1
|
Holthaus E, O'Neill M, Jeske W, DeChristopher P, Goodman J, Glynn L, Levin S, Muraskas J. Endocan: A biomarker for endothelial dysfunction and inflammation, linking maternal obesity and pediatric obesity in a cohort of preterm neonates. Eur J Obstet Gynecol Reprod Biol 2024; 297:132-137. [PMID: 38626514 DOI: 10.1016/j.ejogrb.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVES Numerous animal and epidemiologic studies have demonstrated a positive association between maternal obesity in pregnancy and obesity in offspring. The biologic mechanisms of this association remain under investigation. One proposed mechanism includes fetoplacental endothelial dysfunction secondary to inflammation. Endocan is a relatively new biomarker for endothelial dysfunction and inflammation. Our objectives were to examine (1) the association between maternal obesity and neonatal serum endocan at birth, and (2) the association between neonatal serum endocan at birth and pediatric obesity at 24-36 months of age. STUDY DESIGN This was a secondary analysis of a prospective cohort of neonates born < 33 weeks gestation. Serum endocan was collected within 48 hours of birth. Serum endocan levels were compared in neonates born to obese mothers vs. those born to non-obese mothers. BMI data were retrospectively collected from cohort neonates between 24 and 36 months of age. RESULTS The analysis included 120 mother/neonate dyads. Neonates born to obese mothers had higher median serum endocan at birth compared to neonates born to non-obese mothers (299 ng/L [205-586] vs. 251 ng/L [164-339], p = 0.045). In a linear regression modeled on neonatal serum endocan level, maternal obesity had a statistically significant positive association (p = 0.021). Higher mean serum endocan level at birth was associated with pediatric obesity between 24 and 36 months (obese vs. non-obese offspring; 574 ng/L (222) vs. 321 ng/L (166), p = 0.005). CONCLUSIONS In our cohort of preterm neonates, elevated serum endocan at birth was associated with both maternal obesity and downstream pediatric obesity. More research is needed to understand intergenerational transmission of obesity. A large focus has been on epigenetic modification. Endothelial dysfunction and inflammation may play important roles in these pathways. Effective biomarkers, including endocan, may also serve as intermediate outcomes in future pregnancy research.
Collapse
Affiliation(s)
- E Holthaus
- Maternal Fetal Medicine, Loyola University Medical Center, 2160 S. 1(st) Ave, Maywood, IL 60153, USA.
| | - M O'Neill
- Loyola University Stritch School of Medicine, 2160 S. 1(st) Ave, Maywood, IL 60153, USA
| | - W Jeske
- Thoracic and Cardiovascular Surgery, Cell and Molecular Physiology, Loyola University Chicago, 2160 S. 1(st) Ave, Maywood, IL 60153, USA
| | - P DeChristopher
- Pathology and Laboratory Medicine, Transfusion Medicine. Loyola University Medical Center, 2160 S. 1(st) Ave, Maywood, IL 60153, USA
| | - J Goodman
- Maternal Fetal Medicine, University of Missouri School of Medicine, MU Women's Hospital, 404 N Keene St, Columbia, MO 65201, USA
| | - L Glynn
- Pediatric Surgery, NYU Langone Hospital, 120 Mineola Blvd, Suite 210, Mineola, NY 11501, USA
| | - S Levin
- Neonatal Perinatal. University of Oklahoma College of Medicine, 1200 North Everett Drive, ETNP 7504, Oklahoma City, OK, 73104, USA
| | - J Muraskas
- Neonatal-Perinatal Research, Neonatology, Loyola University Medical Center, 2160 S. 1(st) Ave, Maywood, IL 60153, USA
| |
Collapse
|
2
|
de Sousa É, de Mendonça M, Bolin AP, de Oliveira NP, Real CC, Hu X, Huang ZP, Wang DZ, Rodrigues AC. Sex-specific regulation of miR-22 and ERα in white adipose tissue of obese dam's female offspring impairs the early postnatal development of functional beige adipocytes in mice. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167057. [PMID: 38331111 DOI: 10.1016/j.bbadis.2024.167057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/31/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
