1
|
Wang W, Lin H, Cao Y. Effects of opuB on the growth and biofilm formation of Streptococcus mutans under acid stress. Microb Pathog 2025; 205:107674. [PMID: 40339620 DOI: 10.1016/j.micpath.2025.107674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 05/04/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
Streptococcus mutans (S. mutans) is a primary oral cariogenic bacterium. The OpuB transporter regulates osmotic pressure in Bacillus subtilis; however, its role in S. mutans remains unexplored. Our earlier research indicated that, under acid stress, the OpuB ABC-transport pathway in S. mutans membrane vesicles undergoes significant changes, implying its critical role in the bacterium's response to environmental stress. In this study, we constructed an opuB-deficient strain (Smu_opuB) and compared it with the wild-type strain. The results revealed that knocking out opuB enhanced the survival of planktonic S. mutans in an acidic environment, increased extracellular polysaccharide and biofilm production under acid stress, altered biofilm structure, and upregulated the expression of related virulence factors. These findings imply that opuB is instrumental in regulating acid resistance and biofilm formation in S. mutans, thereby conferring a survival advantage. This study provides compelling evidence of opuB being pivotal in S. mutans' acid resistance and biofilm formation, deepening our understanding of its functional mechanisms and establishing a foundation for future research on its role in S. mutans.
Collapse
Affiliation(s)
- Wenyu Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Huancai Lin
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Yina Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Jiang S, Zha Y, Zhao T, Wei S, Wang R, Song Y, Li L, Lyu J, Hu W, Wu S, Zhang Y. Temporin-Derived Peptides Disrupt the Exopolysaccharide Matrix of Streptococcus mutans to Prevent Related Dental Caries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:26236-26247. [PMID: 39535250 DOI: 10.1021/acs.jafc.4c09488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Dental caries, the most prevalent oral infectious disease, is closely associated with Streptococcus mutans. This study investigates the antimicrobial properties of the temporin-GHb peptide and its derivatives (GHbR, GHbK, and GHb3K) against S. mutans. These peptides exhibited potent anti-S. mutans activity through a membrane-disruptive mechanism, confirmed by flow cytometry and fluorescence staining assays while showing lower bactericidal effects on beneficial probiotic bacteria. Additionally, they inhibited the biofilm matrix formation by disrupting extracellular polysaccharide (EPS) synthesis, as demonstrated by zymography, qRT-PCR, and sucrose metabolism experiments. In a rat model of S. mutans-induced dental caries, treatment with these peptides significantly reduced the incidence of dental lesions. H&E staining analysis of rat oral tissues confirmed the biosafety of GHb and GHb3K. These findings suggest that temporin-derived peptides effectively target EPS, inhibiting biofilm formation and virulence, offering a promising strategy for preventing dental caries and promoting oral health. The findings suggest potential applications for peptide-based interventions to mitigate biofilm-related issues across various fields, including agriculture, food processing, and healthcare.
Collapse
Affiliation(s)
- Shangjun Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yanmei Zha
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
- College of Life Sciences, Hainan University, Haikou 570228, China
| | - Ting Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuangshuang Wei
- College of Life Sciences, Hainan University, Haikou 570228, China
| | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Lushuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Junchen Lyu
- Fengxiang College, Hainan University, Haikou 570228, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| | - Shuang Wu
- Department of Dermatology, Hohhot First Hospital, Hohhot 010030, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Jin P, Wang L, Chen D, Chen Y. Unveiling the complexity of early childhood caries: Candida albicans and Streptococcus mutans cooperative strategies in carbohydrate metabolism and virulence. J Oral Microbiol 2024; 16:2339161. [PMID: 38606339 PMCID: PMC11008315 DOI: 10.1080/20002297.2024.2339161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024] Open
Abstract
Objective To explore the mechanisms underlying the virulence changes in early childhood caries (ECC) caused by Candida albicans (C. albicans) and Streptococcus mutans (S. mutans), with a focus on carbohydrate metabolism and environmental acidification. Methods A review of literature was conducted to understand the symbiotic relationship between C. albicans and S. mutans, and their role in the pathogenesis of ECC. The review also examined how their interactions influence carbohydrate metabolism and environmental acidification in the oral cavity. Results C. albicans and S. mutans play crucial roles in the onset and progression of ECC. C. albicans promotes the adhesion and accumulation of S. mutans, while S. mutans creates an environment favorable for the growth of C. albicans. Their interactions, especially through carbohydrate metabolism, strengthen their pathogenic potential. The review highlights the importance of understanding these mechanisms for the development of effective management and treatment protocols for ECC. Conclusion The symbiotic relationship between C. albicans and S. mutans, and their interactions through carbohydrate metabolism and environmental acidification, are key factors in the pathogenesis of ECC. A comprehensive understanding of these mechanisms is crucial for developing effective strategies to manage and treat ECC.
