1
|
Beck IH, Grøntved A, Palm CVB, Batzella E, Sigvaldsen A, Dalgård C, Jensen RC, Nielsen C, Halldorsson TI, Jensen TK. Prenatal PFAS exposure associates with DXA assessed markers of adiposity in 7-year-old children from the Odense Child Cohort. ENVIRONMENTAL RESEARCH 2025; 275:121394. [PMID: 40086573 DOI: 10.1016/j.envres.2025.121394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
The global increase in childhood overweight and obesity presents significant public health concerns due to its long-term health implications. Emerging evidence suggests that exposure to endocrine disrupting chemicals, such as per- and polyfluoroalkylated substances (PFAS), may be obesogenic and contribute to adiposity. This study aimed to investigate the association between prenatal PFAS exposure and markers of adiposity in 7-year-old children, focusing on potential sex-specific differences. Data was analyzed from 881 mother-child pairs in the Odense Child Cohort, Denmark. Maternal serum concentrations of perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorodecanoic acid (PFDA) were measured in early pregnancy. At age 7, body composition, including body mass index (BMI), lean mass and fat distribution (total, gynoid, and android), was assessed using dual-energy X-ray absorptiometry (DXA). The median (25th;75th percentile) concentrations of PFHxS, PFOS, PFOA, PFNA, and PFDA were 0.4 (0.2;0.5), 7.6 (5.6;10.4), 1.7 (1.1;2.3), 0.6 (0.5;0.8), and 0.3 (0.2;0.4) ng/mL, respectively. Multiple linear regressions were used to assess sex specific associations between maternal PFAS concentrations and markers of adiposity. In girls, 1 ng/mL increase in maternal PFOA was associated with 2.0 % (95 % confidence interval: 0.3; 3.7) increase in total fat, 1.3 % (-0.3; 2.9) increase in gynoid fat, and 3.8 % (0.6; 7.0) increase in android fat. Associations for PFNA and PFDA followed similar trends, whereas higher maternal PFOS concentrations were associated with lower BMI among both girls and boys. These findings suggest that prenatal exposure to certain PFAS may influence the accumulation of excess fat in girls. Our findings highlight the importance of studying sex specific differences and using accurate measures of body composition as BMI may not adequately reflect body fat in children during growth.
Collapse
Affiliation(s)
- Iben Have Beck
- Department Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, Odense C, 5000, Denmark.
| | - Anders Grøntved
- Department of Sports Science and Clinical Biomechanics, Research Unit for Exercise Epidemiology, Centre of Research in Childhood Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Camilla V B Palm
- Department of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, Odense C, 5000, Denmark
| | - Erich Batzella
- Department Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Annika Sigvaldsen
- Department Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, Odense C, 5000, Denmark
| | - Christine Dalgård
- Department Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark
| | - Richard Christian Jensen
- Department Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark; Department of Endocrinology and Metabolism, Odense University Hospital, Kløvervænget 6, Odense C, 5000, Denmark
| | - Christel Nielsen
- Department Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark; Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Scheelevägen 8, 223 81, Lund, Sweden
| | - Thorhallur I Halldorsson
- Center for Fetal Programming, Department of Epidemiology Research, Statens Serum Institut, Artillerivej 5, DK-2300, København S., Denmark; Faculty of Food Science and Nutrition, School of Health Sciences, University of Iceland, Sæmundargata 12, 102, Reykjavík, Iceland
| | - Tina Kold Jensen
- Department Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark; Hans Christian Andersen Children's Hospital, Odense University Hospital, Kløvervænget 23C, Odense C, 5000, Denmark; Open Patient Data Explorative Network, Odense University Hospital, J. B. Winsløws Vej 21, 3. sal, DK-5000, Odense, Denmark
| |
Collapse
|
2
|
Shin MW, Kim SH. Hidden link between endocrine-disrupting chemicals and pediatric obesity. Clin Exp Pediatr 2025; 68:199-222. [PMID: 39608365 PMCID: PMC11884955 DOI: 10.3345/cep.2024.00556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
The increasing prevalence of pediatric obesity has emerged as a significant public health concern. Among various contributing factors, exposure to endocrine-disrupting chemicals (EDCs) has gained recognition for its potential role. EDCs, including bisphenols, phthalates, per- and polyfluoroalkyl substances, polycyclic aromatic hydrocarbons, and organochlorines, disrupt hormonal regulation and metabolic processes, contributing to alterations in fat storage, appetite regulation, and insulin sensitivity. This study offers a comprehensive review of the current research linking EDC exposure to pediatric obesity by integrating the findings from experimental and epidemiological studies. It also addresses the complexities of interpreting this evidence in the context of public health, highlighting the urgent need for further research.
Collapse
Affiliation(s)
- Min Won Shin
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| | - Shin-Hye Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, Korea
| |
Collapse
|
3
|
Lejeune N, Rouxel E, Monfort C, Tillaut H, Rouget F, Costet N, Giton F, Gaudreau É, Lainé F, Garlantézec R, Cordier S, Chevrier C, Warembourg C. Associations between prenatal exposure to PFAS and cardiometabolic health in preadolescents. ENVIRONMENTAL RESEARCH 2025; 266:120607. [PMID: 39672492 DOI: 10.1016/j.envres.2024.120607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/21/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
INTRODUCTION While a number of studies have examined the effects of prenatal exposure to per- and polyfluoroalkyl substances (PFAS) on childhood obesity, the results reported have been inconsistent and few studies have integrated biological markers. The aim of this study was to investigate the associations between prenatal exposure to PFAS and cardiometabolic health parameters at age 12, taking pubertal stage into consideration. METHOD This study included 394 mother-child pairs enrolled in the PELAGIE mother-child cohort (France). Nine PFAS were measured in umbilical cord blood, and the children attended a clinical examination at age 12. Anthropometry, blood metabolic markers, and blood pressure were measured and used to build an internal cardiometabolic score. Linear regression and Quantile G-computation models were used to evaluate individual and mixture PFAS effects, adjusting for confounders and stratifying by sex and pubertal stage. RESULTS No statistically significant association was observed between prenatal exposure to PFAS and cardiometabolic score at age 12. In post-menarche girls, perfluorohexane sulfonate (PFHxS) and perfluorodecanoic acid (PFDA) were statistically significantly associated with a decrease in a number of adiposity parameters (e.g., Body mass index z-score: beta [95%CI] = -0.37 [-0.67; -0.07]), as well as a decrease in low-density lipoproteins (LDL) and leptin levels. Similar results were observed with PFAS mixture, with statistically significantly decreased tricipital skinfolds (beta [95%CI] = -1.30 [(-2.54;-0.06)]). Isolated associations, including higher systolic blood pressure, changes in cholesterol levels, and lower adiponectin levels were observed in specific subgroups. CONCLUSION There is no clear evidence of an association between prenatal exposure to PFAS and the cardiometabolic health at earlier stage of pubertal development. However, inverse associations between PFAS and anthropometric measures have been observed in post-menarche girls. While the literature on this topic is scarce in pre-adolescents, these results suggest the importance of considering sex and pubertal stage in these associations.
Collapse
Affiliation(s)
- Naomi Lejeune
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Elke Rouxel
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Christine Monfort
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Hélène Tillaut
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Florence Rouget
- Université de Rennes, CHU Rennes, Inserm UMR S 1085, Irset, France
| | - Nathalie Costet
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Frank Giton
- AP-HP, Pôle Biologie-Pathologie Henri Mondor, Inserm, IMRB, 1 rue Gustave Eiffel, 94000, Créteil, France
| | - Éric Gaudreau
- Centre de Toxicologie du Québec (CTQ), Institut national de santé publique du Québec (INSPQ), 945 Av. Wolfe, G1V 5B3, Québec, QC, Canada
| | - Fabrice Lainé
- Centre d'Investigation Clinique CHU-Rennes (CIC 1414), CHU Rennes, Institut National de la Santé et de la Recherche Médicale, Inserm, 2 rue Henri Le Guilloux 35033, Rennes, France
| | | | - Sylvaine Cordier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Cécile Chevrier
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France
| | - Charline Warembourg
- Institut de recherche en santé, environnement et travail (Irset), Univ Rennes, Inserm, EHESP, 9 Av. Professeur Léon Bernard, Rennes, France.
| |
Collapse
|
4
|
Li Z, Wang G, Braun JM, Hong X, Choi G, O'Leary SP, Yu CH, Pearson C, Adams WG, Fan ZT, Buckley JP, Wang X. Associations of early life per- and polyfluoroalkyl substances (PFAS) exposure with body mass index and risk of overweight or obesity at age 2-18 years: Mixture analysis in the prospective Boston Birth Cohort. ENVIRONMENT INTERNATIONAL 2025; 195:109206. [PMID: 39705976 PMCID: PMC11786237 DOI: 10.1016/j.envint.2024.109206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/08/2024] [Accepted: 12/11/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are a class of widespread persistent chemicals, which may have obesogenic effects during the fetal period. This study investigated the long-term association of maternal plasma PFAS concentrations at delivery and their mixture with child body mass index (BMI) and the risk of Overweight or Obesity (OWO) at the age of 2-18 years. METHODS The study included 1189 mother-child dyads from the prospective Boston Birth Cohort. Eight PFAS were measured in maternal plasma samples collected 24-72 h after delivery. Outcomes were BMI Z-score and OWO status of children at 2-18 years. The exposure-outcome associations were evaluated with linear and modified Poisson mixed-effects regression for individual PFAS and Bayesian kernel machine regression and quantile-based g-computation models for PFAS mixture. We explored the effect modification by maternal pre-pregnancy OWO, child age, sex, and race. RESULTS Maternal plasma samples had PFAS detection frequencies from 87 % to 100 % and geometric means ranging from 0.11 to 3.67 ng/mL. PFHpS and PFHxS were associated with higher child BMI Z-score. Such associations were stronger in children aged 6-12 years and 13-18 years than in 2-5 years. Stratified by maternal pre-pregnancy OWO, significant associations of the PFAS mixture with child BMI Z-score were only found in children of non-OWO mothers. In children aged 13-18 years, children with both high maternal plasma PFDeA, PFNA, and PFOA concentrations and maternal OWO had the highest risks of OWO compared to children with either only. Such synergistic effects were not found in younger children. CONCLUSIONS Early life exposure to individual PFAS and their mixture were associated with a higher risk of childhood OWO, with stronger associations observed in older child age groups and in children of non-OWO mothers. Synergistic effects of PFAS exposures and maternal pre-pregnancy OWO became evident in adolescence.
Collapse
Affiliation(s)
- Zeyu Li
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shawn P O'Leary
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Chang Ho Yu
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - William G Adams
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Zhihua Tina Fan
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Arzu JL, Kelsey KT, Papandonatos GD, Cecil KM, Chen A, Langevin SM, Lanphear BP, Yolton K, Buckley JP, Braun JM. Associations of epigenetic age acceleration at birth and age 12 years with adolescent cardiometabolic risk: the HOME study. Clin Epigenetics 2024; 16:163. [PMID: 39563442 DOI: 10.1186/s13148-024-01779-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/10/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Cardiometabolic risk factors among youth are rising. Epigenetic age acceleration, a biomarker for aging and disease-risk, has been associated with adiposity in children, but its association with other cardiometabolic risk markers remains understudied. We employed data from the Health Outcomes and Measures of the Environment (HOME) study, a prospective pregnancy and birth cohort in the greater Cincinnati metropolitan area, to examine whether accelerated epigenetic age at birth as well as accelerated epigenetic age and faster pace of biological aging at age 12 years were associated with higher cardiometabolic risk in adolescents. RESULTS After adjusting for potential confounders, including estimated cell type proportions, epigenetic gestational age acceleration at birth, derived from the Bohlin, Knight, and Haftorn clocks using cord blood DNA methylation data, was not associated with cardiometabolic risk z-scores or individual cardiometabolic risk score components (visceral fat, leptin to adiponectin ratio, HOMA-IR, triglycerides to HDL-C ratio, HbA1c, or systolic blood pressure) at age 12 years. We also did not observe any associations of epigenetic age acceleration, calculated with Horvath's skin and blood, Hannum's, and Wu's epigenetic clocks using peripheral blood at age 12 years, with these same cardiometabolic risk markers. In contrast, faster pace of biological aging was associated with higher cardiometabolic risk [βs (95% CIs)] cardiometabolic risk score 0.25 (0.07, 0.42); visceral fat 0.21 (0.05, 0.38); and hemoglobin A1c 0.23 (0.05, 0.41) per standard deviation increase in pace of biological aging. Faster pace of biological aging was also positively associated with systolic blood pressure, triglycerides to HDL-C ratio, HOMA-IR, and leptin to adiponectin ratio, although these associations were not statistically significant. CONCLUSIONS Our findings provide evidence that faster pace of biological aging was associated with higher cardiometabolic risk score, visceral fat, and HbA1c at age 12 years. Further research is needed to determine whether these associations persist from adolescence through adulthood.
