné Rodríguez JM, Boyle CN. Influence of High Energy Diet and Polygenic Predisposition for Obesity on Postpartum Health in Rat Dams. Front Physiol 2022; 12:772707. [PMID: 35222059 PMCID: PMC8867007 DOI: 10.3389/fphys.2021.772707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
It is estimated that 30% of pregnant women worldwide are overweight or obese, leading to adverse health effects for both mother and child. Women with obesity during pregnancy are at higher risk for developing both metabolic and mental disorders, such as diabetes and depression. Numerous studies have used rodent models of maternal obesity to understand its consequences on the offspring, yet characterization of changes in the dams is rare, and most rodent models rely solely on a high fat diet to induce maternal obesity, without regarding genetic propensity for obesity. Here we present the influence of both peripartum high energy diet (HE) and obesity-proneness on maternal health using selectively bred diet-resistant (DR) and diet-induced obese (DIO) rat dams. Outbred Sprague-Dawley rats were challenged with HE diet prior to mating and bred according to their propensity to gain weight. The original outbred breeding dams (F0) were maintained on low-fat chow during pregnancy and lactation. By comparison, the F1 dams consuming HE diet during pregnancy and lactation displayed higher gestational body weight gain (P < 0.01), and HE diet caused increased meal size and reduced meal frequency (P < 0.001). Sensitivity to the hormone amylin was preserved during pregnancy, regardless of diet. After several rounds of selective breeding, DIO and DR dams from generation F3 were provided chow or HE during pregnancy and lactation and assessed for their postpartum physiology and behaviors. We observed strong diet and phenotype effects on gestational weight gain, with DIO-HE dams gaining 119% more weight than DR-chow (P < 0.001). A high-resolution analysis of maternal behaviors did not detect main effects of diet or phenotype, but a subset of DIO dams showed delayed nursing behavior (P < 0.05). In generation F6/F7 dams, effects on gestational weight gain persisted (P < 0.01), and we observed a main effect of phenotype during a sucrose preference test (P < 0.05), with DIO-chow dams showing lower sucrose preference than DR controls (P < 0.05). Both DIO and DR dams consuming HE diet had hepatic steatosis (P < 0.001) and exhibited reduced leptin sensitivity in the arcuate nucleus (P < 0.001). These data demonstrate that both diet and genetic obesity-proneness have consequences on maternal health.
Collapse
Affiliation(s)
- Andrea S. Leuthardt
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Julia Bayer
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Josep M. Monné Rodríguez
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christina N. Boyle
- Institute of Veterinary Physiology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- *Correspondence: Christina N. Boyle,
| |
Collapse
|
9
|
OUP accepted manuscript. Nutr Rev 2022; 80:2178-2197. [DOI: 10.1093/nutrit/nuac025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Qiao L, Saget S, Lu C, Hay WW, Karsenty G, Shao J. Adiponectin Promotes Maternal β-Cell Expansion Through Placental Lactogen Expression. Diabetes 2021; 70:132-142. [PMID: 33087456 PMCID: PMC7881845 DOI: 10.2337/db20-0471] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022]
Abstract
Hypoadiponectinemia is a risk factor of gestational diabetes mellitus (GDM). Our previous study reported that adiponectin gene knockout mice (Adipoq -/- ) develop GDM due to insulin insufficiency. The main objective of this study was to elucidate the underlying mechanism through which adiponectin controls islet expansion during pregnancy. A significant reduction in β-cell proliferation rates, β-cell areas, and blood insulin concentrations was detected in Adipoq -/- mice at midpregnancy. Surprisingly, conditionally knocking down adiponectin receptor 1 (AdipoR1) or AdipoR2 genes in β-cells during pregnancy did not reduce β-cell proliferation rates or blood insulin concentrations. In vitro adiponectin treatment also failed to show any effect on β-cell proliferation of isolated pancreatic islets. It was reported that placental lactogen (PL) plays a crucial role in pregnancy-induced maternal β-cell proliferation. A significant decrease in phosphorylation of signal transducer and activator of transcription 5, a downstream molecule of PL signaling, was observed in islets from Adipoq -/- dams. The mRNA levels of mouse PL genes were robustly decreased in the placentas of Adipoq -/- dams. In contrast, adiponectin treatment increased PL expression in human placenta explants and JEG3 trophoblast cells. Most importantly, bovine PL injection restored β-cell proliferation and blood insulin concentrations in Adipoq -/- dams. Together, these results demonstrate that adiponectin plays a vital role in pregnancy-induced β-cell proliferation by promoting PL expression in trophoblast cells.