During inguinal adipose tissue (iWAT) ontogenesis, beige adipocytes spontaneously appear between postnatal 10 (P10) and P20 and their ablation impairs iWAT browning capacity in adulthood. Since maternal obesity has deleterious effects on offspring iWAT function, we aimed to investigate its effect in spontaneous iWAT browning in offspring. Female C57BL/6 J mice were fed a control or obesogenic diet six weeks before mating. Male and female offspring were euthanized at P10 and P20 or weaned at P21 and fed chow diet until P60. At P50, mice were treated with saline or CL316,243, a β3-adrenoceptor agonist, for ten days. Maternal obesity induced insulin resistance at P60, and CL316,243 treatment effectively restored insulin sensitivity in male but not female offspring. This discrepancy occurred due to female offspring severe browning impairment. During development, the spontaneous iWAT browning and sympathetic nerve branching at P20 were severely impaired in female obese dam's offspring but occurred normally in males. Additionally, maternal obesity increased miR-22 expression in the iWAT of male and female offspring during development. ERα, a target and regulator of miR-22, was concomitantly upregulated in the male's iWAT. Next, we evaluated miR-22 knockout (KO) offspring at P10 and P20. The miR-22 deficiency does not affect spontaneous iWAT browning in females and, surprisingly, anticipates iWAT browning in males. In conclusion, maternal obesity impairs functional iWAT development in the offspring in a sex-specific way that seems to be driven by miR-22 levels and ERα signaling. This impacts adult browning capacity and glucose homeostasis, especially in female offspring.
Collapse
Affiliation(s)
- Érica de Sousa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mariana de Mendonça
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Anaysa Paola Bolin
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Nayara Preste de Oliveira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhan-Peng Huang
- Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alice Cristina Rodrigues
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Hartel TC, Oelofse A, De Smidt JJA. Vascular Effects, Potential Pathways and Mediators of Fetal Exposure to Alcohol and Cigarette Smoking during Pregnancy: A Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6398. [PMID: 37510630 PMCID: PMC10378932 DOI: 10.3390/ijerph20146398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
(1) Background: Programming of atherosclerosis results in vascular structure and function alterations, which may be attributed to fetal exposure to maternal tobacco smoking, alcohol consumption and several lifestyle factors in the first few years of life. This review aims to study the effects of teratogen exposure in utero on vascular dysfunction in offspring and consider mediators and pathways originating from the fetal environment. (2) Methods: Eligible studies were identified in the PubMed, Scopus and Web of Science databases. After the full-text screening, 20 articles were included in the narrative synthesis. (3) Results: The literature presents evidence supporting the detrimental effects of fetal exposure to tobacco smoking on vascular alterations in both human and animal studies. Alcohol exposure impaired endothelial dilation in animal studies, but human studies on both tobacco and alcohol exposure are still sparse. Reduction in nitric oxide (NO) bioavailability and alterations in the epigenome in infants through the upregulation of pro-oxidative and proinflammatory genes may be the common denominators. (4) Conclusion: While maternal smoking and alcohol consumption have more negative outcomes on the infant in the short term, several factors during the first few years of life may mediate the development of vascular dysfunction. Therefore, more prospective studies are needed to ascertain the long-term effects of teratogen exposure, specifically in South Africa.
