1
|
Jantape T, Kongwattanakul K, Arribas SM, Rodríguez-Rodríguez P, Iampanichakul M, Settheetham-Ishida W, Phuthong S. Maternal Obesity Alters Placental and Umbilical Cord Plasma Oxidative Stress, a Cross-Sectional Study. Int J Mol Sci 2024; 25:10866. [PMID: 39409195 PMCID: PMC11477106 DOI: 10.3390/ijms251910866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
Maternal obesity has been shown to impair the oxidative status in the placenta and newborns, potentially leading to adverse pregnancy outcomes and long-term effects on the programming of offspring metabolic status. This study aimed to investigate the impact of maternal obesity on maternal and umbilical cord plasma oxidative status, as well as placental oxidative adaptation. Maternal obesity (n = 20), defined as a pre-pregnancy BMI ≥ 25 kg/m2, and maternal leanness (n = 20), defined as a pre-pregnancy BMI < 23 kg/m2, were the group categories used in this study. Both groups were matched according to gestational age at delivery. Maternal blood, umbilical cord blood, and placental tissue were collected to assess nutritional content (cholesterol, triglyceride, and protein), oxidative stress markers (MDA and protein carbonyl), and antioxidant activity (SOD and catalase). Placental protein expression (SOD2, catalase, UCP2, and Nrf2) was evaluated using Western blot analysis. Catalase activity in maternal plasma significantly increased in the maternal obesity group (p = 0.0200), with a trend toward increased MDA and protein carbonyl levels. In umbilical cord plasma, triglyceride, protein carbonyl, and catalase activity were significantly elevated in the maternal obesity group compared with the lean controls (p = 0.0482, 0.0291, and 0.0347, respectively). Placental protein expression analysis revealed significantly decreased SOD2 (p = 0.0011) and catalase (p < 0.0001), along with Nrf2 downregulation (p < 0.0001). An increase in mitochondrial antioxidant UCP2 expression was observed (p = 0.0117). The neonatal protein carbonyl levels positively correlated with placental protein carbonyl (r = 0.7405, p < 0.0001) and negatively correlated with maternal catalase activity (r = -0.4332, p = 0.0052). This study thus provides evidence that maternal obesity is associated with placental and fetal oxidative stress, alongside a concurrent increase in placental antioxidant UCP2 expression.
Collapse
Affiliation(s)
- Thanyawan Jantape
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Kiattisak Kongwattanakul
- Department of Obstetrics and Gynecology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Silvia M. Arribas
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.M.A.); (P.R.-R.)
| | - Pilar Rodríguez-Rodríguez
- Department of Physiology, Faculty of Medicine, Universidad Autónoma de Madrid, 28029 Madrid, Spain; (S.M.A.); (P.R.-R.)
| | - Metee Iampanichakul
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Wannapa Settheetham-Ishida
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
| | - Sophida Phuthong
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand; (T.J.); (M.I.); (W.S.-I.)
- Human High Performance and Health Promotion Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
2
|
Kramer AC, Jansson T, Bale TL, Powell TL. Maternal-fetal cross-talk via the placenta: influence on offspring development and metabolism. Development 2023; 150:dev202088. [PMID: 37831056 PMCID: PMC10617615 DOI: 10.1242/dev.202088] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Compelling epidemiological and animal experimental data demonstrate that cardiometabolic and neuropsychiatric diseases originate in a suboptimal intrauterine environment. Here, we review evidence suggesting that altered placental function may, at least in part, mediate the link between the maternal environment and changes in fetal growth and development. Emerging evidence indicates that the placenta controls the development and function of several fetal tissues through nutrient sensing, modulation of trophoblast nutrient transporters and by altering the number and cargo of released extracellular vesicles. In this Review, we discuss the development and functions of the maternal-placental-fetal interface (in humans and mice) and how cross-talk between these compartments may be a mechanism for in utero programming, focusing on mechanistic target of rapamycin (mTOR), adiponectin and O-GlcNac transferase (OGT) signaling. We also discuss how maternal diet and stress influences fetal development and metabolism and how fetal growth restriction can result in susceptibility to developing chronic disease later in life. Finally, we speculate how interventions targeting placental function may offer unprecedented opportunities to prevent cardiometabolic disease in future generations.
