1
|
Tucker JAL, McCarthy SF, Bornath DPD, Khoja JS, Hazell TJ. The Effect of the Menstrual Cycle on Energy Intake: A Systematic Review and Meta-analysis. Nutr Rev 2025; 83:e866-e876. [PMID: 39008822 PMCID: PMC11819481 DOI: 10.1093/nutrit/nuae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
CONTEXT Energy intake may differ across the menstrual cycle, with some studies identifying greater energy intake in the luteal phase (LP) compared with the follicular phase (FP) and others finding no clear differences. To date, no study has systematically synthesized the available data to draw more definite conclusions while considering any methodological inconsistencies between studies. OBJECTIVE The aim was to conduct a systematic review/meta-analysis in an effort to determine if there are differences in energy intake between the FP and LP. DATA SOURCES A systematic search strategy was developed and the search was conducted in 5 databases for studies that investigated any changes in energy intake across menstrual phases. DATA EXTRACTION Using Covidence, studies were identified and included if they contained individuals between the ages of 18 and 45 years, maintained an average body mass index (BMI) of 18.5-25 kg/m2, had no history of disordered eating, and included energy intake and menstrual cycle measurements in the FP and LP. DATA ANALYSIS Effect sizes were calculated for each study and a random-effects model was used to pool the results of each study. RESULTS Fifteen datasets were included consisting of 330 female participants with a mean age of 26 ± 4 years and mean BMI of 22.4 ± 2.3 kg/m2. Overall, there was a statistically significant difference (standardized mean difference = 0.69; P = .039) with increased energy intake in the LP compared with the FP (crude 168 kcal⋅d-1 average difference between phases). CONCLUSION Energy intake was found to be greater in the LP compared with the FP, providing insight into the effect of the menstrual cycle on energy intake. However, there were repeated methodological inconsistencies and future work should strive to utilize best practices for both energy intake measurement and menstrual phase specification.
Collapse
Affiliation(s)
- Jessica A L Tucker
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Seth F McCarthy
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Derek P D Bornath
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Jenna S Khoja
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| | - Tom J Hazell
- Department of Kinesiology and Physical Education, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
| |
Collapse
|
2
|
Podestá D I, Blannin AK, Wallis GA. Effects of overnight-fasted versus fed-state exercise on the components of energy balance and interstitial glucose across four days in healthy adults. Appetite 2024; 203:107716. [PMID: 39426734 DOI: 10.1016/j.appet.2024.107716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Exercise is an essential component of body mass management interventions. Overnight-fasted exercise (FASTex) acutely enhances fat oxidation compared with fed exercise (FEDex). However, consistent FASTex training does not typically further enhance body mass loss, suggesting the induction of energy compensation responses. The present study aimed to test the effects of FASTex or FEDex on the components of energy balance (i.e., energy intake (EI), energy expenditure (EE), and appetite) and interstitial glucose metrics across four days. METHODS Twelve (10 men, 2 women) healthy, physically active participants (age 22.6 + 1.2 years (mean ± SD); BMI 22.5 ± 2.8 kg ⋅ m-2) were studied twice, across four days, after a 75-min run either FASTex or FEDex. Daily EI was obtained after subtracting leftovers from the provided food. Daily fasting appetite was measured by visual analogue scales. Activity- and total- EE (AEE & TEE, respectively) were estimated by combining heart rate and accelerometry. Continuous glucose monitoring was used to capture daily interstitial glucose metrics and Likert scales were utilised to quantify fatigue, stress, sleep quality, and muscle soreness levels. RESULTS No differences between conditions were observed for EI (FASTex = 15.0 ± 0.1 vs FEDex = 15.0 ± 0.4 MJ⋅day-1; p = 0.865), AEE (FASTex = 7.6 ± 1.1 vs FEDex 7.8 ± 1.3 MJ⋅day-1; p = 0.223) and TEE (FASTex = 15.9 ± 3.4 vs 14.9 ± 4.5 MJ⋅day-1; p = 0.136). Additionally, no condition effects for appetite (p > 0.05) and interstitial glucose (p = 0.074) were observed. CONCLUSION FASTex did not differ from FEDex in the response of components of energy balance or interstitial glucose across four days, suggesting that both exercise approaches could be used interchangeably.