Collapse
Affiliation(s)
- Liping Qiao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Sarah Saget
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - Cindy Lu
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| | - William W Hay
- Department of Pediatrics, University of Colorado, Denver, CO
| | - Gerard Karsenty
- Department of Genetics and Development, Department of Medicine, Columbia University, New York, NY
| | - Jianhua Shao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA
| |
Collapse
|
11
|
Hu C, Jin P, Yang Y, Yang L, Zhang Z, Zhang L, Yin Y, Tan C. Effects of different maternal feeding strategies from day 1 to day 85 of gestation on glucose tolerance and muscle development in both low and normal birth weight piglets. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:5403-5411. [PMID: 32542826 DOI: 10.1002/jsfa.10591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/03/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Maternal nutrition during gestation plays a vital role in fetal development. The effects of different maternal feeding strategies from day 1 to day 85 of gestation on glucose tolerance and muscle development in low and normal birth weight offspring were investigated by using 80 gilts randomly allotted to T1 and T2 groups and treated respectively with a gradual-increase (T1) and a convex transition (T2) feeding strategy, with no difference in total feed intake. RESULTS T2 group was seen to have a higher percentage of piglets with birth weight less than 500 g, while T1 group was shown to have a higher percentage of piglets with birth weight over 700 g. Meanwhile, for both low and normal birth weight piglets, T1 group was higher than T2 group in terms of muscle free amino acid concentration, mRNA expression levels of muscle growth-related factors, relative muscle fiber number and cross-sectional area. We must emphasize that the T2 group was shown to improve glucose tolerance, slow-twitch muscle fiber protein levels, and muscle mitochondrial function only in low birth weight piglets. CONCLUSION The convex transition feeding strategy can decrease the percentage of piglets with birth weight over 700 g, while improving glucose tolerance, slow-twitch muscle fiber protein levels, and muscle mitochondrial function in low birth weight piglets. Our findings provide new evidence for the potential importance of nutritional strategies during gestation, especially for improving the glucose tolerance and muscle development of low birth weight neonatal. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chengjun Hu
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ping Jin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yunyu Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linfang Yang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, China
| | - Ziwei Zhang
- Guangdong Yihao Foodstuffs Co. Ltd, Guangzhou, China
| | - Lin Zhang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Chengquan Tan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Rojas-Rodriguez R, Ziegler R, DeSouza T, Majid S, Madore AS, Amir N, Pace VA, Nachreiner D, Alfego D, Mathew J, Leung K, Moore Simas TA, Corvera S. PAPPA-mediated adipose tissue remodeling mitigates insulin resistance and protects against gestational diabetes in mice and humans. Sci Transl Med 2020; 12:eaay4145. [PMID: 33239385 PMCID: PMC8375243 DOI: 10.1126/scitranslmed.aay4145] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 04/25/2020] [Accepted: 10/21/2020] [Indexed: 12/11/2022]
Abstract
Pregnancy is a physiological state of continuous adaptation to changing maternal and fetal nutritional needs, including a reduction of maternal insulin sensitivity allowing for appropriately enhanced glucose availability to the fetus. However, excessive insulin resistance in conjunction with insufficient insulin secretion results in gestational diabetes mellitus (GDM), greatly increasing the risk for pregnancy complications and predisposing both mothers and offspring to future metabolic disease. Here, we report a signaling pathway connecting pregnancy-associated plasma protein A (PAPPA) with adipose tissue expansion in pregnancy. Adipose tissue plays a central role in the regulation of insulin sensitivity, and we show that, in both mice and humans, pregnancy