Collapse
Affiliation(s)
- Avery C. Kramer
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Thomas Jansson
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Tracy L. Bale
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| | - Theresa L. Powell
- Departments of Obstetrics & Gynecology, Psychiatry and Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA
| |
Collapse
|
3
|
Stevens DR, Yeung E, Hinkle SN, Grobman W, Williams A, Ouidir M, Kumar R, Lipsky LM, Rohn MCH, Kanner J, Sherman S, Chen Z, Mendola P. Maternal asthma in relation to infant size and body composition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2023; 2:100122. [PMID: 37485032 PMCID: PMC10361394 DOI: 10.1016/j.jacig.2023.100122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Asthma affects 10% of pregnancies and may influence offspring health, including infant size and body composition, through hypoxic and inflammatory pathways. Objective We sought to determine associations between maternal asthma and asthma phenotypes during pregnancy and infant size and body composition. Methods The B-WELL-Mom study (2015-19) is a prospective cohort of 418 pregnant persons with and without asthma recruited in the first trimester of pregnancy from 2 US obstetric clinics. Exposures were maternal self-reported active asthma (n = 311) or no asthma (n = 107), and asthma phenotypes were classified on the bases of atopy, onset, exercise induced, control, severity, symptomology, and exacerbations. Outcomes were infant weight, length, head circumference, and skinfold measurements at birth and postnatal follow-up, as well as fat and lean mass assessed by air displacement plethysmography at birth. Adjusted multivariable linear regression examined associations of maternal asthma and asthma phenotypes with infant outcomes. Results Offspring were born at a mean ± SD of 38 ± 2.3 weeks' gestation and were 18 ± 2.2 weeks of age at postnatal follow-up. Infants of participants with asthma had a mean ± SD fat mass of 11.0 ± 4.2%, birth weight of 3045.8 ± 604.3 g, and postnatal follow-up weight of 6696.4 ± 964.2 g, which were not different from infants of participants without asthma (respectively, β [95% confidence interval]: -0.1 [-1.4, 1.3], -26.7 [-156.9, 103.4], and 107.5 [-117.3, 332.3]). Few associations were observed between asthma or asthma phenotypes and infant size or body composition. Conclusions In a current obstetric cohort, maternal asthma during pregnancy was not associated with differential infant size or body composition.
Collapse
Affiliation(s)
- Danielle R. Stevens
- Epidemiology Branch, National Institute of Environmental Health Sciences, Research Triangle Park
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Edwina Yeung
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Stefanie N. Hinkle
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | - Andrew Williams
- School of Medicine and Health Sciences, University of North Dakota, Grand Forks
| | - Marion Ouidir
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Rajesh Kumar
- Feinberg School of Medicine, Northwestern University, Chicago
| | - Leah M. Lipsky
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Matthew C. H. Rohn
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
- Department of Obstetrics and Gynecology, George Washington University, Washington
| | - Jenna Kanner
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | | | - Zhen Chen
- Biostatistics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
| | - Pauline Mendola
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo
| |
Collapse
|
4
|
McColl ER, Henderson JT, Piquette-Miller M. Dysregulation of Amino Acid Transporters in a Rat Model of TLR7-Mediated Maternal Immune Activation. Pharmaceutics 2023; 15:1857. [PMID: 37514044 PMCID: PMC10385561 DOI: 10.3390/pharmaceutics15071857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Maternal immune activation (MIA) during pregnancy is linked to neurodevelopmental disorders in humans. Similarly, the TLR7 agonist imiquimod alters neurodevelopment in rodents. While the mechanisms underlying MIA-mediated neurodevelopmental changes are unknown, they could involve dysregulation of amino acid transporters essential for neurodevelopment. Therefore, we sought to determine the nature of such transporter changes in both imiquimod-treated rats and human placentas during infection. Pregnant rats received imiquimod on gestational day (GD)14. Transporter expression was measured in placentas and fetal brains via qPCR (GD14.5) and immunoblotting (GD16). To monitor function, fetal