Collapse
Affiliation(s)
- I Podestá D
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK
| | - A K Blannin
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK
| | - G A Wallis
- School of Sport, Exercise & Rehabilitation Sciences, University of Uirmingham, Birmingham, UK.
| |
Collapse
|
3
|
Khodabandeh S, Rahmani-Nia F, Mirzaei B, Fairchild TJ, Hazell TJ. The effects of acute aerobic exercise on appetite-regulating parameters and energy intake in males with obesity. Health Sci Rep 2024; 7:e70067. [PMID: 39263536 PMCID: PMC11387465 DOI: 10.1002/hsr2.70067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024] Open
Abstract
Objective To investigate the effects of moderate-intensity aerobic exercise on appetite control parameters, appetite perceptions, and energy intake in sedentary males with obesity. Design Eleven males with obesity (body fat percentage 36.5 ± 2.5%, body mass index 35.3 ± 4.2 kg/m2, V̇O2peak 29 ± 3.1 mL·kg-1·min-1) completed two experimental sessions: (1) no exercise (CTRL) and (2) 60 min of moderate-intensity cycling exercise at 60% V̇O2peak (MICT) in a crossover design. Blood analysis included growth differentiation factor 15 (GDF-15), total ghrelin, peptide tyrosine tyrosine3-36 (PYY3-36), total glucagon-like peptide-1 (GLP-1), insulin, and glucose, as well as subjective appetite perceptions were measured in specific intervals. A standard breakfast at 0 h and an ad libitum meal postexercise was provided. Result GDF-15 (95% confidence interval [CI]: [2.48-27.28] ng/L, p = 0.021) increased immediately following MICT compared to CTRL. However, there were no differences for PYY3-36 (p = 0.480,η p 2 = 0.025 ), total ghrelin (p = 0.646,η p 2 = 0.011 ), and total GLP-1 (p = 0.451,η p 2 = 0.029 ) between sessions. Appetite perceptions (95% CI: [(-20.38)-(-6.16)] mm, p = 0.001) were suppressed following MICT though energy intake was not different between the sessions (95% CI: [(-1904.9)-928.1] kJ, p = 0.480). Conclusion Sixty minutes of MICT increased GDF-15 while suppressing appetite perceptions in individuals with obesity. There was no energy compensation postexercise.
Collapse
Affiliation(s)
| | | | - Bahman Mirzaei
- Department of Exercise Physiology University of Guilan Rasht Iran
| | - Timothy J Fairchild
- School of Allied Health and Centre for Healthy Ageing College of Health and Education, Murdoch University Murdoch Western Australia Australia
| | - Tom J Hazell
- Department of Kinesiology and Physical Education Wilfrid Laurier University Waterloo Canada
| |
Collapse
|
4
|
Govette A, Gillen JB. At-home bodyweight interval exercise in the fed versus fasted state lowers postprandial glycemia and appetite perceptions in females. Appl Physiol Nutr Metab 2024; 49:1217-1227. [PMID: 38776559 DOI: 10.1139/apnm-2023-0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Limited research has characterized the metabolic health benefits of bodyweight interval exercise (BWE) performed outside of a laboratory setting. Metabolic responses to exercise can also be influenced by meal timing around exercise, but the interactive effects of BWE and nutrition are unknown. This study investigated the effects of BWE performed in the fasted or fed state on postprandial glycemia, post-exercise fat oxidation and appetite perceptions. Twelve females (23 ± 2 years; 22 ± 2 kg/m2) underwent two virtually-monitored trials that involved completing BWE (10 × 1 min, 1 min recovery) 5 min before (FastEX) or beginning BWE 10 min after (FedEX) a standardized breakfast. Heart rate and rating of perceived exertion (RPE) were measured during exercise and capillary glucose concentrations were measured for 2 h postprandial. Following exercise, appetite perceptions were assessed and Lumen expired carbon dioxide percentage (L%CO2) was measured as an index of fat oxidation. Heart rate (85 ± 5%) and RPE (14 ± 2) did not differ between conditions (p > 0.05). Postprandial glucose mean (6.1 ± 0.6 vs. 6.8 ± 0.8 mmol/L, p = 0.03), peak (7.4 ± 1.2 vs. 8.5 ± 1.5 mmol/L, p = 0.01), and area under the curve (AUC) (758 ± 72 vs. 973 ± 82 mmol/L × 2 h, p = 0.004) were lower in FedEX versus FastEX. Appetite perceptions were lower in FedEX versus FastEX (-87.63 ± 58.51 vs. -42.06 ± 34.96 mm, p = 0.029). Post-exercise L%CO2 was transiently decreased 30 min post-exercise in both conditions (4.03 ± 0.38 vs. 4.29 ± 0.34%, p = 0.0023), reflective of increased fat oxidation following BWE. These findings demonstrate that BWE performed in the fed compared to the fasted state lowered postprandial glycemia and appetite perceptions in females.