caused remodeling of adipose tissue evidenced by altered adipocyte size, vascularization, and in vitro expansion capacity. PAPPA is known to be a metalloprotease secreted by human placenta that modulates insulin-like growth factor (IGF) bioavailability through prolteolysis of IGF binding proteins (IGFBPs) 2, 4, and 5. We demonstrate that recombinant PAPPA can stimulate ex vivo human adipose tissue expansion in an IGFBP-5- and IGF-1-dependent manner. Moreover, mice lacking PAPPA displayed impaired adipose tissue remodeling, pregnancy-induced insulin resistance, and hepatic steatosis, recapitulating multiple aspects of human GDM. In a cohort of 6361 pregnant women, concentrations of circulating PAPPA are inversely correlated with glycemia and odds of developing GDM. These data identify PAPPA and the IGF signaling pathway as necessary for the regulation of maternal adipose tissue physiology and systemic glucose homeostasis, with consequences for long-term metabolic risk and potential for therapeutic use.
Collapse
Affiliation(s)
- Raziel Rojas-Rodriguez
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Graduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Rachel Ziegler
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tiffany DeSouza
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Sana Majid
- Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Aylin S Madore
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Nili Amir
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Veronica A Pace
- Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel Nachreiner
- Clinical Translational Research Pathway, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - David Alfego
- Division of Data Sciences and Technology, IT, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jomol Mathew
- Division of Data Sciences and Technology, IT, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Department of Population and Quantitative Health Sciences, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Katherine Leung
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Tiffany A Moore Simas
- Departments of Obstetrics and Gynecology, University of Massachusetts Medical School and UMass Memorial Healthcare, Worcester, MA 01605, USA
| | - Silvia Corvera
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
13
|
Pannia E, Yang NV, Ho M, Chatterjee D, Hammoud R, Kubant R, Anderson GH. Folic acid content of diet during pregnancy determines post-birth re-set of metabolism in Wistar rat dams. J Nutr Biochem 2020; 83:108414. [PMID: 32544644 DOI: 10.1016/j.jnutbio.2020.108414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Maternal metabolism begins to return to homeostasis (re-set) following birth and is accelerated by lactation. Delay in metabolic re-set may contribute to postpartum weight retention and later-life metabolic consequences. Folic acid (FA) is essential during pregnancy but inadequate intakes may alter 1-carbon metabolism, consequently affecting energy homeostatic systems. Our objectives were to examine the effects of FA content 1)below and 2)above requirements during pregnancy on the re-set of body weight, markers of hepatic 1-carbon metabolism and central and peripheral energy metabolic pathways in Wistar rat mothers early post-weaning (PW) compared to pregnant controls. Pregnant Wistar rats were fed an AIN-93G diet with FA at 0X, 1X (control, 2 mg FA/kg) or a range above requirements at 2.5X, 5X or 10X recommended levels then the control diet during lactation up to 1 week PW. Dams fed below (0X) or above (5X and 10X) FA requirements had delayed weight-loss from weaning up to 1 week PW, higher plasma insulin and HOMA-IR and changes in glucose and lipid metabolism-regulating genes in muscle, but not liver or adipose tissue compared to controls. Expression of folate-related genes in liver were lower in high FA fed dams. Central food intake neurons were not affected by FA diets. In conclusion, intakes of FA below (0X) or above (5X, 10X) requirements during pregnancy delayed weight-loss, dysregulated 1-carbon pathways in the liver and peripheral energy metabolic pathways in the Wistar rat mother up to 4 weeks after dietary exposure; potentially programming long-term negative metabolic effects and that of her future offspring.