Collapse
Affiliation(s)
- Jennifer L Arzu
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI, 02903, USA.
| | - Karl T Kelsey
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI, 02903, USA
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - George D Papandonatos
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, USA
| | - Kim M Cecil
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Radiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Scott M Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessie P Buckley
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
| | - Joseph M Braun
- Department of Epidemiology, School of Public Health, Brown University, 121 South Main Street, Providence, RI, 02903, USA
| |
Collapse
|
6
|
Kuiper JR, Liu SH, Lanphear BP, Calafat AM, Cecil KM, Xu Y, Yolton K, Kalkwarf HJ, Chen A, Braun JM, Buckley JP. Estimating effects of longitudinal and cumulative exposure to PFAS mixtures on early adolescent body composition. Am J Epidemiol 2024; 193:917-925. [PMID: 38400650 PMCID: PMC11466853 DOI: 10.1093/aje/kwae014] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/07/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024] Open
Abstract
Few methods have been used to characterize repeatedly measured biomarkers of chemical mixtures. We applied latent profile analysis (LPA) to serum concentrations of 4 perfluoroalkyl and polyfluoroalkyl substances (PFAS) measured at 4 time points from gestation to age 12 years. We evaluated the relationships between profiles and z scores of height, body mass index, fat mass index, and lean body mass index at age 12 years (n = 218). We compared LPA findings with an alternative approach for cumulative PFAS mixtures using g-computation to estimate the effect of simultaneously increasing the area under the receiver operating characteristic curve (AUC) for all PFAS. We identified 2 profiles: a higher PFAS profile (35% of sample) and a lower PFAS profile (relative to each other), based on their average PFAS concentrations at all time points. The higher PFAS profile had generally lower z scores for all outcomes, with somewhat larger effects for males, though all 95% CIs crossed the null. For example, the higher PFAS profile was associated with a 0.50-unit lower (β = -0.50; 95% CI, -1.07 to 0.08) BMI z score among males but not among females (β = 0.04; 95% CI, -0.45 to 0.54). We observed similar patterns with AUCs. We found that a higher childhood PFAS profile and higher cumulative PFAS mixtures may be associated with altered growth in early adolescence. This article is part of a Special Collection on Environmental Epidemiology.
Collapse
Affiliation(s)
- Jordan R Kuiper
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC 20037, United States
| | - Shelley H Liu
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Kim M Cecil
- Department of Radiology, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Yingying Xu
- Department of Pediatrics, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Kimberly Yolton
- Department of Pediatrics, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
- Department of Environmental and Public Health Sciences, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Heidi J Kalkwarf
- Department of Pediatrics, College of Medicine, and Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Joseph M Braun
- Department of Epidemiology, School of Public Health, Brown University, Providence, RI 02903, United States
| | - Jessie P Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
7
|
Sears CG, Liu Y, Lanphear BP, Buckley JP, Meyer J, Xu Y, Chen A, Yolton K, Braun JM. Evaluating Mixtures of Urinary Phthalate Metabolites and Serum Per-/Polyfluoroalkyl Substances in Relation to Adolescent Hair Cortisol: The HOME Study. Am J Epidemiol 2024; 193:454-468. [PMID: 37846096 PMCID: PMC11484647 DOI: 10.1093/aje/kwad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
Results of toxicological studies indicate that phthalates and per-/polyfluoroalkyl substances (PFAS), 2 classes of endocrine-disrupting chemicals, may alter the functioning of the hypothalamic-pituitary-adrenocortical (HPA) axis. We evaluated the associations of urinary phthalate metabolites and serum PFAS during gestation and childhood with adolescent hair cortisol concentrations (pg/mg hair) at age 12 years, an integrative marker of HPA axis activity (n = 205 mother-child pairs; Cincinnati, Ohio; enrolled 2003-2006). We used quantile-based g-computation to estimate associations between mixtures of urinary phthalate metabolites or serum PFAS and hair cortisol. We also examined whether associations of individual phthalate metabolites or PFAS with cortisol varied by the timing of exposure. We found that a 1-quartile increase in all childhood phthalate metabolites was associated with 35% higher adolescent hair cortisol (phthalate mixture ψ = 0.13; 95% confidence interval: 0.03, 0.22); these associations were driven by monoethyl phthalate, monoisobutyl phthalate, and monobenzyl phthalate. We did not find evidence that phthalate metabolites during gestation or serum PFAS mixtures were related to adolescent hair cortisol concentrations. We found suggestive evidence that higher childhood concentrations of individual PFAS were related to higher and lower adolescent hair cortisol concentrations. Our results suggest that phthalate exposure during childhood may contribute to higher levels of chronic HPA axis activity.
Collapse
Affiliation(s)
- Clara G Sears
- Correspondence to Dr. Clara G. Sears, Christina Lee Brown Envirome Institute, University of Louisville, 302 E. Muhammad Ali Boulevard Louisville, KY 40202 (e-mail: )
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Starling AP, Friedman C, Boyle KE, Adgate JL, Glueck DH, Allshouse WB, Calafat AM, Bloemsma LD, Dabelea D. Prenatal exposure to per- and polyfluoroalkyl substances and early childhood adiposity and cardiometabolic health in the Healthy Start study. Int J Obes (Lond) 2024; 48:276-283. [PMID: 38042932 PMCID: PMC10872497 DOI: 10.1038/s41366-023-01420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
BACKGROUND/OBJECTIVES Observational and experimental studies have suggested that prenatal exposure to per- and polyfluoroalkyl substances (PFAS) can increase childhood adiposity and cardiometabolic disruption. However, most previous studies have used weight-based measures that cannot distinguish between fat mass and lean mass. We evaluated associations of prenatal PFAS exposure with precisely measured body composition and cardiometabolic biomarkers in early childhood. SUBJECTS 373 eligible mother-infant pairs in the Healthy Start longitudinal cohort. METHODS We used multiple linear regression and Bayesian kernel machine regression models to estimate associations between five PFAS in maternal mid-pregnancy serum, and early childhood adiposity via air displacement plethysmography. Secondary outcomes included body mass index, waist circumference, and fasting serum lipids, glucose, insulin and adipokines. Models were adjusted for potential confounders and effect modification by child sex was evaluated. RESULTS The median age of children at assessment was 4.6 years. Prenatal concentration of perfluorooctanoate (PFOA) was positively associated with percent fat mass (0.89% per log2-unit increase, 95% CI: 0.15, 1.64), while perfluorononanoate (PFNA) was positively associated with fat mass index and body mass index. Cardiometabolic markers in blood were generally not associated with prenatal PFAS in this population. Mixture models confirmed the importance of PFNA and PFOA in predicting percent fat mass, while PFNA was most important for fat mass index, body mass index, and waist circumference. There were no significant effects of the five PFAS as a mixture, potentially due to opposing effects of different PFAS. CONCLUSIONS Our results agree with previous studies showing that prenatal serum concentrations of certain PFAS are positively associated with early childhood adiposity. Notably, associations were stronger for measures incorporating precisely measured fat mass compared to measures of body size or weight. Early life increases in adiposity may precede the development of adverse cardiometabolic health outcomes in children exposed to PFAS during gestation.
Collapse
Affiliation(s)
- Anne P Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Chloe Friedman
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kristen E Boyle
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John L Adgate
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Deborah H Glueck
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - William B Allshouse
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lizan D Bloemsma
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Fleury ES, Kuiper JR, Buckley JP, Papandonatos GD, Cecil KM, Chen A, Eaton CB, Kalkwarf HJ, Lanphear BP, Yolton K, Braun JM. Evaluating the association between longitudinal exposure to a PFAS mixture and adolescent cardiometabolic risk in the HOME Study. Environ Epidemiol 2024; 8:e289. [PMID: 38343730 PMCID: PMC10852393 DOI: 10.1097/ee9.0000000000000289] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
Background Exposure to per- and polyfluoroalkyl substances (PFAS) throughout gestation and childhood may impact cardiometabolic risk. Methods In 179 HOME Study participants (Cincinnati, OH; recruited 2003-2006), we used latent profile analysis to identify two distinct patterns of PFAS exposure from serum concentrations of four PFAS measured at birth and ages 3, 8, and 12 years. We assessed the homeostatic model of insulin resistance, triglycerides-to-high-density lipoprotein cholesterol ratio, leptin-to-adiponectin ratio, systolic blood pressure, visceral fat, and hemoglobin A1c levels at age 12 years. We used multivariable linear regression to assess the association of membership in the longitudinal PFAS mixture exposure group with a summary measure of overall cardiometabolic risk and individual components. Results One PFAS exposure profile (n = 66, 39%) had higher geometric means of all PFAS across all visits than the other. Although adjusted associations were null in the full sample, child sex modified the association of longitudinal PFAS mixture exposure group with overall cardiometabolic risk, leptin-to-adiponectin ratio, systolic blood pressure, and visceral fat (interaction term P values: 0.02-0.08). Females in the higher exposure group had higher cardiometabolic risk scores (ß = 0.43; 95% CI = -0.08, 0.94), systolic blood pressures (ß = 0.6; 95% CI = 0.1, 1.1), and visceral fat (ß = 0.44; 95% CI = -0.13, 1.01); males had lower cardiometabolic risk scores (ß = -0.52; 95% CI = -1.06, -0.06), leptin-to-adiponectin ratios (ß = -0.7; 95% CI = -1.29, -0.1), systolic blood pressures (ß = -0.14; 95% CI = -0.7, 0.41), and visceral fat (ß = -0.52; 95% CI = -0.84, -0.19). Conclusions Exposure to this PFAS mixture throughout childhood may have sex-specific effects on adolescent cardiometabolic risk.