Collapse
Affiliation(s)
- Tammy C Hartel
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7530, South Africa
| | - André Oelofse
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7530, South Africa
| | - Juléy J A De Smidt
- Department of Medical Biosciences, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7530, South Africa
| |
Collapse
|
4
|
Montaniel KRC, Bucher M, Phillips EA, Li C, Sullivan EL, Kievit P, Rugonyi S, Nathanielsz PW, Maloyan A. Dipeptidyl peptidase IV inhibition delays developmental programming of obesity and metabolic disease in male offspring of obese mothers. J Dev Orig Health Dis 2022; 13:727-740. [PMID: 35068408 PMCID: PMC9308839 DOI: 10.1017/s2040174422000010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Maternal obesity programs the offspring to metabolic diseases later in life; however, the mechanisms of programming are yet unclear, and no strategies exist for addressing its detrimental transgenerational effects. Obesity has been linked to dipeptidyl peptidase IV (DPPIV), an adipokine, and treatment of obese individuals with DPPIV inhibitors has been reported to prevent weight gain and improve metabolism. We hypothesized that DPPIV plays a role in maternal obesity-mediated programming. We measured plasma DPPIV activity in human maternal and cord blood samples from normal-weight and obese mothers at term. We found that maternal obesity increases maternal and cord blood plasma DPPIV activity but only in male offspring. Using two non-human primate models of maternal obesity, we confirmed the activation of DPPIV in the offspring of obese mothers. We then created a mouse model of maternal high-fat diet (HFD)-induced obesity, and found an early-life increase in plasma DPPIV activity in male offspring. Activation of DPPIV preceded the progression of obesity, glucose intolerance and insulin resistance in male offspring of HFD-fed mothers. We then administered sitagliptin, DPPIV inhibitor, to regular diet (RD)- and HFD-fed mothers, starting a week prior to breeding and continuing throughout pregnancy and lactation. We found that sitagliptin treatment of HFD-fed mothers delayed the progression of obesity and metabolic diseases in male offspring and had no effects on females. Our findings reveal that maternal obesity dysregulates plasma DPPIV activity in males and provide evidence that maternal inhibition of DPPIV has potential for addressing the transgenerational effects of maternal obesity.
Collapse
Affiliation(s)
- Kim Ramil C. Montaniel
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97232, USA
- Physiology and Pharmacology Graduate Program, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Matthew Bucher
- Department of Obstetrics & Gynecology, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Elysse A. Phillips
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Cun Li
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX, 78227, USA
- Department of Animal Sciences, University of Wyoming, Laramie, WY, 82071, USA
| | - Elinor L. Sullivan
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
- Department of Psychiatry, Oregon Health & Science University, Beaverton, OR, 97006, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Paul Kievit
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Sandra Rugonyi
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97232, USA
| | - Peter W. Nathanielsz
- Texas Biomedical Research Institute and Southwest National Primate Research Center, San Antonio, TX, 78227, USA
- Department of Animal Sciences, University of Wyoming, Laramie, WY, 82071, USA
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, 97232, USA
- Physiology and Pharmacology Graduate Program, Oregon Health & Science University, Portland, OR, 97232, USA
| |
Collapse
|
5
|
Shawky NM. Cardiovascular disease risk in offspring of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2022; 13:977819. [PMID: 36531474 PMCID: PMC9747927 DOI: 10.3389/fendo.2022.977819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder affecting women at reproductive age. PCOS diagnosis (Rotterdam criteria) is based on the presence of two out of three criteria; clinical and/or biochemical hyperandrogenism, oligo- or an-ovulation and polycystic ovaries. PCOS women suffer from a constellation of reproductive and metabolic abnormalities including obesity and insulin resistance. PCOS women also have increased blood pressure and increased risk of cardiovascular diseases (CVD). In-utero, offspring of PCOS women are exposed to altered maternal hormonal environment and maternal obesity (for most of PCOS women). Offspring of PCOS women could also be subject to genetic susceptibility, the transgenerational transmission of some of the PCOS traits or epigenetic changes. Offspring of PCOS women are commonly reported to have an abnormal birth weight, which is also a risk factor for developing CVD and hypertension later in life. Although studies have focused on the growth pattern, reproductive and metabolic health of children of PCOS women, very limited number of studies have addressed the risk of hypertension and CVD in those offspring particularly as they age. The current narrative review is designed to summarize the available literature (both human studies and experimental animal studies) and highlight the gaps in addressing hypertension and CVD risks in offspring of PCOS women or hyperandrogenemic female animal models.