Collapse
Affiliation(s)
- Pingping Jin
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Lu Wang
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Daozhen Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| | - Yu Chen
- Wuxi Maternal and Child Health Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu, China
| |
Collapse
|
4
|
Park H, Joachimiak MP, Jungbluth SP, Yang Z, Riehl WJ, Canon RS, Arkin AP, Dehal PS. A bacterial sensor taxonomy across earth ecosystems for machine learning applications. mSystems 2024; 9:e0002623. [PMID: 38078749 PMCID: PMC10804942 DOI: 10.1128/msystems.00026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/23/2023] [Indexed: 01/24/2024] Open
Abstract
Microbial communities have evolved to colonize all ecosystems of the planet, from the deep sea to the human gut. Microbes survive by sensing, responding, and adapting to immediate environmental cues. This process is driven by signal transduction proteins such as histidine kinases, which use their sensing domains to bind or otherwise detect environmental cues and "transduce" signals to adjust internal processes. We hypothesized that an ecosystem's unique stimuli leave a sensor "fingerprint," able to identify and shed insight on ecosystem conditions. To test this, we collected 20,712 publicly available metagenomes from Host-associated, Environmental, and Engineered ecosystems across the globe. We extracted and clustered the collection's nearly 18M unique sensory domains into 113,712 similar groupings with MMseqs2. We built gradient-boosted decision tree machine learning models and found we could classify the ecosystem type (accuracy: 87%) and predict the levels of different physical parameters (R2 score: 83%) using the sensor cluster abundance as features. Feature importance enables identification of the most predictive sensors to differentiate between ecosystems which can lead to mechanistic interpretations if the sensor domains are well annotated. To demonstrate this, a machine learning model was trained to predict patient's disease state and used to identify domains related to oxygen sensing present in a healthy gut but missing in patients with abnormal conditions. Moreover, since 98.7% of identified sensor domains are uncharacterized, importance ranking can be used to prioritize sensors to determine what ecosystem function they may be sensing. Furthermore, these new predictive sensors can function as targets for novel sensor engineering with applications in biotechnology, ecosystem maintenance, and medicine.IMPORTANCEMicrobes infect, colonize, and proliferate due to their ability to sense and respond quickly to their surroundings. In this research, we extract the sensory proteins from a diverse range of environmental, engineered, and host-associated metagenomes. We trained machine learning classifiers using sensors as features such that it is possible to predict the ecosystem for a metagenome from its sensor profile. We use the optimized model's feature importance to identify the most impactful and predictive sensors in different environments. We next use the sensor profile from human gut metagenomes to classify their disease states and explore which sensors can explain differences between diseases. The sensors most predictive of environmental labels here, most of which correspond to uncharacterized proteins, are a useful starting point for the discovery of important environment signals and the development of possible diagnostic interventions.
Collapse
Affiliation(s)
- Helen Park
- Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- EPSRC/BBSRC Future Biomanufacturing Research Hub, EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, United Kingdom
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Marcin P. Joachimiak
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Sean P. Jungbluth
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Ziming Yang
- Computational Science Initiative, Brookhaven National Laboratory, Upton, New York, USA
| | - William J. Riehl
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - R. Shane Canon
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Adam P. Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Bioengineering, University of California, Berkeley, California, USA
| | - Paramvir S. Dehal
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| |
Collapse
|
5
|
Ren S, Cheng Y, Deng Y, Xia M, Yang Y, Lei L, Hu T. Pudilan Keyanning mouthwash inhibits dextran-dependent aggregation and biofilm organization of Streptococcus mutans. J Appl Microbiol 2023; 134:lxad298. [PMID: 38086612 DOI: 10.1093/jambio/lxad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 12/20/2023]
Abstract
AIMS This research aimed to investigate the inhibitory effects of Pudilan mouthwash (PDL) on Streptococcus mutans (S. mutans) biofilms and identify its chemical components. METHODS AND RESULTS The impacts of 100% concentrated PDL on S. mutans biofilm were detected by colony-forming unit (CFU) assays, crystal violet staining, confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and quantitative real-time PCR (qRT‒PCR). The biocompatibility with human gingival fibroblasts (HGFs) was evaluated by Cell-Counting-Kit-8 (CCK-8) assay. And chemical components were identified by UPLC-HRMS. PBS and 0.12% chlorhexidine were used as negative and positive controls, respectively. Results indicate early 8-h S. mutans biofilms are sensitive to PDL. Additionally, it leads to a decrease in bacterial activities and dextran-dependent aggregation in 24-h S. mutans biofilms. PDL significantly downregulates the gene expression of gtfB/C/D and smc. And 114 components are identified. CONCLUSIONS PDL has an inhibitory effect on S. mutans and favorable biocompatibility. It has potential to be exploited as a novel anti-biofilm agent.