brain amino acid levels were measured by HPLC on GD16. Gene expression in the cortex of female fetal brains was further examined by RNAseq on GD19. In human placentas, suspected active infection was associated with decreased ASCT1 and SNAT2 protein expression. Similarly, in imiquimod-treated rats, ASCT1 and SNAT2 protein was also decreased in male placentas, while EAAT2 was decreased in female placentas. CAT3 was increased in female fetal brains. Consistent with this, imiquimod altered amino acid levels in fetal brains, while RNAseq demonstrated changes in expression of several genes implicated in autism. Thus, imiquimod alters amino acid transporter levels in pregnant rats, and similar changes occur in human placentas during active infection. This suggests that changes in expression of amino acid transporters may contribute to effects mediated by MIA toward altered neurodevelopment.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Jeffrey T Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON M5S 3M2, Canada
| |
Collapse
|
5
|
Chaves AB, Zheng D, Johnson JA, Bergman BC, Patinkin ZW, Zaegel V, Biagioni EM, Krassovskaia P, Broskey NT, May LE, Dabelea D, Houmard JA, Boyle KE. Infant Mesenchymal Stem Cell Insulin Action Is Associated With Maternal Plasma Free Fatty Acids, Independent of Obesity Status: The Healthy Start Study. Diabetes 2022; 71:1649-1659. [PMID: 35621990 PMCID: PMC9490356 DOI: 10.2337/db21-0812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022]
Abstract
Preclinical rodent and nonhuman primate models investigating maternal obesity have highlighted the importance of the intrauterine environment in the development of insulin resistance in offspring; however, it remains unclear if these findings can be translated to humans. To investigate possible intrauterine effects in humans, we isolated mesenchymal stem cells (MSCs) from the umbilical cord tissue of infants born to mothers of normal weight or mothers with obesity. Insulin-stimulated glycogen storage was determined in MSCs undergoing myogenesis in vitro. There was no difference in insulin action based on maternal obesity. However, maternal free fatty acid (FFA) concentration, cord leptin, and intracellular triglyceride content were positively correlated with insulin action. Furthermore, MSCs from offspring born to mothers with elevated FFAs displayed elevated activation of the mTOR signaling pathway. Taken together, these data suggest that infants born to mothers with elevated lipid availability have greater insulin action in MSCs, which may indicate upregulation of growth and lipid storage pathways during periods of maternal overnutrition.
Collapse
Affiliation(s)
- Alec B. Chaves
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Donghai Zheng
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Jonathan A. Johnson
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Bryan C. Bergman
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Zachary W. Patinkin
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY
| | - Vincent Zaegel
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Ericka M. Biagioni
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Polina Krassovskaia
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Nicholas T. Broskey
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Linda E. May
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Dana Dabelea
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO
- The Lifecourse Epidemiology of Adiposity and Diabetes Center, Aurora, CO
| | - Joseph A. Houmard
- Human Performance Laboratory, Department of Kinesiology, East Carolina University, Greenville, NC
- East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC
| | - Kristen E. Boyle
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- The Lifecourse Epidemiology of Adiposity and Diabetes Center, Aurora, CO
| |
Collapse
|
6
|