Collapse
Affiliation(s)
- Noha M Shawky
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, United States
- Women's Health Research Center, Mississippi Center of Excellence in Perinatal Research, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW Maternal conditions and exposures during pregnancy including over- and undernutrition are associated with poor childbirth outcomes, growth, development and chronic childhood diseases. We examined contemporary pregnancy-related determinants of child health. RECENT FINDINGS While maternal undernutrition remains a major contributor to low birth weight, maternal obesity affects foetal growth, birth weight, survival and is associated with childhood obesity, asthma and autistic spectrum disorders. Emerging evidence suggests that epigenetic changes, the prenatal microbiome and maternal immune activation (MIA), a neuroinflammatory process induced by diet and other exposures cause foetal programming resulting in these chronic childhood diseases. Maternal diet is potentially a modifiable risk factor for controlling low birth weight, obesity and chronic disease in childhood. Further studies are warranted to refine guidance on dietary restriction and physical activity during pregnancy and determine how MIA and prenatal microbiota can be applied to control childhood diseases arising from programming.
Collapse
|
7
|
Rastogi S, Rastogi D. The Epidemiology and Mechanisms of Lifetime Cardiopulmonary Morbidities Associated With Pre-Pregnancy Obesity and Excessive Gestational Weight Gain. Front Cardiovasc Med 2022; 9:844905. [PMID: 35391836 PMCID: PMC8980933 DOI: 10.3389/fcvm.2022.844905] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 01/08/2023] Open
Abstract
Obesity has reached pandemic proportions in the last few decades. The global increase in obesity has contributed to an increase in the number of pregnant women with pre-pregnancy obesity or with excessive gestational weight gain. Obesity during pregnancy is associated with higher incidence of maternal co-morbidities such as gestational diabetes and hypertension. Both obesity during pregnancy and its associated complications are not only associated with immediate adverse outcomes for the mother and their newborns during the perinatal period but, more importantly, are linked with long-term morbidities in the offsprings. Neonates born to women with obesity are at higher risk for cardiac complications including cardiac malformations, and non-structural cardiac issues such as changes in the microvasculature, e.g., elevated systolic blood pressure, and overt systemic hypertension. Pulmonary diseases associated with maternal obesity include respiratory distress syndrome, asthma during childhood and adolescence, and adulthood diseases, such as chronic obstructive pulmonary disease. Sequelae of short-term complications compound long-term outcomes such as long-term obesity, hypertension later in life, and metabolic complications including insulin resistance and dyslipidemia. Multiple mechanisms have been proposed to explain these adverse outcomes and are related to the emerging knowledge of pathophysiology of obesity in adults. The best investigated ones include the role of obesity-mediated metabolic alterations and systemic inflammation. There is emerging evidence linking metabolic and immune derangements to altered biome, and alteration in epigenetics as one of the intermediary mechanisms underlying the adverse outcomes. These are initiated as part of fetal adaptation to obesity during pregnancy which are compounded by rapid weight gain during infancy and early childhood, a known complication of obesity during pregnancy. This newer evidence points toward the role of specific nutrients and changes in biome that may potentially modify the adverse outcomes observed in the offsprings of women with obesity.
Collapse
Affiliation(s)
- Shantanu Rastogi
- Division of Neonatology, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Deepa Rastogi
- Division of Pulmonary and Sleep Medicine, Children's National Hospital, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| |
Collapse
|
8
|
Savva C, Helguero LA, González-Granillo M, Melo T, Couto D, Buyandelger B, Gustafsson S, Liu J, Domingues MR, Li X, Korach-André M. Maternal high-fat diet programs white and brown adipose tissue lipidome and transcriptome in offspring in a sex- and tissue-dependent manner in mice. Int J Obes (Lond) 2022; 46:831-842. [PMID: 34997206 PMCID: PMC8960419 DOI: 10.1038/s41366-021-01060-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 12/10/2021] [Accepted: 12/22/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The prevalence of overweight and obesity among children has drastically increased during the last decades and maternal obesity has been demonstrated as one of the ultimate factors. Nutrition-stimulated transgenerational regulation of key metabolic genes is fundamental to the developmental origins of the metabolic syndrome. Fetal nutrition may differently influence female and male offspring. METHODS Mice dam were fed either a control diet or a high-fat diet (HFD) for 6-week prior mating and continued their respective diet during gestation and lactation. At weaning, female and male offspring were fed the HFD until sacrifice. White (WAT) and brown (BAT) adipose tissues were investigated in vivo by nuclear magnetic resonance at two different timepoints in life (midterm and endterm) and tissues were collected at endterm for lipidomic analysis and RNA sequencing. We explored the sex-dependent metabolic adaptation and gene programming changes by maternal HFD in visceral AT (VAT), subcutaneous AT (SAT) and BAT of offspring. RESULTS We show that the triglyceride profile varies between adipose depots, sexes and maternal diet. In female offspring, maternal HFD remodels the triglycerides profile in SAT and BAT, and increases thermogenesis and cell differentiation in BAT, which may prevent metabolic complication later in life. Male offspring exhibit whitening of BAT and hyperplasia in VAT when born from high-fat mothers, with impaired metabolic profile. Maternal HFD differentially programs gene expression in WAT and BAT of female and male offspring. CONCLUSION Maternal HFD modulates metabolic profile in offspring in a sex-dependent manner. A sex- and maternal diet-dependent gene programming exists in VAT, SAT, and BAT which may be key player in the sexual dimorphism in the metabolic adaptation later in life.