Collapse
Affiliation(s)
| | - Jordan R. Kuiper
- Department of Environmental and Occupational Health, The George Washington University Milken Institute School of Public Health, Washington, D.C
| | - Jessie P. Buckley
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC
| | | | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Charles B. Eaton
- Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, RI
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI
| |
Collapse
|
10
|
Zhang M, Rifas-Shiman SL, Aris IM, Fleisch AF, Lin PID, Nichols AR, Oken E, Hivert MF. Associations of Prenatal Per- and Polyfluoroalkyl Substance (PFAS) Exposures with Offspring Adiposity and Body Composition at 16-20 Years of Age: Project Viva. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127002. [PMID: 38054701 PMCID: PMC10699168 DOI: 10.1289/ehp12597] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 09/14/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Findings on the associations between prenatal PFAS exposures and offspring adiposity are inconsistent. Whether such associations may extend to adolescence is especially understudied. OBJECTIVES We investigated associations of prenatal PFAS exposures with offspring adiposity and body composition at 16-20 years of age. METHODS We studied 545 mother-child pairs in the prospective prebirth cohort Project Viva (Boston, Massachusetts). We measured six PFAS (PFOA, PFOS, PFNA, PFHxS, EtFOSAA, and MeFOSAA) in maternal early pregnancy (median age = 9.6 wk , range: 5.7-19.6 wk) plasma samples. At the late adolescence visit (median age = 17.4 y, range: 15.9-20.0 y), we obtained anthropometric measures and assessed body composition using bioelectrical impedance analysis and dual-energy X-ray absorptiometry. We examined associations of individual PFAS with obesity [i.e., age- and sex-specific body mass index (BMI) ≥ 95 th percentile] and adiposity and body composition using multivariable Poisson and linear regression models, respectively. We assessed PFAS mixture effects using Bayesian kernel machine regression (BKMR) and quantile g-computation. We used fractional-polynomial models to assess BMI trajectories (at 3-20 years of age) by prenatal PFAS levels. RESULTS Thirteen percent (n = 73 ) of the children had obesity in late adolescence. After multivariable adjustment, higher prenatal PFAS concentrations were associated with higher obesity risk [e.g., 1.59 (95% CI: 1.19, 2.12), 1.24 (95% CI: 0.98, 1.57), and 1.49 (95% CI: 1.11, 1.99) times the obesity risk per doubling of PFOS, PFOA, and PFNA, respectively]. BKMR showed an interaction between PFOA and PFOS, where the positive association between PFOS and obesity was stronger when PFOA levels were lower. Each quartile increment of the PFAS mixture was associated with 1.52 (95% CI: 1.03, 2.25) times the obesity risk and 0.52 (95% CI: - 0.02 , 1.06) kg / m 2 higher BMI. Children with higher prenatal PFOS, EtFOSAA, and MeFOSAA concentrations had higher rates of BMI increase starting from 9-11 years of age. DISCUSSION Prenatal PFAS exposures may have obesogenic effects into late adolescence. https://doi.org/10.1289/EHP12597.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Sheryl L. Rifas-Shiman
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Izzuddin M. Aris
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Abby F. Fleisch
- Center for Interdisciplinary Population Health Research, MaineHealth Institute for Research, Portland, Maine, USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center, Portland, Maine, USA
| | - Pi-I Debby Lin
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Amy R. Nichols
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Wang YF, Zhang XR, Zou YX. Serum perfluoroalkyl substances and growth and development in US adolescents: a nationally representative cross-sectional study. Eur J Pediatr 2023; 182:4673-4681. [PMID: 37561199 DOI: 10.1007/s00431-023-05136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), synthetic organic chemicals, have been discovered in the blood of both humans and animals throughout the world. This has raised widespread concerns about its toxicity, especially for growing children and adolescents. Most research on growth and development to date has concentrated on children at birth and during the first two years, while few studies have analyzed weight, height, and Body Mass Index (BMI) changes in children later in life. The present study aims to assess the association between serum PFAS levels and growth and development in adolescents. Through multiple linear regression, we explored the relationship between serum PFAS levels and weight, height, and BMI in adolescents (aged 12 to 19 years) participating in the 2015-2018 National Health and Nutrition Examination Survey (NHANES). After covariate adjustment, serum perfluorooctane sulfonic acid (PFOS) was associated with decreased weight-for-age z-score in females (tertile 2 of PFOS: β = - 0.22, 95% CI: -0.68, 0.23; tertile 3 of PFOS: β = - 0.78, 95% CI: -1.20, - 0.36; P for trend = 0.009), while serum perfluorononanoic acid (PFNA) was associated with decreased weight-for-age z-score in males (tertile 2 of PFNA: β = 0.09, 95% CI: -0.40, 0.58; tertile 3 of PFNA: β = - 0.44, 95% CI: -0.86, - 0.03; P for trend = 0.018).In addition, serum PFOS was associated with decreased BMI z-score in all participants (tertile 2 of PFOS: β = - 0.15, 95% CI: -0.46, 0.16; tertile 3 of PFOS: β = - 0.63, 95% CI: -1.06, - 0.20; P for trend = 0.013). CONCLUSION Our findings indicate a negative association between serum PFAS levels and weight, and BMI among adolescents, and we observed that the negative association was sex-specific in weight. WHAT IS KNOWN • Wide exposure to PFAS has led to concerns about its adverse effects, especially for children during their growth and development. • So far, much research has evaluated the effects of prenatal PFAS exposures on children, and the current results are mixed, with some research showing that there are sex differences. WHAT IS NEW • This study investigated the relationship between serum PFAS levels and height and weight in adolescents and is a good addition to current research. • Our study found that exposure to PFAS negatively affects adolescent growth and development and that this effect is sex-specific.
Collapse
Affiliation(s)
- Yi-Fan Wang
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Xu-Ran Zhang
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China
| | - Ying-Xue Zou
- Department of Pulmonology, Tianjin Children's Hospital (Children's Hospital of Tianjin University), Machang Compus, 225 Machang Road, Hexi District, Tianjin, 300074, China.
| |
Collapse
|
12
|
Dai Y, Zhang J, Wang Z, Ding J, Xu S, Zhang B, Guo J, Qi X, Chang X, Wu C, Zhou Z. Per- and polyfluoroalkyl substances in umbilical cord serum and body mass index trajectories from birth to age 10 years: Findings from a longitudinal birth cohort (SMBCS). ENVIRONMENT INTERNATIONAL 2023; 180:108238. [PMID: 37783122 DOI: 10.1016/j.envint.2023.108238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
BACKGROUND Prenatal exposure to per- and polyfluoroalkyl substances (PFAS) has been linked to low birth weight but higher childhood weight and obesity. However, little is known regarding the associations between PFAS exposure and dynamic body mass index (BMI) trajectories, particularly from birth through preadolescence. OBJECTIVE To evaluate the associations of cord serum PFAS concentrations with BMI trajectories from birth to age 10 years and longitudinal BMI in different periods. METHODS Based on 887 mother-child pairs in the longitudinal prospective birth cohort, we measured 12 PFAS congeners in cord serum and calculated BMI with anthropometric indicators at 9 follow-up time points from birth to age 10 years. The BMI trajectories were identified using group-based trajectory model (GBTM). To estimate the associations of cord serum PFAS levels with BMI trajectories and longitudinal changes in BMI, logistic regression models, linear mixed models, Bayesian kernel machine regression, and quantile-based g-computation models (QGC) were used. RESULTS The median concentrations of 10 PFAS congeners included in statistical analysis ranged from 0.047 to 3.623 μg/L. Two BMI trajectory classes were identified by GBTM, characterized by high group and low group. In logistic regression models, five PFAS congeners (PFBA, PFHpA, PFHxS, PFHpS, and PFDoDA) were associated with the higher probability of being in high BMI trajectory group (odds ratio, OR: 1.21 to 1.74, p < 0.05). Meanwhile, higher PFAS mixture were related to elevated odds for the high group in both BKMR models and QGC models, with PFHpA and PFHpS being the two most important drivers jointly. In the sex-stratified analysis, the positive associations remained significant exclusively among males. In the longitudinal analysis, PFUnDA and PFDoDA were associated with increased BMI from birth to age 10 years. Furthermore, PFBS and PFHpA were negatively related to BMI throughout infancy and toddlerhood (from birth to age 3 years), whereas PFDoDA confirmed a positive association with mid-childhood (from age 6 to 10 years) BMI. CONCLUSIONS Prenatal PFAS exposure was positively associated with BMI trajectories from birth to preadolescence and longitudinal BMI in various periods. Future research could use better trajectory modeling strategies to shape more complete growth trajectories and explore the relationship between BMI trajectories and adulthood health.
Collapse
Affiliation(s)
- Yiming Dai
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiming Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| | - Zheng Wang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jiayun Ding
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Sinan Xu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Boya Zhang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Jianqiu Guo
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China; Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Xiuli Chang
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China
| | - Zhijun Zhou
- Key Laboratory of Public Health Safety of Ministry of Education, Key Laboratory of Health Technology Assessment of National Health Commission, School of Public Health, Fudan University, No.130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
13
|
Kinkade CW, Rivera-Núñez Z, Thurston SW, Kannan K, Miller RK, Brunner J, Wong E, Groth S, O'Connor TG, Barrett ES. Per- and polyfluoroalkyl substances, gestational weight gain, postpartum weight retention and body composition in the UPSIDE cohort. Environ Health 2023; 22:61. [PMID: 37658449 PMCID: PMC10474772 DOI: 10.1186/s12940-023-01009-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals found in drinking water and consumer products, resulting in ubiquitous human exposure. PFAS have been linked to endocrine disruption and altered weight gain across the lifespan. A limited and inconsistent body of research suggests PFAS may impact gestational weight gain (GWG) and postpartum body mass index (BMI), which are important predictors of overall infant and maternal health, respectively. METHODS In the Understanding Pregnancy Signals and Infant Development (UPSIDE/UPSIDE-MOMs) study (n = 243; Rochester, NY), we examined second trimester serum PFAS (PFOS: perfluorooctanesulfonic acid, PFOA: perfluorooctanoic acid, PFNA: perfluorononanoic acid, PFHxS: perfluorohexanesulfonic acid, PFDA: perfluorodecanoic acid) in relation to GWG (kg, and weekly rate of gain) and in the postpartum, weight retention (PPWR (kg) and total body fat percentage (measured by bioelectrical impedance)). We fit multivariable linear regression models examining these outcomes in relation to log-transformed PFAS in the whole cohort as well as stratified by maternal pre-pregnancy BMI (< 25 vs. = > 25 kg/m2), adjusting for demographics and lifestyle factors. We used weighted quantile sum regression to find the combined influence of the 5 PFAS on GWG, PPWR, and body fat percentage. RESULTS PFOA and PFHxS were inversely associated with total GWG (PFOA: ß = -1.54 kg, 95%CI: -2.79, -0.30; rate ß = -0.05 kg/week, 95%CI: -0.09, -0.01; PFHxS: ß = -1.59 kg, 95%CI: -3.39, 0.21; rate ß = -0.05 kg/week, 95%CI: -0.11, 0.01) and PPWR at 6 and 12 months (PFOA 6 months: ß = -2.39 kg, 95%CI: -4.17, -0.61; 12 months: ß = -4.02 kg, 95%CI: -6.58, -1.46; PFHxS 6 months: ß = -2.94 kg, 95%CI: -5.52, -0.35; 12 months: ß = -5.13 kg, 95%CI: -8.34, -1.93). PFOA was additionally associated with lower body fat percentage at 6 and 12 months (ß = -1.75, 95%CI: -3.17, -0.32; ß = -1.64, 95%CI: -3.43, 0.16, respectively) with stronger associations observed in participants with higher pre-pregnancy BMI. The PFAS mixture was inversely associated with weight retention at 12 months (ß = -2.030, 95%CI: -3.486, -0.573) amongst all participants. CONCLUSION PFAS, in particular PFOA and PFHxS, in pregnancy are associated with altered patterns of GWG and postpartum adiposity with potential implications for fetal development and long-term maternal cardiometabolic health.
Collapse
Affiliation(s)
- Carolyn W Kinkade
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
| | - Zorimar Rivera-Núñez
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Kurunthachalam Kannan
- Department of Environmental Medicine, Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA
| | - Richard K Miller
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jessica Brunner
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Eunyoung Wong
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Susan Groth
- School of Nursing, University of Rochester, Rochester, NY, USA
| | - Thomas G O'Connor
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Psychiatry, University of Rochester, Rochester, NY, USA
| | - Emily S Barrett
- Environmental and Occupational Sciences Institute, Rutgers University, Piscataway, 170 Frelinghuysen Road, Piscataway, NJ, 08854, USA
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
14
|
Frigerio G, Ferrari CM, Fustinoni S. Prenatal and childhood exposure to per-/polyfluoroalkyl substances (PFASs) and its associations with childhood overweight and/or obesity: a systematic review with meta-analyses. Environ Health 2023; 22:56. [PMID: 37580798 PMCID: PMC10424367 DOI: 10.1186/s12940-023-01006-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 07/23/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Per-/polyfluoroalkyl substances (PFASs) are persistent organic pollutants and suspected endocrine disruptors. OBJECTIVE The aim of this work was to conduct a systematic review with meta-analysis to summarise the associations between prenatal or childhood exposure to PFASs and childhood overweight/obesity. METHODS The search was performed on the bibliographic databases PubMed and Embase with text strings containing terms related to prenatal, breastfeeding, childhood, overweight, obesity, and PFASs. Only papers describing a biomonitoring study in pregnant women or in children up to 18 years that assessed body mass index (BMI), waist circumference (WC), or fat mass in children were included. When the estimates of the association between a PFAS and an outcome were reported from at least 3 studies, a meta-analysis was conducted; moreover, to correctly compare the studies, we developed a method to convert the different effect estimates and made them comparable each other. Meta-analyses were performed also stratifying by sex and age, and sensitivity analyses were also performed. RESULTS In total, 484 and 779 articles were retrieved from PubMed and Embase, respectively, resulting in a total of 826 articles after merging duplicates. The papers included in this systematic review were 49: 26 evaluating prenatal exposure to PFASs, 17 childhood exposure, and 6 both. Considering a qualitative evaluation, results were conflicting, with positive, negative, and null associations. 30 papers were included in meta-analyses (19 prenatal, 7 children, and 4 both). Positive associations were evidenced between prenatal PFNA and BMI, between PFOA and BMI in children who were more than 3 years, and between prenatal PFNA and WC. Negative associations were found between prenatal PFOS and BMI in children who were 3 or less years, and between PFHxS and risk of overweight. Relatively more consistent negative associations were evidenced between childhood exposure to three PFASs (PFOA, PFOS, and PFNA) and BMI, in particular PFOS in boys. However, heterogeneity among studies was high. CONCLUSION Even though heterogeneous across studies, the pooled evidence suggests possible associations, mostly positive, between prenatal exposure to some PFASs and childhood BMI/WC; and relatively stronger evidence for negative associations between childhood exposure to PFASs and childhood BMI.