Collapse
Affiliation(s)
- Alexa Govette
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| | - Jenna B Gillen
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON M5S 2C9, Canada
| |
Collapse
|
5
|
Poovey K, Rancourt D. Visceral sensitivity, hunger responsiveness, and satiety responsiveness: Associations between facets of gastrointestinal interoception and disordered eating profiles in an undergraduate sample. Appetite 2024; 196:107252. [PMID: 38355050 DOI: 10.1016/j.appet.2024.107252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
This preregistered study examined associations between empirically derived profiles of disordered eating in a diverse nonclinical sample and three facets of gastrointestinal (GI) interoception (visceral sensitivity, hunger responsiveness, satiety responsiveness). University students (n = 591; 53.3% women; 23.0% Hispanic) completed the Visceral Sensitivity Index, Adult Eating Behavior Questionnaire, and Eating Pathology Symptom Inventory. Latent profile analysis was conducted in Mplus v8.3 with four behavioral indicators (restricting, binge eating, excessive exercise, purging [binary]). Facets of GI interoception predicting odds of disordered eating profile membership compared to an asymptomatic group were evaluated. Five profiles were identified. Facets of GI interoception differentially predicted odds of membership in disordered eating profiles. However, higher scores on all three facets of GI interoception were associated with increased odds of membership in a high disordered eating profile. The relationship between distinct facets of GI interoception and specific disordered eating patterns appears nuanced, though individuals displaying a range of disordered eating behaviors may exhibit broad GI interoceptive dysfunction. Findings are consistent with the recent emphasis on idiographic treatment approaches for disordered eating and may have implications for screening among university students. Prospective longitudinal work and extension to clinical samples is needed.
Collapse
Affiliation(s)
- Kendall Poovey
- Department of Psychology, University of South Florida, 4204 E Fowler Ave, Tampa, FL, 33620, USA.
| | - Diana Rancourt
- Department of Psychology, University of South Florida, 4204 E Fowler Ave, Tampa, FL, 33620, USA
| |
Collapse
|
6
|
Peeters WM, Cook LE, Page O. The effect of pre-exercise protein intake on substrate metabolism, energy expenditure, and energy intake: a dose-response study. J Int Soc Sports Nutr 2023; 20:2275006. [PMID: 37886841 PMCID: PMC11018317 DOI: 10.1080/15502783.2023.2275006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Pre-exercise protein consumption does not seem to influence substrate metabolism during exercise compared to fasted exercise, however it is unclear if the protein dose impacts on this effect. METHODS In a randomized, double-blinded within-subject design trial, healthy, active males and females (n = 15, 25 ± 5 yrs, O2peak: 47.5 ± 8.8 ml/kg/min) completed 1 h of cycling exercise at 60% peak power output 30 min after having consumed either 0, 20, or 40 g of whey protein. Indirect calorimetry was used to measure substrate oxidation during exercise and baseline and post-exercise resting energy expenditure. Blood samples were taken throughout the trials to measure metabolic responses. Free-living food intake post-trial was collected using food diaries. RESULTS Fat oxidation rates during exercise did not differ between the three conditions (p = 0.19) with small effect sizes between conditions (Cohen's dz: 0 vs. 20 g = 0.22, 0 vs. 40 g = 0.47, 20 vs. 40 g = 0.27). Serum insulin was higher in the protein groups vs. 0 g (p < 0.05), whereas non-esterified fatty acids were higher in the 0 g compared to 20 and 40 g (p < 0.05). Glucose was significantly lower after 15 min of exercise in 20 and 40 g vs. 0 g (p = 0.01). Resting energy expenditure was elevated post-exercise (p < 0.001), without an interaction for protein dose (p = 0.90). Post-trial free-living energy intake was not different between conditions (p = 0.31), but 24-h energy intake was significantly higher in 40 vs. 0 g (p = 0.04). CONCLUSION Protein doses up to 40 g do not seem to impair fat oxidation rates during exercise compared to fasted exercise and could be considered as a nutritional strategy for exercising individuals who struggle to include fasted exercise in their training.