McColl ER, Piquette-Miller M. Viral model of maternal immune activation alters placental AMPK and mTORC1 signaling in rats. Placenta 2021; 112:36-44. [PMID: 34256323 DOI: 10.1016/j.placenta.2021.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 05/28/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Maternal immune activation (MIA) is associated with neurodevelopmental disorders in offspring. We previously demonstrated that poly(I:C)-mediated MIA alters placental and fetal brain amino acid transporter expression in rats, which could potentially play a role in altered neurodevelopment; however, the mechanism(s) underlying these changes in amino acid transporter expression remain unknown. The objective of the current study was to investigate the mechanism(s) underlying poly(I:C)-mediated changes in the expression of the amino acid transporters in the placenta. METHODS Pregnant rats received poly(I:C) on gestational day 14 and placentas were collected 6 h later. Mass spectrometry-based proteomics of placentas was performed followed by pathway enrichment analysis. Activation of mTORC1 and its upstream regulator, AMPK, was investigated using immunoblotting. Finally, the role of mTORC1 and AMPK in regulating the expression and localization of the amino acid transporters EAAT2 and ASCT1 was investigated in the human choriocarcinoma cell line JAR. RESULTS The impact of poly(I:C) on the placental proteome was highly sexually dimorphic. While proteomics-based pathway enrichment analysis indicated enrichment of mTOR signaling in male placentas only, further investigation revealed inhibition of mTORC1 in both male and female placentas in addition to activation of AMPK. In vitro, activation of AMPK and inhibition of mTORC1 decreased membrane localization of EAAT2 and ASCT1. DISCUSSION Poly(I:C)-mediated MIA activates AMPK and inhibits mTORC1 in rat placenta, both of which decrease expression and membrane localization of EAAT2 and ASCT1 in vitro. Thus, AMPK/mTORC1 signaling could be a novel treatment target for alleviating MIA-mediated changes in placental amino acid transport.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON, M5S 3M2, Canada.
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College St, Toronto, ON, M5S 3M2, Canada.
| |
Collapse
|
7
|
Keleher MR, Erickson K, Smith HA, Kechris KJ, Yang IV, Dabelea D, Friedman JE, Boyle KE, Jansson T. Placental Insulin/IGF-1 Signaling, PGC-1α, and Inflammatory Pathways Are Associated With Metabolic Outcomes at 4-6 Years of Age: The ECHO Healthy Start Cohort. Diabetes 2021; 70:745-751. [PMID: 33414248 PMCID: PMC7897346 DOI: 10.2337/db20-0902] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/24/2020] [Indexed: 12/21/2022]
Abstract
An adverse intrauterine environment is associated with the future risk of obesity and type 2 diabetes. Changes in placental function may underpin the intrauterine origins of adult disease, but longitudinal studies linking placental function with childhood outcomes are rare. Here, we determined the abundance and phosphorylation of protein intermediates involved in insulin signaling, inflammation, cortisol metabolism, protein glycosylation, and mitochondrial biogenesis in placental villus samples from healthy mothers from the Healthy Start cohort. Using MANOVA, we tested the association between placental proteins and offspring adiposity (fat mass percentage) at birth (n = 109) and infancy (4-6 months, n = 104), and adiposity, skinfold thickness, triglycerides, and insulin in children (4-6 years, n = 66). Placental IGF-1 receptor protein was positively associated with serum triglycerides in children. GSK3β phosphorylation at serine 9, a readout of insulin and growth factor signaling, and the ratio of phosphorylated to total JNK2 were both positively associated with midthigh skinfold thickness in children. Moreover, peroxisome proliferator-activated receptor γ coactivator (PGC)-1α abundance was positively associated with insulin in children. In conclusion, placental insulin/IGF-1 signaling, PGC-1α, and inflammation pathways were positively associated with metabolic outcomes in 4- to 6-year-old children, identifying a novel link between placental function and long-term metabolic outcomes.
Collapse
Affiliation(s)
- Madeline Rose Keleher
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO
| | - Kathryn Erickson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Harry A Smith
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Katerina J Kechris
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO
- Department of Biostatistics and Informatics, Colorado School of Public Health, Aurora, CO
| | - Ivana V Yang
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO
- Department of Medicine, University of Colorado School of Medicine, Aurora, CO
| | - Dana Dabelea
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO
- Department of Epidemiology, Colorado School of Public Health, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Jacob E Friedman
- Section of Neonatology, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
- Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Kristen E Boyle
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO
- The Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|