Collapse
Affiliation(s)
- Gianfranco Frigerio
- Environmental Cheminformatics, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval | House of Biomedicine II, 6 Avenue du Swing, L-4367, Belvaux, Luxembourg.
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy.
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Chiara Matilde Ferrari
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
| | - Silvia Fustinoni
- Department of Clinical Sciences and Community Health, University of Milan, Milano, Italy
- Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
15
|
Wang H, Zhang L, Wu J, Wang P, Li Q, Sui X, Xu Y, Zhao Y, Liu Y, Zhang Y. Sex-specific effects of organophosphate ester exposure on child growth trajectories in the first two years. ECO-ENVIRONMENT & HEALTH 2023; 2:152-160. [PMCID: PMC10702896 DOI: 10.1016/j.eehl.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 12/10/2023]
Abstract
The connections between urinary organophosphate ester (OPE) metabolites and child growth have been identified in prior research, but there is currently a dearth of epidemiological evidence regarding the sex-specific impact of OPEs on child growth trajectories. This study enrolled 804 maternal–child pairs, and five OPE congeners were quantified in maternal serum during pregnancy. In this study, the impact of prenatal OPE exposure on child growth trajectories was assessed using linear mixed-effect models and a group-based trajectory model (GBTM), with consideration given to sex-specific effects. Fetuses were frequently exposed to OPEs in utero, and tris(2-butoxyethel) phosphate (TBEP) exhibited the highest concentration levels in maternal serum. Among male children, an increase of 2.72 ng/g lipid in TBEP concentration was associated with a 0.11-unit increase in head circumference-for-age z-score (HCAZ), and the effect was mainly concentrated at 1 and 2 months of age. Among female children, an increase of 2.72 ng/g lipid in tris(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) concentration was associated with a 0.15-unit increase in length-for-age z-score (LAZ) and a 0.14-unit increase in weight-for-age z-score (WAZ), and the effects were mainly concentrated at 9 months of age. For HCAZ trajectories, higher prenatal TBEP exposure was associated with higher odds for the fast growth group in male children. For the LAZ and WAZ trajectories, higher prenatal TDCPP exposure was associated with higher odds for the fast growth group in female children. The trajectory analysis approach provided insight into the complex associations between OPE exposure and child growth. •Organophosphate ester (OPEs) were detected in serum samples of pregnant women, and tributyl phosphate (TBP) was the most frequently detected OPEs. •Prenatal exposure to TBP, tris(2-butoxyethyl) phosphate (TBEP), and tris(2-chloro-1-(chloromethyl) ethyl) phosphate (TDCPP) were positively associated with infant growth trajectories. •Female infants were more sensitive to OPE exposure than males.
Collapse
Affiliation(s)
- Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jie Wu
- The Maternal and Child Healthcare Hospital of Songjiang District, Shanghai 201600, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yaqi Xu
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yue Zhao
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People’s Republic of China (Fudan University), Shanghai 200032, China
- Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| |
Collapse
|
16
|
Liu Y, Wosu AC, Fleisch AF, Dunlop AL, Starling AP, Ferrara A, Dabelea D, Oken E, Buckley JP, Chatzi L, Karagas MR, Romano ME, Schantz S, O’Connor TG, Woodruff TJ, Zhu Y, Hamra GB, Braun JM. Associations of Gestational Perfluoroalkyl Substances Exposure with Early Childhood BMI z-Scores and Risk of Overweight/Obesity: Results from the ECHO Cohorts. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:67001. [PMID: 37283528 PMCID: PMC10246497 DOI: 10.1289/ehp11545] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Gestational per- and polyfluoroalkyl substances (PFAS) exposure may be associated with adiposity and increased risk of obesity among children and adolescents. However, results from epidemiological studies evaluating these associations are inconsistent. OBJECTIVES We estimated the associations of pregnancy PFAS concentrations with child body mass index (BMI) z -scores and risk of overweight/obesity in eight U.S. cohorts. METHODS We used data from 1,391 mother-child pairs who enrolled in eight Environmental influences on Child Health Outcomes (ECHO) cohorts (enrolled: 1999-2019). We quantified concentrations of seven PFAS in maternal plasma or serum in pregnancy. We measured child weight and height between the ages of 2 and 5 y and calculated age- and sex-specific BMI z -scores; 19.6% children had more than one BMI measurement. We estimated covariate-adjusted associations of individual PFAS and their mixture with child BMI z -scores and risk of overweight/obesity using linear mixed models, modified Poisson regression models, and Bayesian approaches for mixtures. We explored whether child sex modified these associations. RESULTS We observed a pattern of subtle positive associations of PFAS concentrations in pregnancy with BMI z -scores and risk of overweight/obesity. For instance, each doubling in perfluorohexane sulfonic acid concentrations was associated with higher BMI z -scores (β = 0.07 ; 95% CI: 0.01, 0.12). Each doubling in perfluroundecanoic acid [relative risk ( RR ) = 1.10 ; 95% CI: 1.04, 1.16] and N -methyl perfluorooctane sulfonamido acetic acid (RR = 1.06 ; 95% CI: 1.00, 1.12) was associated with increased risk of overweight/obesity, with some evidence of a monotonic dose-response relation. We observed weaker and more imprecise associations of the PFAS mixture with BMI or risk of overweight/obesity. Associations did not differ by child sex. DISCUSSION In eight U.S.-based prospective cohorts, gestational exposure to higher levels of PFAS were associated with slightly higher childhood BMI z -score and risk of overweight or obesity. Future studies should examine associations of gestational exposure to PFAS with adiposity and related cardiometabolic consequences in older children. https://doi.org/10.1289/EHP11545.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - Adaeze C. Wosu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Abby F. Fleisch
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
| | - Anne L. Dunlop
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Anne P. Starling
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Assiamira Ferrara
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Oken
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Jessie P. Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Leda Chatzi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Margaret R. Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Megan E. Romano
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Susan Schantz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Thomas G. O’Connor
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
| | - Tracey J. Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Yeyi Zhu
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
| | - and the program collaborators for Environmental influences on Child Health Outcomes
- Department of Epidemiology, Brown University School of Public Health, Providence, Rhode Island, USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Pediatric Endocrinology and Diabetes, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Center for Outcomes Research and Evaluation, Maine Medical Center and Maine Medical Center Research Institute, Portland, Maine, USA
- Department of Gynecology and Obstetrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Lifecourse Epidemiology of Adiposity and Diabetes Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Research, Kaiser Permanente Northern California, Oakland, California, USA
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Psychiatry, University of Rochester, Rochester, New York, USA
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
17
|
McAdam J, Bell EM. Determinants of maternal and neonatal PFAS concentrations: a review. Environ Health 2023; 22:41. [PMID: 37161484 PMCID: PMC10170754 DOI: 10.1186/s12940-023-00992-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/19/2023] [Indexed: 05/11/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are used for their properties such as stain and water resistance. The substances have been associated with adverse health outcomes in both pregnant mothers and infants, including pre-eclampsia and low birthweight. A growing body of research suggests that PFAS are transferred from mother to fetus through the placenta, leading to in utero exposure. A systematic review was performed using the PubMed database to search for studies evaluating determinants of PFAS concentrations in blood matrices of pregnant mothers and neonates shortly after birth. Studies were included in this review if an observational study design was utilized, exposure to at least one PFAS analyte was measured, PFAS were measured in maternal or neonatal matrices, at least one determinant of PFAS concentrations was assessed, and results such as beta estimates were provided. We identified 35 studies for inclusion in the review and evaluated the PFAS and determinant relationships among the factors collected in these studies. Parity, breastfeeding history, maternal race and country of origin, and household income had the strongest and most consistent evidence to support their roles as determinants of certain PFAS concentrations in pregnant mothers. Reported study findings on smoking status, alcohol consumption, and pre-pregnancy body mass index (BMI) suggest that these factors are not important determinants of PFAS concentrations in pregnant mothers or neonates. Further study into informative factors such as consumer product use, detailed dietary information, and consumed water sources as potential determinants of maternal or neonatal PFAS concentrations is needed. Research on determinants of maternal or neonatal PFAS concentrations is critical to estimate past PFAS exposure, build improved exposure models, and further our understanding on dose-response relationships, which can influence epidemiological studies and risk assessment evaluations. Given the potential for adverse outcomes in pregnant mothers and neonates exposed to PFAS, it is important to identify and understand determinants of maternal and neonatal PFAS concentrations to better implement public health interventions in these populations.
Collapse
Affiliation(s)
- Jordan McAdam
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA
| | - Erin M Bell
- Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA.
- Department of Epidemiology and Biostatistics, University at Albany, Rensselaer, NY, USA.
| |
Collapse
|
18
|
Zeng X, Chen T, Cui Y, Zhao J, Chen Q, Yu Z, Zhang Y, Han L, Chen Y, Zhang J. In utero exposure to perfluoroalkyl substances and early childhood BMI trajectories: A mediation analysis with neonatal metabolic profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161504. [PMID: 36634772 DOI: 10.1016/j.scitotenv.2023.161504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND In utero perfluoroalkyl substances (PFAS) exposure has been associated with childhood adiposity, but the mechanisms are poorly known. OBJECTIVE To investigate the potential mediating role of neonatal metabolites in the relationship between prenatal PFAS exposure and childhood adiposity trajectories in the first four years of life. METHODS We analyzed the data for 1671 mother-child pairs from the Shanghai Birth Cohort study. We included those with PFAS exposure information in early pregnancy, neonatal metabolites data and at least three child anthropometric measurements at 6, 12, 24 and/or 48 months. Body mass index (BMI) z-score trajectories were identified using latent class growth mixture modeling. The associations between PFAS concentrations and trajectory classes were assessed using multinomial logistic regression. Screening and penalization-based selection was used to identify neonatal amino acids and acylcarnitines with significant mediation effects. RESULTS Three BMI z-score trajectories in early childhood were identified: a persistent increase trajectory (Class 1, 2.2 %), a stable trajectory (Class 2, 66 %), and a transient increase trajectory (Class 3, 32 %). Increased odds of being in Class 1 were observed in association with one log-unit increase in concentrations of perfluorooctane sulfonate (odds ratio [OR], 1.76 [95 % CI, 0.96-3.23], Class 2 as reference; OR, 2.36 [95 % CI, 1.27-4.40], Class 3 as reference), perfluorononanoic acid (OR, 1.90 [95 % CI, 0.97-3.72], Class 2 as reference; OR, 2.23 [95 % CI, 1.12-4.42], Class 3 as reference) and perfluorodecanoic acid (OR, 1.95 [95 % CI, 1.12-3.38], Class 2 as reference; OR, 2.14 [95 % CI, 1.22-3.76], Class 3 as reference). The effect of prenatal PFAS exposure on being in Class 1 was significantly but partly mediated by octanoylcarnitine (2.64 % for perfluorononanoic acid and 3.70 % for sum of 10 PFAS). CONCLUSIONS In utero PFAS exposure is a risk factor for persistent growth in BMI z-score in early childhood. The alteration of neonatal acylcarnitines suggests a potential molecular pathway.
Collapse
Affiliation(s)
- Xiaojing Zeng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Ting Chen
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yidan Cui
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian Zhao
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qian Chen
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Zhangsheng Yu
- Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yongjun Zhang
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Lianshu Han
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yan Chen
- Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
19
|
Song X, Wu J, Ji H, Liang H, Chen Y, Yang L, Yuan W, Tu X, Miao M. Maternal per- and poly-fluoroalkyl substances exposure and child adiposity measures: A birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 253:114684. [PMID: 36857916 DOI: 10.1016/j.ecoenv.2023.114684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Maternal exposure to per- and polyfluoroalkyl substances (PFAS) during pregnancy may have a programming effect on the physical development of the offspring. However, the findings of the association between PFAS and the physical development of offspring were inconsistent, and the overall effects of the PFAS mixture were unclear. In this study, we examined the associations between maternal PFAS exposure and offspring adiposity during the first two years of life. A total of 937 mother-child pairs from the Jiashan Birth Cohort Study were investigated. Thirteen PFASs were analyzed in maternal blood samples. Child weight and length were measured at birth, 1, 3, 6, 8, 12, and 24 months, and the ponderal index (PI) and weight-for-age z-scores (WAZ) were calculated. Longitudinal associations of PFAS concentrations (by quartile) with repeated data of PI and WAZ were examined using linear mixed model, and the overall effect of the PFAS mixture on adiposity measures was evaluated using quantile g-computation (QGC). Maternal PFAS exposure was associated with increased PI in both the linear mixed model and the QGC model. Among the PFAS examined, the associations between maternal PFTrDA exposure and PI were the strongest. Maternal PFAS and WAZ showed similar patterns of association. In the longitudinal cohort study, we found that adiposity in young children is increased by maternal PFAS exposure. The associations between maternal PFASs concentrations and child adiposity may be chemical-specific.