Collapse
Affiliation(s)
- Wouter Michiel Peeters
- Newcastle University, School of Biomedical, Nutrition and Sport Sciences, Newcastle-upon-Tyne, UK
| | - Lauren Elizabetha Cook
- Newcastle University, School of Biomedical, Nutrition and Sport Sciences, Newcastle-upon-Tyne, UK
| | - Oliver Page
- Newcastle University, Population Health Science Institute, Newcastle-upon-Tyne, UK
| |
Collapse
|
7
|
Stensel DJ. How can physical activity facilitate a sustainable future? Reducing obesity and chronic disease. Proc Nutr Soc 2023; 82:286-297. [PMID: 36892103 DOI: 10.1017/s0029665123002203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
This review examines the ways in which physical activity can contribute to a sustainable future by addressing significant public health issues. The review begins by identifying obesity and ageing as two major challenges facing societies around the world due to the association of both with the risk of chronic disease. Recent developments in the understanding and treatment of obesity are examined followed by an appraisal of the role of exercise alone and in combination with other therapies in preventing and managing obesity. The review then addresses the interaction between exercise and appetite due to the central role appetite plays in the development of overweight and obesity. The final section of the review examines the potential of physical activity to combat age-related chronic disease risk including CVD, cancer and dementia. It is concluded that while bariatric surgery and pharmacotherapy are the most effective treatments for severe obesity, physical activity has a role to play facilitating and enhancing weight loss in combination with other methods. Where weight/fat reduction via exercise is less than expected this is likely due to metabolic adaptation induced by physiological changes facilitating increased energy intake and decreased energy expenditure. Physical activity has many health benefits independent of weight control including reducing the risk of developing CVD, cancer and dementia and enhancing cognitive function in older adults. Physical activity may also provide resilience for future generations by protecting against the more severe effects of global pandemics and reducing greenhouse gas emissions via active commuting.
Collapse
Affiliation(s)
- David J Stensel
- School of Sport, Exercise and Health Sciences, National Centre for Sport and Exercise Medicine, Loughborough University, Loughborough, UK
- National Institute for Health and Care Research (NIHR), Leicester Biomedical Research Centre, University Hospitals of Leicester, National Health Service (NHS) Trust and the University of Leicester, Leicester, UK
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
- Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| |
Collapse
|
8
|
Frampton J, Serrano-Contreras JI, Garcia-Perez I, Franco-Becker G, Penhaligan J, Tan ASY, de Oliveira ACC, Milner AJ, Murphy KG, Frost G, Chambers ES. The metabolic interplay between dietary carbohydrate and exercise and its role in acute appetite regulation in males: a randomized controlled study. J Physiol 2023; 601:3461-3480. [PMID: 37269207 DOI: 10.1113/jp284294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/26/2023] [Indexed: 06/04/2023] Open
Abstract
An understanding of the metabolic determinants of postexercise appetite regulation would facilitate development of adjunctive therapeutics to suppress compensatory eating behaviours and improve the efficacy of exercise as a weight-loss treatment. Metabolic responses to acute exercise are, however, dependent on pre-exercise nutritional practices, including carbohydrate intake. We therefore aimed to determine the interactive effects of dietary carbohydrate and exercise on plasma hormonal and metabolite responses and explore mediators of exercise-induced changes in appetite regulation across nutritional states. In this randomized crossover study, participants completed four 120 min visits: (i) control (water) followed by rest; (ii) control followed by exercise (30 min at ∼75% of maximal oxygen uptake); (iii) carbohydrate (75 g maltodextrin) followed by rest; and (iv) carbohydrate followed by exercise. An ad libitum meal was provided at the end of each 120 min visit, with blood sample collection and appetite assessment performed at predefined intervals. We found that dietary carbohydrate and exercise exerted independent effects on the hormones glucagon-like peptide 1 (carbohydrate, 16.8 pmol/L; exercise, 7.4 pmol/L), ghrelin (carbohydrate, -48.8 pmol/L; exercise: -22.7 pmol/L) and glucagon (carbohydrate, 9.8 ng/L; exercise, 8.2 ng/L) that were linked to the generation of distinct plasma 1 H nuclear magnetic resonance metabolic phenotypes. These metabolic responses were associated with changes in appetite and energy intake, and plasma acetate and succinate were subsequently identified as potential novel mediators of exercise-induced appetite and energy intake responses. In summary, dietary carbohydrate and exercise independently influence gastrointestinal hormones associated with appetite regulation. Future work is warranted to probe the mechanistic importance of plasma acetate and succinate in postexercise appetite regulation. KEY POINTS: Carbohydrate and exercise independently influence key appetite-regulating hormones. Temporal changes in postexercise appetite are linked to acetate, lactate and peptide YY. Postexercise energy intake is associated with glucagon-like peptide 1 and succinate levels.