Collapse
Affiliation(s)
- Christina Savva
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Luisa A Helguero
- Department of Medical Sciences, Institute of Biomedicine, University of Aveiro, Aveiro, Portugal
| | - Marcela González-Granillo
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Tânia Melo
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniela Couto
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Byambajav Buyandelger
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Sonja Gustafsson
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Jianping Liu
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Maria Rosário Domingues
- Mass Spectrometry Centre, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- CESAM, Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Xidan Li
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Marion Korach-André
- Karolinska Institute/AstraZeneca Integrated Cardio Metabolic Center (ICMC), Huddinge, Sweden.
- Department of Medicine, Metabolism Unit, Karolinska University Hospital Huddinge, Stockholm, Sweden.
- Clinical Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
9
|
Corken A, Thakali KM. Maternal Obesity Programming of Perivascular Adipose Tissue and Associated Immune Cells: An Understudied Area With Few Answers and Many Questions. Front Physiol 2022; 12:798987. [PMID: 35126181 PMCID: PMC8815821 DOI: 10.3389/fphys.2021.798987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
At present, the worldwide prevalence of obesity has become alarmingly high with estimates foreshadowing a continued escalation in the future. Furthermore, there is growing evidence attributing an individual’s predisposition for developing obesity to maternal health during gestation. Currently, 60% of pregnancies in the US are to either overweight or obese mothers which in turn contributes to the persistent rise in obesity rates. While obesity itself is problematic, it conveys an increased risk for several diseases such as diabetes, inflammatory disorders, cancer and cardiovascular disease (CVD). Additionally, as we are learning more about the mechanisms underlying CVD, much attention has been brought to the role of perivascular adipose tissue (PVAT) in maintaining cardiovascular health. PVAT regulates vascular tone and for a significant number of individuals, obesity elicits PVAT disruption and dysregulation of vascular function. Obesity elicits changes in adipocyte and leukocyte populations within PVAT leading to an inflammatory state which promotes vasoconstriction thereby aiding the onset/progression of CVD. Our current understanding of obesity, PVAT and CVD has only been examined at the individual level without consideration for a maternal programming effect. It is unknown if maternal obesity affects the propensity for PVAT remodeling in the offspring, thereby enhancing the obesity/CVD link, and what role PVAT leukocytes play in this process. This perspective will focus on the maternal contribution of the interplay between obesity, PVAT disruption and CVD and will highlight the leukocyte/PVAT interaction as a novel target to stem the tide of the current obesity epidemic and its secondary health consequences.