Collapse
Affiliation(s)
- Xiuxia Song
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Jiajia Wu
- The First People's Hospital of Jianshan, Jiaxing, Zhejiang Province, China
| | - Honglei Ji
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Hong Liang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Yao Chen
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Lan Yang
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Wei Yuan
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Xiaowen Tu
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China
| | - Maohua Miao
- NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, China.
| |
Collapse
|
20
|
Cai A, Portengen L, Govarts E, Martin LR, Schoeters G, Legler J, Vermeulen R, Lenters V, Remy S. Prenatal exposure to persistent organic pollutants and changes in infant growth and childhood growth trajectories. CHEMOSPHERE 2023; 314:137695. [PMID: 36587911 DOI: 10.1016/j.chemosphere.2022.137695] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Children are born with a burden of persistent organic pollutants (POPs) which may have endocrine disrupting properties and have been postulated to contribute to the rise in childhood obesity. The current evidence is equivocal, which may partly because many studies investigate the effects at one time point during childhood. We assessed associations between prenatal exposure to POPs and growth during infancy and childhood. METHODS We used data from two Belgian cohorts with cord blood measurements of five organochlorines [(dichlorodiphenyldichloroethylene (p,p'-DDE), hexachlorobenzene (HCB), polychlorinated biphenyls (PCB-138, -150, -180)] (N = 1418) and two perfluoroalkyl substances [perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS)] (N = 346). We assessed infant growth, defined as body mass index (BMI) z-score change between birth and 2 years, and childhood growth, characterized as BMI trajectory from birth to 8 years. To evaluate associations between POP exposures and infant growth, we applied a multi-pollutant approach, using penalized elastic net regression with stability selection, controlling for covariates. To evaluate associations with childhood growth, we used single-pollutant linear mixed models with random effects for child individual, parametrized using a natural cubic spline formulation. RESULTS PCB-153 was associated with increased and p,p'-DDE with decreased infant growth, although these results were imprecise. No clear association between any of the exposures and longer-term childhood growth trajectories was observed. We did not find evidence of effect modification by child sex. CONCLUSION Our results suggest that prenatal exposure to PCB-153 and p,p'-DDE may affect infant growth in the first two years, with no evidence of more persistent effects.
Collapse
Affiliation(s)
- Anran Cai
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands; VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium.
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | - Greet Schoeters
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Juliette Legler
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Department of Population Health Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Virissa Lenters
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
21
|
Schillemans T, Iszatt N, Remy S, Schoeters G, Fernández MF, D'Cruz SC, Desalegn A, Haug LS, Lignell S, Lindroos AK, Fábelová L, Murinova LP, Kosjek T, Tkalec Ž, Gabriel C, Sarigiannis D, Pedraza-Díaz S, Esteban-López M, Castaño A, Rambaud L, Riou M, Pauwels S, Vanlarebeke N, Kolossa-Gehring M, Vogel N, Uhl M, Govarts E, Åkesson A. Cross-sectional associations between exposure to per- and polyfluoroalkyl substances and body mass index among European teenagers in the HBM4EU aligned studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120566. [PMID: 36334774 DOI: 10.1016/j.envpol.2022.120566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 05/26/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widespread pollutants that may impact youth adiposity patterns. We investigated cross-sectional associations between PFAS and body mass index (BMI) in teenagers/adolescents across nine European countries within the Human Biomonitoring for Europe (HBM4EU) initiative. We used data from 1957 teenagers (12-18 yrs) that were part of the HBM4EU aligned studies, consisting of nine HBM studies (NEBII, Norway; Riksmaten Adolescents 2016-17, Sweden; PCB cohort (follow-up), Slovakia; SLO CRP, Slovenia; CROME, Greece; BEA, Spain; ESTEBAN, France; FLEHS IV, Belgium; GerES V-sub, Germany). Twelve PFAS were measured in blood, whilst weight and height were measured by field nurse/physician or self-reported in questionnaires. We assessed associations between PFAS and age- and sex-adjusted BMI z-scores using linear and logistic regression adjusted for potential confounders. Random-effects meta-analysis and mixed effects models were used to pool studies. We assessed mixture effects using molar sums of exposure biomarkers with toxicological/structural similarities and quantile g-computation. In all studies, the highest concentrations of PFAS were PFOS (medians ranging from 1.34 to 2.79 μg/L). There was a tendency for negative associations with BMI z-scores for all PFAS (except for PFHxS and PFHpS), which was borderline significant for the molar sum of [PFOA and PFNA] and significant for single PFOA [β-coefficient (95% CI) per interquartile range fold change = -0.06 (-0.17, 0.00) and -0.08 (-0.15, -0.01), respectively]. Mixture assessment indicated similar negative associations of the total mixture of [PFOA, PFNA, PFHxS and PFOS] with BMI z-score, but not all compounds showed associations in the same direction: whilst [PFOA, PFNA and PFOS] were negatively associated, [PFHxS] associated positively with BMI z-score. Our results indicated a tendency for associations of relatively low PFAS concentrations with lower BMI in European teenagers. More prospective research is needed to investigate this potential relationship and its implications for health later in life.
Collapse
Affiliation(s)
- Tessa Schillemans
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden.
| | - Nina Iszatt
- Division of Climate and Environmental Health, Norwegian Institute of Public Health, Norway
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Greet Schoeters
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Mariana F Fernández
- Centre for Biomedical Research (CIBM) and School of Medicine, University of Granada, Granada, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Shereen Cynthia D'Cruz
- Univ Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail), Rennes, France
| | - Anteneh Desalegn
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | - Line S Haug
- Division of Food Safety, Norwegian Institute of Public Health, Norway
| | | | | | - Lucia Fábelová
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Lubica Palkovicova Murinova
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Bratislava, Slovakia
| | - Tina Kosjek
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Žiga Tkalec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Catherine Gabriel
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece
| | - Denis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; HERACLES Research Center on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Balkan Center, Bldg. B, 10th Km Thessaloniki-Thermi Road, 57001, Greece; Environmental Health Engineering, Institute of Advanced Study, Palazzo Del Broletto - Piazza Della Vittoria 15, 27100, Pavia, Italy
| | - Susana Pedraza-Díaz
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Esteban-López
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Argelia Castaño
- National Centre for Environmental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, Saint-Maurice, France
| | - Sara Pauwels
- Department of Public Health and Primary Care, KU, Leuven, Belgium
| | - Nik Vanlarebeke
- Department of Analytical and Environmental Chemistry, Free University of Brussels, Belgium
| | | | - Nina Vogel
- German Environment Agency, Umweltbundesamt (UBA), Berlin, Germany
| | - Maria Uhl
- Environment Agency Austria, Vienna, Austria
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Agneta Åkesson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
22
|
Hou W, Zhang M, Ji Y, Hong X, Wang G, Xu R, Liang L, Saria S, Ji H. A prospective birth cohort study of maternal prenatal cigarette smoking assessed by self-report and biomarkers on childhood risk of overweight or obesity. PRECISION NUTRITION 2022; 1:e00017. [PMID: 37744083 PMCID: PMC10035292 DOI: 10.1097/pn9.0000000000000017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 09/26/2023]
Abstract
Background Most studies on the association of in utero exposure to cigarette smoking and childhood overweight or obesity (OWO) were based on maternal self-reported smoking status, and few were based on objective biomarkers. The concordance of self-report smoking, and maternal and cord blood biomarkers of cigarette smoking as well as their effects on children's long-term risk of overweight and obesity are unclear. Methods In this study, we analyzed data from 2351 mother-child pairs in the Boston Birth Cohort, a sample of US predominantly Black, indigenous, and people of color (BIPOC) that enrolled children at birth and followed prospectively up to age 18 years. In utero smoking exposure was measured by maternal self-report and by maternal and cord plasma biomarkers of smoking: cotinine and hydroxycotinine. We assessed the individual and joint associations of each smoking exposure measure and maternal OWO with childhood OWO using multinomial logistic regressions. We used nested logistic regressions to investigate the childhood OWO prediction performance when adding maternal and cord plasma biomarkers as input covariates on top of self-reported data. Results Our results demonstrated that in utero cigarette smoking exposure defined by self-report and by maternal or cord metabolites was consistently associated with increased risk of long-term child OWO. Children with cord hydroxycotinine in the fourth quartile (vs. first quartile) had 1.66 (95% confidence interval [CI] 1.03-2.66) times the odds for overweight and 1.57 (95% CI 1.05-2.36) times the odds for obesity. The combined effect of maternal OWO and smoking on offspring risk of obesity is 3.66 (95% CI 2.37-5.67) if using self-reported smoking. Adding maternal and cord plasma biomarker information to self-reported data improved the prediction accuracy of long-term child OWO risk. Conclusions This longitudinal birth cohort study of US BIPOC underscored the role of maternal smoking as an obesogen for offspring OWO risk. Our findings call for public health intervention strategies to focus on maternal smoking - as a highly modifiable target, including smoking cessation and countermeasures (such as optimal nutrition) that may alleviate the increasing obesity burden in the United States and globally.
Collapse
Affiliation(s)
- Wenpin Hou
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biostatistics, Columbia University School of Public Health, NY City, NY, USA
| | - Mingyu Zhang
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Yuelong Ji
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Richard Xu
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Liming Liang
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Suchi Saria
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Health Policy and Management, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
23
|
Romano ME, Heggeseth BC, Gallagher LG, Botelho JC, Calafat AM, Gilbert-Diamond D, Karagas MR. Gestational per- and polyfluoroalkyl substances exposure and infant body mass index trajectory in the New Hampshire Birth Cohort Study. ENVIRONMENTAL RESEARCH 2022; 215:114418. [PMID: 36162478 PMCID: PMC9841894 DOI: 10.1016/j.envres.2022.114418] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 05/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are environmentally persistent, potential metabolic disruptors of concern for infants. Mothers participating in the New Hampshire Birth Cohort Study (NHBCS) provided a plasma sample during pregnancy to measure concentrations of seven PFAS, and infant weight and length were abstracted from well-child visits between birth and 12 months. Sex-specific growth patterns of child body mass index (BMI) were fit using a growth mixture model (GMM) and the relative risk ratios (RRR) and 95% Confidence Intervals (95% CI) for the association of maternal plasma PFAS with BMI growth patterns during infancy were estimated by using multinomial logistic model for the group probabilities in the GMM. Four growth patterns were identified: Group 1) a steep increase in BMI during the first 6 months, then a leveling off; Group 2) a gradual increase in BMI across the year; Group 3) a steep increase in BMI during months 1-3, then stable BMI; and Group 4) a gradual increase in BMI with plateau around 3 months (reference group). For boys, higher maternal pregnancy perfluorooctanoate concentrations were associated with a 60% decreased chance of being in group 3 as compared to group 4, after adjusting for potential confounding variables (RRR = 0.4; 95% CI: 0.1, 0.9). For girls, higher maternal perfluorooctane sulfonate (PFOS) concentrations during pregnancy were associated with a higher likelihood of following the growth pattern of groups 2 (RRR = 2.5; 95% CI: 1.0, 6.1) and 3 (RRR = 2.8; 95% CI: 1.0, 7.6) as compared to group 4, adjusting for potential confounding variables. In this cohort, sex-specific associations of maternal plasma PFAS concentrations during pregnancy with growth patterns during the first year of life were observed, with greater BMI growth observed among infant girls born to mothers with higher pregnancy concentrations of PFOS.