Collapse
Affiliation(s)
- James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jose Ivan Serrano-Contreras
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Isabel Garcia-Perez
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Georgia Franco-Becker
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jack Penhaligan
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Abbigail S Y Tan
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Ana Claudia Cepas de Oliveira
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Annabelle J Milner
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Edward S Chambers
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
9
|
Jarvis PRE, Cardin JL, Nisevich-Bede PM, McCarter JP. Continuous glucose monitoring in a healthy population: understanding the post-prandial glycemic response in individuals without diabetes mellitus. Metabolism 2023:155640. [PMID: 37356796 DOI: 10.1016/j.metabol.2023.155640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Continuous glucose monitoring has become a common adjunct in the management of Diabetes Mellitus. However, there has been a recent trend among individuals without diabetes using these devices as a means of monitoring their health. The increased visibility of glucose data has allowed users to study the effect lifestyle has upon post-prandial glucose levels. Although post-prandial hyperglycemia is well understood in the setting of diabetes, its impact in individuals without diabetes is less well defined. This article reviews the factors which contribute to post-prandial hyperglycemia in individuals without diabetes and how the data obtained from continuous glucose monitoring can be used to improve an individual's metabolic health.
Collapse
Affiliation(s)
| | | | | | - James P McCarter
- Medical and Clinical Affairs, Abbott Laboratories, Alameda, CA, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
10
|
Thackray AE, Stensel DJ. The impact of acute exercise on appetite control: Current insights and future perspectives. Appetite 2023; 186:106557. [PMID: 37044176 DOI: 10.1016/j.appet.2023.106557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/14/2023]
Abstract
The interaction of exercise with appetite control and energy intake has been widely studied due to the ability of exercise-related energy expenditure to influence energy and substrate balance. Many empirical studies have explored appetite and energy intake responses to acute (single) exercise bouts involving a variety of protocols in diverse populations revealing several consistent trends. The balance of evidence suggests that acute moderate-to-vigorous intensity land-based exercise suppresses subjective appetite feelings and the orexigenic hormone acylated ghrelin and elevates the anorexigenic hormones peptide YY and glucagon-like peptide-1. These perturbations are transient and hormone concentrations usually return to resting values in the hours after exercise without evoking compensatory increases in appetite or energy intake on the same day. This evidence counters the popular assertion that exercise transiently increases appetite and may prompt greater energy intake at subsequent meals. The indifference of the appetite control system to acute exercise-induced energy deficits contrasts with the immediate increases in appetite and energy intake provoked by equivalent diet-induced energy deficits. There is, however, considerable inter-individual variability in subjective appetite and hormonal responses to acute exercise with some individuals experiencing greater exercise-induced appetite suppression than others. Current evidence supports the promotion of exercise as a strategy for inducing a short-term energy deficit but the relevance of this for long-term appetite regulation and the control of body mass remains uncertain.