Collapse
Affiliation(s)
- Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil V Yang
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mandy Ho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Diptendu Chatterjee
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rola Hammoud
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Kladnická I, Čedíková M, Kripnerová M, Dvořáková J, Kohoutová M, Tůma Z, Müllerová D, Kuncová J. Mitochondrial respiration of adipocytes differentiating from human mesenchymal stem cells derived from adipose tissue. Physiol Res 2020; 68:S287-S296. [PMID: 31928046 DOI: 10.33549/physiolres.934353] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Burden of obesity is increasing in the contemporary world. Although multifactorial in origin, appropriate mitochondrial function of adipocytes emerges as a factor essential for healthy adipocyte differentiation and adipose tissue function. Our study aimed to evaluate mitochondrial functions of human adipose-derived mesenchymal stem cells committed to adipogenesis. On days 0, 4, 10, and 21 of adipogenesis, we have characterized adipocyte proliferation and viability, quantified lipid accumulation in maturing cells, performed qualitative and quantitative analysis of mitochondria, determined mitochondrial respiration of cells using high-resolution respirometry, and evaluated mitochondrial membrane potential. In the course of adipogenesis, mitochondrial oxygen consumption progressively increased in states ROUTINE and E (capacity of the electron transfer system). State LEAK remained constant during first days of adipogenesis and then increased probably reflecting uncoupling ability of maturing adipocytes. Citrate synthase activity and volume of mitochondrial networks increased during differentiation, particularly between days 10 and 21. In addition, lipid accumulation remained low until day 10 and then significantly increased. In conclusion, during first days of adipogenesis, increased mitochondrial respiration is needed for transition of differentiating cells from glycolytic to oxidative metabolism and clonal expansion of preadipocytes and then more energy is needed to acquire typical metabolic phenotype of mature adipocyte.
Collapse
Affiliation(s)
- I Kladnická
- Department of Public Health and Preventive Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic. Institute of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Wang H, Chen Y, Mao X, Du M. Maternal obesity impairs fetal mitochondriogenesis and brown adipose tissue development partially via upregulation of miR-204-5p. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2706-2715. [PMID: 31351130 DOI: 10.1016/j.bbadis.2019.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/06/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022]
Abstract
Maternal obesity (MO) predisposes offspring to metabolic disorders, but the mechanisms remain poorly defined. Recent studies emphasize the importance of brown adipose tissue (BAT) in maintaining metabolic health, and MO was recently demonstrated to impair BAT thermogenic function in offspring. The current study aimed to investigate the mechanisms leading to the impairment in fetal BAT development due to MO. Female C57BL/6J mice were fed a control diet or a 60% high-fat diet for 10 weeks, mated and maintained on their respective diets during pregnancy. Fetal tissue was collected at E18.5, the late stage of pregnancy. Fetal BAT contained more triglycerides compared to the control, which was correlated with higher expression of white adipogenic markers. On the other hand, the expression of BAT markers was down-regulated in the MO fetal BAT. Based on RNA-sequencing analyses, genes related to mitochondriogenesis and myogenesis were found to be down-regulated, while those related to white adipocyte differentiation were up-regulated in MO fetal BAT. Because brown adipocytes are derived from myogenic progenitors, the down-regulation of myogenic genes might partially explain hampered brown adipogenesis in MO fetal BAT. Consistently, mitochondrial DNA and mitochondrial biogenesis markers were also down-regulated in MO fetal BAT. MicroRNA-sequencing identified that miR-204-5p expression was elevated in MO fetal BAT. This microRNA targeted the 3'-untranslated regions of PGC1α and Sirt1 mRNA to suppress their expression and impair mitochondriogenesis. In summary, MO impaired fetal BAT development through suppressing myogenesis and brown adipogenesis while enhancing white adipogenic commitment, and inhibited mitochondriogenesis partially through enhancing miR-204-5p expression.
Collapse
Affiliation(s)
- Hanning Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanting Chen
- Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Xueying Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Min Du
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100194, China; Laboratory of Nutrigenomics and Growth Biology, Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|