Collapse
Affiliation(s)
- Megan E Romano
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA.
| | - Brianna C Heggeseth
- Department of Mathematics, Statistics, and Computer Science, Macalester College, St. Paul, MN, USA
| | - Lisa G Gallagher
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| | - Julianne Cook Botelho
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Margaret R Karagas
- Department of Epidemiology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA
| |
Collapse
|
24
|
Blomberg A, Mortensen J, Weihe P, Grandjean P. Bone mass density following developmental exposures to perfluoroalkyl substances (PFAS): a longitudinal cohort study. Environ Health 2022; 21:113. [PMID: 36402982 PMCID: PMC9675242 DOI: 10.1186/s12940-022-00929-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Environmental exposures to industrial chemicals, including perfluoroalkyl substances (PFAS), may play a role in bone development and future risk of osteoporosis. However, as prospective evidence is limited, the role of developmental PFAS exposures in bone density changes in childhood is unclear. The objective of this study was to estimate associations between serum-PFAS concentrations measured in infancy and early childhood and areal bone mineral density (aBMD) measured at age 9 years in a birth cohort of children from the Faroe Islands. METHODS We prospectively measured concentrations of five PFAS in cord serum and serum collected at 18 months, 5 years and 9 years, and conducted whole-body DXA scans at the 9-year clinical visit. Our study included 366 mother-child pairs with DXA scans and at least one PFAS measurement. We estimated covariate-adjusted associations of individual PFAS concentrations with age-, sex- and height-adjusted aBMD z-scores using multivariable regression models and applied formal mediation analysis to estimate the possible impact of by several measures of body composition. We also evaluated whether associations were modified by child sex. RESULTS We found PFAS exposures in childhood to be negatively associated with aBMD z-scores, with the strongest association seen for perfluorononanoic acid (PFNA) at age 5 years. A doubling in age-5 PFNA was associated with a 0.15 decrease in aBMD z-score (95% CI: - 0.26, - 0.039). The PFNA-aBMD association was significantly stronger in males than females, although effect modification by sex was not significant for other PFAS exposures. Results from the mediation analysis suggested that any potential associations between aBMD and 18-month PFAS concentrations may be mediated by total body fat and BMI, although most estimated total effects for PFAS exposures at age 18 months were non-significant. PFAS exposures at age 9 were not associated with age-9 aBMD z-scores. CONCLUSIONS The PFAS-aBMD associations identified in this and previous studies suggest that bone may be a target tissue for PFAS. Pediatric bone density has been demonstrated to strongly track through young adulthood and possibly beyond; therefore, these prospective results may have important public health implications.
Collapse
Affiliation(s)
- Annelise Blomberg
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
- Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 2, 22363, Lund, Sweden.
| | - Jann Mortensen
- Department of Clinical Physiology and Nuclear Medicine, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Medicine, The Faroese National Hospital, Torshavn, Faroe Islands
| | - Pál Weihe
- Department of Occupational Medicine and Public Health, Faroese Hospital System, Torshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Torshavn, Faroe Islands
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Braun JM, Papandonatos GD, Li N, Sears CG, Buckley JP, Cecil KM, Chen A, Eaton CB, Kalkwarf HJ, Kelsey KT, Lanphear BP, Yolton K. Physical activity modifies the relation between gestational perfluorooctanoic acid exposure and adolescent cardiometabolic risk. ENVIRONMENTAL RESEARCH 2022; 214:114021. [PMID: 35952751 PMCID: PMC9637371 DOI: 10.1016/j.envres.2022.114021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Exposure to per- and polyfluoroalkyl substances (PFAS) - endocrine disrupting chemicals - may increase cardiometabolic risk. We evaluated whether adolescent lifestyle factors modified associations between gestational PFAS exposure and cardiometabolic risk using a prospective cohort study. METHODS In 166 mother-child pairs (HOME Study), we measured concentrations of four PFAS in maternal serum collected during pregnancy. When children were age 12 years, we calculated cardiometabolic risk scores from visceral adiposity area, blood pressure, and fasting serum biomarkers. We assessed adolescent physical activity and Healthy Eating Index scores using the Physical Activity Questionnaire for Older Children (PAQ-C), actigraphy, and 24-h diet recalls. Using multivariable linear regression and weighted quantile sum regression, we examined whether physical activity or diet modified covariate-adjusted associations of PFAS and their mixture with cardiometabolic risk scores. RESULTS Physical activity modified associations between perfluorooctanoic acid (PFOA) and cardiometabolic risk scores. Each doubling of PFOA was associated with worse cardiometabolic risk scores among children with PAQ-C scores < median (β:1.4; 95% CI:0.5, 2.2, n = 82), but not among those with PAQ-C scores ≥ median (β: 0.2; 95% CI: 1.2, 0.7, n = 84) (interaction p-value = 0.01). Associations were most prominent for insulin resistance, leptin-adiponectin ratio, and visceral fat area. We observed results suggesting that physical activity modified the association of PFAS mixture with cardiometabolic risk scores, insulin resistance, and visceral fat area (interaction p-values = 0.17, 0.07, and 0.10, respectively); however, the 95% CIs of the interaction terms included the null value. We observed similar, but attenuated patterns for PFOA and actigraphy-based measures of physical activity. Diet did not modify any associations. Physical activity or diet did not modify associations for other PFAS. CONCLUSIONS Childhood physical activity modified associations of prenatal serum PFOA concentrations with children's cardiometabolic risk in this cohort, indicating that lifestyle interventions may ameliorate the adverse effects of PFOA exposure.
Collapse
Affiliation(s)
- Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States.
| | - George D Papandonatos
- Department of Biostatistics, School of Public Health, Brown University, Providence, RI, United States
| | - Nan Li
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States
| | - Clara G Sears
- Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, KY, United States
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins University School of Public Health, Baltimore, MD, United States
| | - Kim M Cecil
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Charles B Eaton
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States; Department of Family Medicine, Warren Alpert Medical School of Brown University, Providence, RI, United States; Kent Memorial Hospital, Warwick, RI, United States
| | - Heidi J Kalkwarf
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Karl T Kelsey
- Department of Epidemiology, Brown University, Providence, RI, 02912, Box G-S121, United States; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
26
|
Sevelsted A, Gürdeniz G, Rago D, Pedersen CET, Lasky-Su JA, Checa A, Zhang P, Wheelock CE, Normann SS, Kristensen DM, Rasmussen MA, Schullehner J, Sdougkou K, Martin JW, Stokholm J, Bønnelykke K, Bisgaard H, Chawes B. Effect of perfluoroalkyl exposure in pregnancy and infancy on intrauterine and childhood growth and anthropometry. Sub study from COPSAC2010 birth cohort. EBioMedicine 2022; 83:104236. [PMID: 36030647 PMCID: PMC9434040 DOI: 10.1016/j.ebiom.2022.104236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Perfluoroalkyl substances PFOS and PFOA are persistent and bioaccumulative exogenous chemicals in the human body with a range of suspected negative health effects. It is hypothesised that exposure during prenatal and early postnatal life might have particularly detrimental effects on intrauterine and childhood growth. In a Danish longitudinal mother-child cohort we investigate effect of PFOS and PFOA in pregnancy and infancy on intrauterine and childhood growth and anthropometry. METHODS COPSAC2010 is an ongoing population based mother-child cohort of 738 pregnant women and their children followed from 24 week gestation with longitudinal deep clinical phenotyping until age 10 years. In this observational cohort sub study plasma PFOS and PFOA concentrations were semi-quantified by untargeted metabolomics in the mothers at week 24 and 1 week postpartum and in the children at ages 6 and 18 months and calibrated using a targeted pipeline. We examined associations to intrauterine and childhood growth and anthropometry, including interactions with child sex. Untargeted and targeted blood metabolomics profiles were integrated to investigate underlying mechanisms. FINDINGS Pregnancy plasma PFOA concentrations were associated with lower birth size -0.19 [-0.33; -0.05] BMI z-score per 1-ng/mL and increased childhood height (z-scored) at age 6: 0.18 [0.05; 0.31], but there was no association between childs' own infancy plasma PFOA concentration and height. Pregnancy plasma PFOS concentrations were also associated with lower birth BMI (-0.04 [-0.08; -0.01]), but in childhood pregnancy plasma PFOS concentration interacted with child sex on BMI and fat percentage at 6 years with negative associations in girls and positive in boys. The effect of maternal plasma PFOS concentration on lower girl BMI was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.08). Similarly the effect of maternal plasma PFOS concentration on higher boy fat percentage was borderline mediated through increasing child plasma lactosyl-ceramide levels (p-mediation=0.07). Infancy concentrations of plasma PFOS associated with lower height in childhood, -0.06 z-score at age 6 [-0.19; -0.03]. INTERPRETATION Higher PFOS and PFOA plasma concentrations during pregnancy had detrimental effects on fetal growth. The effects on childhood growth were not similar as PFOA increased child height, opposite of PFOS in multipollutant models suggesting a differing fetal programming effect. Sex specific growth effects were borderline mediated through an altered lactosyl-ceramide metabolism, proposing a possible mechanism of PFOS that has long-lasting health consequences in this observational study. FUNDING All funding received by COPSAC are listed on www.copsac.com. The Lundbeck Foundation (Grant no R16-A1694); The Novo Nordic Foundation (Grant nos NNF20OC0061029, NNF170C0025014, NNF180C0031764) The Ministry of Health (Grant no 903516); Danish Council for Strategic Research (Grant no 0603-00280B) and The Capital Region Research Foundation have provided core support to the COPSAC research center. Effort from JALS is supported by R01HL123915, R01HL141826, and R01HL155742 from NIH/NHLBI. CEW was supported by the Swedish Heart Lung Foundation (HLF 20180290, HLF 20200693). BC has received funding for this project from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 946228). The funding agencies did not have any role in design and conduct of the study; collection, management, and interpretation of the data; or preparation, review, or approval of the manuscript.
Collapse
Affiliation(s)
- Astrid Sevelsted
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Gözde Gürdeniz
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Daniela Rago
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Casper-Emil Tingskov Pedersen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jessica A Lasky-Su
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, United States
| | - Antonio Checa
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171-77, Sweden
| | - Pei Zhang
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171-77, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Craig E Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine, Karolinska Institutet, Stockholm 171-77, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm 141-86, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Stine S Normann
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - David M Kristensen
- Department of Neurology, Danish Headache Center, Rigshospitalet-Glostrup, University of Copenhagen, Copenhagen, Denmark; Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Arendt Rasmussen
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jörg Schullehner
- Department of Groundwater and Quaternary Geology Mapping, Geological Survey of Denmark and Greenland, Aarhus, Denmark; Research Unit for Environment, Work and Health, Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kalliroi Sdougkou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Jonathan W Martin
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Jakob Stokholm
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Klaus Bønnelykke
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Hans Bisgaard
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Bo Chawes
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Ku MS, Pan WC, Huang YT, Hsieh WS, Hsu YH, Chen PC, Liu CY. Associations between prenatal exposure to perfluoroalkyl substances, hypomethylation of MEST imprinted gene and birth outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 304:119183. [PMID: 35331797 DOI: 10.1016/j.envpol.2022.119183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Prenatal perfluoroalkyl substance (PFAS) exposure has been linked to adverse birth outcomes, but the underlying mechanism has yet to be elucidated. DNA methylation changes in mesoderm-specific transcript (MEST) imprinted gene may be a mechanism of the prenatal exposure effects of PFASs on fetal growth. The aim was to investigate the prenatal PFASs exposure effects on DNA methylation changes in MEST imprinted gene involved in fetal growth. Among 486 mother-infant pairs from the Taiwan Birth Panel Study, PFASs and DNA methylation levels at 5 CpG sites of MEST promoter region were measured in cord blood. Univariable and multivariable linear regressions were performed to estimate the associations between prenatal PFAS exposure, MEST DNA methylation levels, and child birth outcomes. Mediation analysis was performed to examine the potential pathway of MEST methylation between PFASs and birth outcomes. We found that higher prenatal perfluorooctyl sulfonate (PFOS) exposure was significantly associated with lower methylation levels at 5 CpG sites of MEST promoter region (an adjusted β range: -1.56, -2.22). Significant negative associations were also found between MEST methylation levels and child birth weight. Furthermore, the associations between PFOS and perfluorooctanoic acid (PFOA) exposure and MEST methylation levels were more profound in girls than in boys. The mediated effect of average MEST methylation level between PFOS exposure and birth weight was 18.3 (95% CI = 2.1, 40.2; p = 0.014). The direct effect of PFOS exposure to birth weight independent to average MEST methylation level was -93.2 (95% CI = -170.5, -17.8; p = 0.018). In conclusion, our results suggest that prenatal PFAS exposure, especially PFOS, is associated with lower methylation levels at MEST promoter region, which not only leverages the role of imprinted gene in ensuring the integrity of fetal growth but also provides a potential mechanism for evaluating the prenatal exposure effect.