Collapse
Affiliation(s)
- Alice E Thackray
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom.
| | - David J Stensel
- National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, United Kingdom; National Institute for Health and Care Research (NIHR) Leicester Biomedical Research Centre, University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, United Kingdom; Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan; Department of Sports Science and Physical Education, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Fasting Before Evening Exercise Reduces Net Energy Intake and Increases Fat Oxidation, but Impairs Performance in Healthy Males and Females. Int J Sport Nutr Exerc Metab 2023; 33:11-22. [PMID: 36170970 DOI: 10.1123/ijsnem.2022-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 12/30/2022]
Abstract
Acute morning fasted exercise may create a greater negative 24-hr energy balance than the same exercise performed after a meal, but research exploring fasted evening exercise is limited. This study assessed the effects of 7-hr fasting before evening exercise on energy intake, metabolism, and performance. Sixteen healthy males and females (n = 8 each) completed two randomized, counterbalanced trials. Participants consumed a standardized breakfast (08:30) and lunch (11:30). Two hours before exercise (16:30), participants consumed a meal (543 ± 86 kcal; FED) or remained fasted (FAST). Exercise involved 30-min cycling (∼60% VO2peak) and a 15-min performance test (∼85% VO2peak; 18:30). Ad libitum energy intake was assessed 15 min postexercise. Subjective appetite was measured throughout. Energy intake was 99 ± 162 kcal greater postexercise (p < .05), but 443 ± 128 kcal lower over the day (p < .001) in FAST. Appetite was elevated between the preexercise meal and ad libitum meal in FAST (p < .001), with no further differences (p ≥ .458). Fat oxidation was greater (+3.25 ± 1.99 g), and carbohydrate oxidation was lower (-9.16 ± 5.80 g) during exercise in FAST (p < .001). Exercise performance was 3.8% lower in FAST (153 ± 57 kJ vs. 159 ± 58 kJ, p < .05), with preexercise motivation, energy, readiness, and postexercise enjoyment also lower in FAST (p < .01). Fasted evening exercise reduced net energy intake and increased fat oxidation compared to exercise performed 2 hr after a meal. However, fasting also reduced voluntary performance, motivation, and exercise enjoyment. Future studies are needed to examine the long-term effects of this intervention as a weight management strategy.
Collapse
|
12
|
Beyond the Calorie Paradigm: Taking into Account in Practice the Balance of Fat and Carbohydrate Oxidation during Exercise? Nutrients 2022; 14:nu14081605. [PMID: 35458167 PMCID: PMC9027421 DOI: 10.3390/nu14081605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
Recent literature shows that exercise is not simply a way to generate a calorie deficit as an add-on to restrictive diets but exerts powerful additional biological effects via its impact on mitochondrial function, the release of chemical messengers induced by muscular activity, and its ability to reverse epigenetic alterations. This review aims to summarize the current literature dealing with the hypothesis that some of these effects of exercise unexplained by an energy deficit are related to the balance of substrates used as fuel by the exercising muscle. This balance of substrates can be measured with reliable techniques, which provide information about metabolic disturbances associated with sedentarity and obesity, as well as adaptations of fuel metabolism in trained individuals. The exercise intensity that elicits maximal oxidation of lipids, termed LIPOXmax, FATOXmax, or FATmax, provides a marker of the mitochondrial ability to oxidize fatty acids and predicts how much fat will be oxidized over 45–60 min of low- to moderate-intensity training performed at the corresponding intensity. LIPOXmax is a reproducible parameter that can be modified by many physiological and lifestyle influences (exercise, diet, gender, age, hormones such as catecholamines, and the growth hormone-Insulin-like growth factor I axis). Individuals told to select an exercise intensity to maintain for 45 min or more spontaneously select a level close to this intensity. There is increasing evidence that training targeted at this level is efficient for reducing fat mass, sparing muscle mass, increasing the ability to oxidize lipids during exercise, lowering blood pressure and low-grade inflammation, improving insulin secretion and insulin sensitivity, reducing blood glucose and HbA1c in type 2 diabetes, and decreasing the circulating cholesterol level. Training protocols based on this concept are easy to implement and accept in very sedentary patients and have shown an unexpected efficacy over the long term. They also represent a useful add-on to bariatric surgery in order to maintain and improve its weight-lowering effect. Additional studies are required to confirm and more precisely analyze the determinants of LIPOXmax and the long-term effects of training at this level on body composition, metabolism, and health.
Collapse
|