Collapse
Affiliation(s)
- Adam Corken
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Keshari M. Thakali
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Keshari M. Thakali,
| |
Collapse
|
10
|
Awoke MA, Skouteris H, Makama M, Harrison CL, Wycherley TP, Moran LJ. The Relationship of Diet and Physical Activity with Weight Gain and Weight Gain Prevention in Women of Reproductive Age. J Clin Med 2021; 10:2485. [PMID: 34199753 PMCID: PMC8199997 DOI: 10.3390/jcm10112485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/01/2021] [Accepted: 06/01/2021] [Indexed: 11/16/2022] Open
Abstract
Reproductive-age women often see increased weight gain, which carries an increased risk of long-term overweight and obesity and adverse maternal and child health outcomes. Supporting women to achieve optimal weight through lifestyle modification (diet and physical activity) is of critical importance to reduce weight gain across key reproductive life-stages (preconception, pregnancy and postpartum). This review comprehensively summarizes the current state of knowledge on the contribution of diet and physical activity to weight gain and weight gain prevention in reproductive-aged women. Suboptimal diets including a higher proportion of discretionary choices or energy intake from fats, added sugars, sweets or processed foods are associated with higher weight gain, whereas increased consumption of core foods including fruits, vegetables and whole grains and engaging in regular physical activity are associated with reduced weight gain in reproductive age women. Diet and physical activity contributing to excessive gestational weight gain are well documented. However, there is limited research assessing diet and physical activity components associated with weight gain during the preconception and postpartum period. This review highlights the need for further research to identify key dietary and physical activity components targeting the critical windows of reproductive life-stages in women to best guide interventions to prevent weight gain.
Collapse
Affiliation(s)
- Mamaru Ayenew Awoke
- Monash Centre for Health Research and Implementation, Monash University, Clayton, VIC 3168, Australia; (M.A.A.); (M.M.); (C.L.H.)
| | - Helen Skouteris
- Health and Social Care Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia;
| | - Maureen Makama
- Monash Centre for Health Research and Implementation, Monash University, Clayton, VIC 3168, Australia; (M.A.A.); (M.M.); (C.L.H.)
| | - Cheryce L. Harrison
- Monash Centre for Health Research and Implementation, Monash University, Clayton, VIC 3168, Australia; (M.A.A.); (M.M.); (C.L.H.)
| | - Thomas Philip Wycherley
- Alliance for Research in Exercise, Nutrition and Activity, University of South Australia, Adelaide, SA 5001, Australia;
| | - Lisa J. Moran
- Monash Centre for Health Research and Implementation, Monash University, Clayton, VIC 3168, Australia; (M.A.A.); (M.M.); (C.L.H.)
| |
Collapse
|
11
|
Mechanisms Underlying the Cognitive and Behavioural Effects of Maternal Obesity. Nutrients 2021; 13:nu13010240. [PMID: 33467657 PMCID: PMC7829712 DOI: 10.3390/nu13010240] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
The widespread consumption of 'western'-style diets along with sedentary lifestyles has led to a global epidemic of obesity. Epidemiological, clinical and preclinical evidence suggests that maternal obesity, overnutrition and unhealthy dietary patterns programs have lasting adverse effects on the physical and mental health of offspring. We review currently available preclinical and clinical evidence and summarise possible underlying neurobiological mechanisms by which maternal overnutrition may perturb offspring cognitive function, affective state and psychosocial behaviour, with a focus on (1) neuroinflammation; (2) disrupted neuronal circuities and connectivity; and (3) dysregulated brain hormones. We briefly summarise research implicating the gut microbiota in maternal obesity-induced changes to offspring behaviour. In animal models, maternal obesogenic diet consumption disrupts CNS homeostasis in offspring, which is critical for healthy neurodevelopment, by altering hypothalamic and hippocampal development and recruitment of glial cells, which subsequently dysregulates dopaminergic and serotonergic systems. The adverse effects of maternal obesogenic diets are also conferred through changes to hormones including leptin, insulin and oxytocin which interact with these brain regions and neuronal circuits. Furthermore, accumulating evidence suggests that the gut microbiome may directly and indirectly contribute to these maternal diet effects in both human and animal studies. As the specific pathways shaping abnormal behaviour in offspring in the context of maternal obesogenic diet exposure remain unknown, further investigations are needed to address this knowledge gap. Use of animal models permits investigation of changes in neuroinflammation, neurotransmitter activity and hormones across global brain network and sex differences, which could be directly and indirectly modulated by the gut microbiome.
Collapse
|