Collapse
Affiliation(s)
- Mei-Sheng Ku
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Wu-Shiun Hsieh
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Yi-Hsiang Hsu
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA; Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA; Broad Institute of MIT and Harvard, Boston, MA, 02142, USA
| | - Pau-Chung Chen
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan; National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Chen-Yu Liu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
28
|
Zhang M, Yu CH, Wang G, Buckley JP, Hong X, Pearson C, Adams WG, Fan Z(T, Wang X. Longitudinal trajectories and determinants of plasma per- and polyfluoroalkyl substance (PFAS) levels from birth to early childhood and metabolomic associations: A pilot study in the Boston Birth Cohort. PRECISION NUTRITION 2022; 1:e00004. [PMID: 36936201 PMCID: PMC10022515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Background Per- and polyfluoroalkyl substances (PFAS) are a major public health concern worldwide due to their ubiquitous exposures, environmental persistence, maternal-to-fetal transfer, and multi-organ toxicity. This pilot study aimed to generate preliminary data to inform future studies to address data gaps in the field, including early life PFAS exposure levels, longitudinal changes, determinants, and associated metabolomic alterations in understudied Black and Hispanic children in the United States (U.S.). Methods This study leveraged existing biosamples and data in the Boston Birth Cohort and measured 12 legacy and emerging PFAS, including Me-PFOSA-AcOH, PFDA, PFDoA, PFHxS, PFNA, PFOA, PFOS, PFUnA, GenX, ADONA, 9Cl-PF3ONS, and PFHpS, in paired cord and early childhood plasma samples. Summary statistics and graphic plots were used to depict PFAS levels at the two time points and their longitudinal changes. Linear regression models were used to identify the early-life factors associated with cord and early childhood PFAS levels. Associations of cord PFAS with cord metabolites were explored using a metabolome-wide association approach and a targeted approach. Results This study included 39 children, of whom 25 (64%) were Black, 14 (36%) were Hispanic, and 15 (38%) were female. PFOA, PFOS, PFNA, and PFHpS were detectable in all cord and early childhood plasma samples, while GenX and ADONA were not detectable in any sample. Cord PFAS levels were weakly-to-moderately correlated with early childhood PFAS levels (r = -0.03 to 0.40). Several maternal and child factors, including gestational age, year at blood collection, and race/ethnicity, were associated with cord and early childhood PFAS levels. The metabolome-wide association study and the targeted study identified several cord metabolites that may have been affected by in utero PFAS exposure. Conclusions This pilot study found ubiquitous exposure to multiple PFAS in cord plasma (reflects in utero exposure) and in early childhood plasma (reflects both prenatal and postnatal exposure) among U.S. Black and Hispanic children. Metabolomic analysis suggests that in utero PFAS exposures may alter fetal metabolism. Future large-scale studies are needed to replicate the findings and further examine the associations of fetal PFAS exposure with long-term health outcomes and underlying metabolic pathways.
Collapse
Affiliation(s)
- Mingyu Zhang
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, MD, USA
| | - Chang Ho Yu
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Guoying Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jessie P Buckley
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Xiumei Hong
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Colleen Pearson
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - William G Adams
- Department of Pediatrics, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Zhihua (Tina) Fan
- Environmental and Chemical Laboratory Services, Public Health and Environmental Laboratories, New Jersey Department of Health, Trenton, NJ, USA
| | - Xiaobin Wang
- Center on the Early Life Origins of Disease, Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
29
|
Starnes HM, Rock KD, Jackson TW, Belcher SM. A Critical Review and Meta-Analysis of Impacts of Per- and Polyfluorinated Substances on the Brain and Behavior. FRONTIERS IN TOXICOLOGY 2022; 4:881584. [PMID: 35480070 PMCID: PMC9035516 DOI: 10.3389/ftox.2022.881584] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 01/09/2023] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of structurally diverse synthetic organic chemicals that are chemically stable, resistant to degradation, and persistent in terrestrial and aquatic environments. Widespread use of PFAS in industrial processing and manufacturing over the last 70 years has led to global contamination of built and natural environments. The brain is a lipid rich and highly vascularized organ composed of long-lived neurons and glial cells that are especially vulnerable to the impacts of persistent and lipophilic toxicants. Generally, PFAS partition to protein-rich tissues of the body, primarily the liver and blood, but are also detected in the brains of humans, wildlife, and laboratory animals. Here we review factors impacting the absorption, distribution, and accumulation of PFAS in the brain, and currently available evidence for neurotoxic impacts defined by disruption of neurochemical, neurophysiological, and behavioral endpoints. Emphasis is placed on the neurotoxic potential of exposures during critical periods of development and in sensitive populations, and factors that may exacerbate neurotoxicity of PFAS. While limitations and inconsistencies across studies exist, the available body of evidence suggests that the neurobehavioral impacts of long-chain PFAS exposures during development are more pronounced than impacts resulting from exposure during adulthood. There is a paucity of experimental studies evaluating neurobehavioral and molecular mechanisms of short-chain PFAS, and even greater data gaps in the analysis of neurotoxicity for PFAS outside of the perfluoroalkyl acids. Whereas most experimental studies were focused on acute and subchronic impacts resulting from high dose exposures to a single PFAS congener, more realistic exposures for humans and wildlife are mixtures exposures that are relatively chronic and low dose in nature. Our evaluation of the available human epidemiological, experimental, and wildlife data also indicates heightened accumulation of perfluoroalkyl acids in the brain after environmental exposure, in comparison to the experimental studies. These findings highlight the need for additional experimental analysis of neurodevelopmental impacts of environmentally relevant concentrations and complex mixtures of PFAS.
Collapse
|
30
|
Denuzière A, Ghersi-Egea JF. Cerebral concentration and toxicity of endocrine disrupting chemicals: The implication of blood-brain interfaces. Neurotoxicology 2022; 91:100-118. [DOI: 10.1016/j.neuro.2022.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/12/2022] [Indexed: 11/28/2022]
|
31
|
Zhang Y, Pan C, Ren Y, Wang Z, Luo J, Ding G, Vinturache A, Wang X, Shi R, Ouyang F, Zhang J, Li J, Gao Y, Tian Y. Association of maternal exposure to perfluoroalkyl and polyfluroalkyl substances with infant growth from birth to 12 months: A prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151303. [PMID: 34749968 DOI: 10.1016/j.scitotenv.2021.151303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Although maternal perfluoroalkyl and polyfluroalkyl substances (PFASs) were associated with adverse birth outcomes, much less is known about their impact on infant growth during early infancy. OBJECTIVES We investigated the association between maternal PFASs exposure and infant growth during the first 12 months of life. METHODS Participating 2395 pregnancies were recruited from Shanghai Birth Cohort between 2013 and 2016. Ten PFASs were quantified from maternal plasma collected during early pregnancy (median, 15 gestational weeks). We measured infant length, weight, and head circumference at birth, 42 days, 6 months, and 12 months. Linear mixed regression model was used to estimate the associations between PFAS concentrations and repeated measurements of infant growth. Effect modification by infant sex was estimated. RESULTS Elevated perfluoroheptanoic acid (PFHpA) concentration was negatively associated with infant length-for-age Z score (LAZ) (β = -0.06, 95% confidence interval (CI): -0.11, -0.01) during the first year. Adverse associations were also observed for perfluorobutane sulfonate (PFBS) and weight-for-length Z score (WFL) (β = -0.02, 95% CI: -0.04, -0.00) and BMI-for-age Z score (BAZ) (β = -0.02, 95% CI: -0.04, -0.00). However, perfluorododecanoic acid (PFDoA) was positively associated with WFL (β = 0.03, 95% CI: 0.00, 0.06) and BAZ (β = 0.03, 95% CI: 0.00, 0.06). The adverse association of PFHpA and LAZ was more pronounced among males (β = -0.06; 95% CI: -0.11, -0.00) than females (β = 0.06; 95% CI: 0.01, 0.12). CONCLUSIONS In our study, negative associations were found for maternal PFHpA exposure and infant LAZ, PFBS and WFL and BAZ. Meanwhile, maternal PFDoA exposure was positively related with WFL and BAZ. The adverse association of maternal PFHpA exposure and infant LAZ was more pronounced among males. The results should be interpreted with caution, further prospective cohort studies with longitudinal and detailed measures are warranted to confirm these findings.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Yunjie Ren
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Zixia Wang
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Jiajun Luo
- Department of Environmental Health Sciences, Yale School of Public Health, 06510 New Haven, CT, USA
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, 200040 Shanghai, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, T8V2E8, Alberta, Canada
| | - Xiaojin Wang
- Department of Biostatistics, Clinical Research Institute, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Rong Shi
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | - Fengxiu Ouyang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Jun Zhang
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China
| | - Jiong Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China; Department of Clinical Medicine-Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Yu Gao
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China.
| | - Ying Tian
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200092 Shanghai, China.
| |
Collapse
|
32
|
Xenobiotic-Induced Aggravation of Metabolic-Associated Fatty Liver Disease. Int J Mol Sci 2022; 23:ijms23031062. [PMID: 35162986 PMCID: PMC8834714 DOI: 10.3390/ijms23031062] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 01/09/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD), which is often linked to obesity, encompasses a large spectrum of hepatic lesions, including simple fatty liver, steatohepatitis, cirrhosis and hepatocellular carcinoma. Besides nutritional and genetic factors, different xenobiotics such as pharmaceuticals and environmental toxicants are suspected to aggravate MAFLD in obese individuals. More specifically, pre-existing fatty liver or steatohepatitis may worsen, or fatty liver may progress faster to steatohepatitis in treated patients, or exposed individuals. The mechanisms whereby xenobiotics can aggravate MAFLD are still poorly understood and are currently under deep investigations. Nevertheless, previous studies pointed to the role of different metabolic pathways and cellular events such as activation of de novo lipogenesis and mitochondrial dysfunction, mostly associated with reactive oxygen species overproduction. This review presents the available data gathered with some prototypic compounds with a focus on corticosteroids and rosiglitazone for pharmaceuticals as well as bisphenol A and perfluorooctanoic acid for endocrine disruptors. Although not typically considered as a xenobiotic, ethanol is also discussed because its abuse has dire consequences on obese liver.
Collapse
|
33
|
Canova C, Di Nisio A, Barbieri G, Russo F, Fletcher T, Batzella E, Dalla Zuanna T, Pitter G. PFAS Concentrations and Cardiometabolic Traits in Highly Exposed Children and Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182412881. [PMID: 34948492 PMCID: PMC8701234 DOI: 10.3390/ijerph182412881] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Background: Residents of a large area of north-eastern Italy were exposed for decades to high concentrations of perfluoroalkyl and polyfluoroalkyl substances (PFAS) via drinking water. Despite the large amount of evidence in adults of a positive association between serum PFAS and metabolic outcomes, studies focusing on children and adolescents are limited. We evaluated the associations between serum PFAS concentrations that were quantifiable in at least 40% of samples and lipid profile, blood pressure (BP) and body mass index (BMI) in highly exposed adolescents and children. Methods: A cross-sectional analysis was conducted in 6669 adolescents (14–19 years) and 2693 children (8–11 years) enrolled in the health surveillance program of the Veneto Region. Non-fasting blood samples were obtained and analyzed for perfluorooctanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C) and triglycerides. Low-density lipoprotein cholesterol (LDL-C) was calculated. Systolic and diastolic BP were measured, and BMI z-score accounting for age and sex was estimated. The associations between ln-transformed PFAS (and categorized into quartiles) and continuous outcomes were assessed using generalized additive models. The weighted quantile sum regression approach was used to assess PFAS-mixture effects for each outcome. Analyses were stratified by gender and adjusted for potential confounders. Results: Among adolescents, significant associations were detected between all investigated PFAS and TC, LDL-C, and to a lesser extent HDL-C. Among children, PFOS and PFNA had significant associations with TC, LDL-C and HDL-C, while PFOA and PFHxS had significant associations with HDL-C only. Higher serum concentrations of PFAS, particularly PFOS, were associated with lower BMI z-score. No statistically significant associations were observed between PFAS concentrations and BP. These results were confirmed by the multi-pollutant analysis. Conclusions: Our study supports a consistent association between PFAS concentration and serum lipids, stronger for PFOS and PFNA and with a greater magnitude among children compared to adolescents, and a negative association of PFAS with BMI.
Collapse
Affiliation(s)
- Cristina Canova
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
- Correspondence:
| | - Andrea Di Nisio
- Unit of Andrology and Reproductive Medicine, Department of Medicine, University of Padova, 35131 Padova, Italy;
| | - Giulia Barbieri
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
- Eurac Research, Institute for Biomedicine, 39100 Bolzano, Italy
| | - Francesca Russo
- Directorate of Prevention, Food Safety, and Veterinary Public Health-Veneto Region, 30123 Venice, Italy;
| | - Tony Fletcher
- Public Health, Environments and Society Department, London School of Hygiene and Tropical Medicine, London WC1H 9SH, UK;
| | - Erich Batzella
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
| | - Teresa Dalla Zuanna
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, 35131 Padova, Italy; (G.B.); (E.B.); (T.D.Z.)
| | - Gisella Pitter
- Screening and Health Impact Assessment Unit, Azienda Zero-Veneto Region, 35131 Padua, Italy;
| |
Collapse
|
34
|
Kirk AB, Michelsen-Correa S, Rosen C, Martin CF, Blumberg B. PFAS and Potential Adverse Effects on Bone and Adipose Tissue Through Interactions With PPARγ. Endocrinology 2021; 162:6364127. [PMID: 34480479 PMCID: PMC9034324 DOI: 10.1210/endocr/bqab194] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 01/06/2023]
Abstract
Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are a widely dispersed, broad class of synthetic chemicals with diverse biological effects, including effects on adipose and bone differentiation. PFAS most commonly occur as mixtures and only rarely, if ever, as single environmental contaminants. This poses significant regulatory questions and a pronounced need for chemical risk assessments, analytical methods, and technological solutions to reduce the risk to public and environmental health. The effects of PFAS on biological systems may be complex. Each may have several molecular targets initiating multiple biochemical events leading to a number of different adverse outcomes. An exposure to mixtures or coexposures of PFAS complicates the picture further. This review illustrates how PFAS target peroxisome proliferator-activated receptors. Additionally, we describe how such activation leads to changes in cell differentiation and bone development that contributes to metabolic disorder and bone weakness. This discussion sheds light on the importance of seemingly modest outcomes observed in test animals and highlights why the most sensitive end points identified in some chemical risk assessments are significant from a public health perspective.
Collapse
Affiliation(s)
- Andrea B Kirk
- Correspondence: Andrea Kirk, PhD, US EPA Headquarters, William Jefferson Clinton Bldg, 1200 Pennsylvania Ave NW, Mail Code 5201P, Washington, DC 20460, USA.
| | - Stephani Michelsen-Correa
- EPA Office of Chemical Safety and Pollution Prevention, Biopesticides and Pollution Prevention Division, Washington, District of Columbia 20460, USA
| | - Cliff Rosen
- Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | - Bruce Blumberg
- University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
35
|
Buckley JP, Kuiper JR, Lanphear BP, Calafat AM, Cecil KM, Chen A, Xu Y, Yolton K, Kalkwarf HJ, Braun JM. Associations of Maternal Serum Perfluoroalkyl Substances Concentrations with Early Adolescent Bone Mineral Content and Density: The Health Outcomes and Measures of the Environment (HOME) Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97011. [PMID: 34585601 PMCID: PMC8480151 DOI: 10.1289/ehp9424] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) may impair bone accrual and strength via endocrine disruption and nuclear receptor agonism, but human studies are primarily of adults or cross-sectional. OBJECTIVES We assessed associations of individual PFAS and their mixture during pregnancy with child bone mineral content (BMC) and areal bone mineral density (aBMD) at age 12 y. METHODS Among 206 mother-child pairs enrolled in a prospective cohort (2003-2006), we quantified perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorohexane sulfonic acid (PFHxS), and perfluorooctane sulfonic acid (PFOS) in maternal serum collected during gestation or delivery. When children were age 12 y, we performed dual energy X-ray absorptiometry and calculated BMC, aBMD, and bone mineral apparent density (BMAD) z -scores for six skeletal sites. We estimated covariate-adjusted z -score differences per doubling of individual PFAS using linear regression and assessed the PFAS mixture using quantile g-computation and Bayesian kernel machine regression. We explored whether associations were modified by child's sex or mediated by whole-body lean mass. RESULTS In covariate-adjusted models, we found that higher maternal serum concentrations of PFOA, PFNA, and the PFAS mixture were associated with lower total hip and forearm (one-third distal radius) BMC z -scores in children. Differences in forearm BMC z -scores were - 0.17 [95% confidence interval (CI): - 0.35 , 0.01] and - 0.24 (95% CI: - 0.44 , - 0.05 ) per doubling of PFOA and PFNA, respectively, and - 0.18 (95% CI: - 0.34 , - 0.02 ) per quartile increase in the PFAS mixture. Child's sex modified PFOA associations for some skeletal sites; for example, differences in spine BMAD z -score per doubling were - 0.31 (95% CI: - 0.58 , - 0.03 ) among males and 0.07 (95% CI: - 0.16 , 0.30) among females (modification p = 0.04 ). Except for PFNA among females, these associations were not mediated by whole-body lean mass. DISCUSSION Maternal PFAS concentrations during pregnancy may be associated with lower bone mineral accrual and strength in early adolescence. https://doi.org/10.1289/EHP9424.
Collapse
Affiliation(s)
- Jessie P. Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jordan R. Kuiper
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kim M. Cecil
- Department of Radiology, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Philadelphia, Pennsylvania, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Heidi J. Kalkwarf
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
36
|
Thomsen ML, Henriksen LS, Tinggaard J, Nielsen F, Jensen TK, Main KM. Associations between exposure to perfluoroalkyl substances and body fat evaluated by DXA and MRI in 109 adolescent boys. Environ Health 2021; 20:73. [PMID: 34187491 PMCID: PMC8244201 DOI: 10.1186/s12940-021-00758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 06/14/2021] [Indexed: 05/05/2023]
Abstract
BACKGROUND Exposure to perfluoroalkyl substances (PFASs) has been associated with changes in body mass index and adiposity, but evidence is inconsistent as study design, population age, follow-up periods and exposure levels vary between studies. We investigated associations between PFAS exposure and body fat in a cross-sectional study of healthy boys. METHODS In 109 boys (10-14 years old), magnetic resonance imaging and dual-energy X-ray absorptiometry were performed to evaluate abdominal, visceral fat, total body, android, gynoid, android/gynoid ratio, and total fat percentage standard deviation score. Serum was analysed for perfluorooctanoic acid, perfluorooctane sulfonic acid (PFOS), perfluorohexane sulfonic acid, perfluorononanoic acid, and perfluorodecanoic acid using liquid chromatography and triple quadrupole mass spectrometry. Data were analysed by multivariate linear regression. RESULTS Serum concentrations of PFASs were low. Generally, no clear associations between PFAS exposure and body fat measures were found; however, PFOS was negatively associated with abdominal fat (β = -0.18, P = 0.046), android fat (β = -0.34, P = 0.022), android/gynoid ratio (β = -0.21, P = 0.004), as well as total body fat (β = -0.21, P = 0.079) when adjusting for Tanner stage. CONCLUSIONS Overall, we found no consistent associations between PFAS exposure and body fat. This could be due to our cross-sectional study design. Furthermore, we assessed PFAS exposure in adolescence and not in utero, which is considered a more vulnerable time window of exposure.
Collapse
Affiliation(s)
- Mathilde Lolk Thomsen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Louise Scheutz Henriksen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette Tinggaard
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Nielsen
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Tina Kold Jensen
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Katharina M. Main
- Department of Growth and Reproduction, Copenhagen University Hospital – Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Padmanabhan V, Song W, Puttabyatappa M. Praegnatio Perturbatio-Impact of Endocrine-Disrupting Chemicals. Endocr Rev 2021; 42:295-353. [PMID: 33388776 PMCID: PMC8152448 DOI: 10.1210/endrev/bnaa035] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/07/2023]
Abstract
The burden of adverse pregnancy outcomes such as preterm birth and low birth weight is considerable across the world. Several risk factors for adverse pregnancy outcomes have been identified. One risk factor for adverse pregnancy outcomes receiving considerable attention in recent years is gestational exposure to endocrine-disrupting chemicals (EDCs). Humans are exposed to a multitude of environmental chemicals with known endocrine-disrupting properties, and evidence suggests exposure to these EDCs have the potential to disrupt the maternal-fetal environment culminating in adverse pregnancy and birth outcomes. This review addresses the impact of maternal and fetal exposure to environmental EDCs of natural and man-made chemicals in disrupting the maternal-fetal milieu in human leading to adverse pregnancy and birth outcomes-a risk factor for adult-onset noncommunicable diseases, the role lifestyle and environmental factors play in mitigating or amplifying the effects of EDCs, the underlying mechanisms and mediators involved, and the research directions on which to focus future investigations to help alleviate the adverse effects of EDC exposure.
Collapse
Affiliation(s)
| | - Wenhui Song
- Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
38
|
Padmanabhan V, Moeller J, Puttabyatappa M. Impact of gestational exposure to endocrine disrupting chemicals on pregnancy and birth outcomes. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 92:279-346. [PMID: 34452689 DOI: 10.1016/bs.apha.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
With the advent of industrialization, humans are exposed to a wide range of environmental chemicals, many with endocrine disrupting potential. As successful maintenance of pregnancy and fetal development are under tight hormonal control, the gestational exposure to environmental endocrine disrupting chemicals (EDC) have the potential to adversely affect the maternal milieu and support to the fetus, fetal developmental trajectory and birth outcomes. This chapter summarizes the impact of exposure to EDCs both individually and as mixtures during pregnancy, the immediate and long-term consequences of such exposures on the mother and fetus, the direct and indirect mechanisms through which they elicit their effects, factors that modify their action, and the research directions to focus future investigations.
Collapse
Affiliation(s)
| | - Jacob Moeller
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | | |
Collapse
|
39
|
Lee YJ, Jung HW, Kim HY, Choi YJ, Lee YA. Early-Life Exposure to Per- and Poly-Fluorinated Alkyl Substances and Growth, Adiposity, and Puberty in Children: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:683297. [PMID: 34566884 PMCID: PMC8458955 DOI: 10.3389/fendo.2021.683297] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/16/2021] [Indexed: 01/09/2023] Open
Abstract
Per- or polyfluoroalkyl substances (PFAS), a family of synthetic polyfluorinated compounds, are widely used in consumer products. Ubiquitous exposures to PFAS, in consideration of their persistence, bioaccumulation potential, and toxicities have led to concerns regarding possible harmful effects during critical periods of development in early-life and long-term consequences on health. The potential effects of PFAS depend on various factors including the type of PFAS and the timing and level of exposure. We performed a systematic review of the epidemiologic literature to assess the effects of early-life PFAS exposure on prenatal and postnatal growth, adiposity, and puberty in children and adolescents. For birth size, most studies indicated that prenatal PFAS exposure, in particular long-chain PFAS, may impair fetal growth, albeit some reports of null associations with maternal PFAS. For growth within 2 years of age, prenatal PFAS exposure showed no associations with height and either null or negative associations with weight. However, postnatal PFAS exposures were inversely related to height and weight at 2 years in a cross-sectional study. For postnatal adiposity, prenatal PFAS may mostly have negative associations with body mass index in the first 2 years of life, but positive relationships with adiposity in childhood and adolescence, although some studies showed null associations. For puberty, the evidence for associations between early-life PFAS exposure and pubertal development or sex hormone levels were limited and inconclusive. From experimental studies, plausible mechanisms through which PFAS may affect early-life growth and puberty include PFAS-induced activation of peroxisome proliferator-activated receptor, alterations of thyroid or steroid hormone synthesis and metabolism, and their weak estrogenic or anti-androgenic properties. Although the published literature suggests possible effects of PFAS exposures on early-life growth, adiposity, and puberty, current human evidence is limited in establishing PFAS-induced effects on early-life physical development. Further investigation is warranted to clarify PFAS-induced effects on growth and physical development in consideration of the critical time-window of exposure, concomitant exposure to chemical mixtures including various PFAS types, and possible non-monotonic dose-response relationship for growth and adiposity trajectories.
Collapse
Affiliation(s)
- Yun Jeong Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Hae Woon Jung
- Department of Pediatrics, Kyung Hee University Medical Center, Seoul, South Korea
| | - Hwa Young Kim
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yoon-Jung Choi
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Environmental Health Center, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Young Ah Lee,
| |
Collapse
|