Collapse
Affiliation(s)
- Shirui Ren
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yiting Cheng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus& Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Lv X, Feng Z, Luo J, Liu Z, Lu J, Han S, Wang K, Zhang L. Effects of caffeic acid phenethyl ester against multi-species cariogenic biofilms. Folia Microbiol (Praha) 2023; 68:977-989. [PMID: 37289416 DOI: 10.1007/s12223-023-01064-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023]
Abstract
Dental caries is a biofilm-related disease, widely perceived to be caused by oral ecological imbalance when cariogenic/aciduric bacteria obtain an ecological advantage. Compared with planktonic bacteria, dental plaques are difficult to remove under extracellular polymeric substance protection. In this study, the effect of caffeic acid phenethyl ester (CAPE) on a preformed cariogenic multi-species biofilm was evaluated, which was comprised of cariogenic bacteria (Streptococcus mutans), commensal bacteria (Streptococcus gordonii), and a pioneer colonizer (Actinomyces naeslundii). Our result revealed that treatment with 0.08 mg/mL CAPE reduced live S. mutans in the preformed multi-species biofilm while not significantly changing the quantification of live S. gordonii. CAPE significantly reduced the production of lactic acid, extracellular polysaccharide, and extracellular DNA and made the biofilm looser. Moreover, CAPE could promote the H2O2 production of S. gordonii and inhibit the expression of SMU.150 encoding mutacin to modulate the interaction among species in biofilms. Overall, our results suggested that CAPE could inhibit the cariogenic properties and change the microbial composition of the multi-species biofilms, indicating its application potential in dental caries prevention and management.
Collapse
Affiliation(s)
- Xiaohui Lv
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zening Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junyuan Luo
- Department of Endodontics, College of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenqi Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Junzhuo Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sili Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, 610041, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Disease, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3 of Renmin Road South, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
7
|
Li Q, Liu J, Liu H, Sun Y, Xu Y, Wang K, Huang W, Liao L, Wang X. Multifunctional magnesium organic framework-based photothermal and pH dual-responsive mouthguard for caries prevention and tooth self-healing promotion. Bioact Mater 2023; 29:72-84. [PMID: 37456578 PMCID: PMC10338206 DOI: 10.1016/j.bioactmat.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/31/2023] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Caries is considered to be the most prevalent non-communicable disease in humans, mainly deriving from acidogenic bacterial biofilm and resulting in the demineralization and decomposition of hard dental tissue. Herein, a composite responsive foam brace loaded with magnesium organic framework (MPC) is designed for caries prevention and tooth remineralization. MPC can intelligently release organic antibacterial molecules (gallic acid) and mineralized ions (Mg2+, Ca2+ and PO43-) under acidic conditions (pH < 5.5) of biofilm infection, regulating pH and killing bacteria. Additionally, due to the excellent photothermal conversion efficiency, MPC can further enhance the destruction of bacterial biofilm by inhibiting virulence genes and destroying bacterial adhesion under near-infrared light irradiation (808 nm). More importantly, MPC can not only reverse the cariogenic environment at both pH and microbial levels, but also promote self-healing of demineralized teeth in terms of both the micro-structure and mechanical properties.
Collapse
Affiliation(s)
- Qun Li
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi, 330006, PR China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
- Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, 330006, PR China
| | - Jinbiao Liu
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Huijie Liu
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi, 330006, PR China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
- Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, 330006, PR China
| | - Yue Sun
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Yingying Xu
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi, 330006, PR China
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
- Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, 330006, PR China
| | - Kexin Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Wenjing Huang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| | - Lan Liao
- Affiliated Stomatological Hospital, Nanchang University, Nanchang, Jiangxi, 330006, PR China
- Jinggangshan University, Ji'an, Jiangxi, 343009, PR China
- Key Laboratory of Oral Biomedicine, Nanchang, Jiangxi, 330006, PR China
| | - Xiaolei Wang
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, PR China
- College of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330088, PR China
| |
Collapse
|
8
|
Gao Z, Chen X, Wang C, Song J, Xu J, Liu X, Qian Y, Suo H. New strategies and mechanisms for targeting Streptococcus mutans biofilm formation to prevent dental caries: A review. Microbiol Res 2023; 278:127526. [PMID: 39491258 DOI: 10.1016/j.micres.2023.127526] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2024]
Abstract
Dental caries, a prevalent oral infectious disease, is intricately linked to the biofilm formation on the tooth surfaces by oral microbes. Among these, Streptococcus mutans plays a central role in the initiation and progression of caries due to its ability to produce glucosyltransferases, synthesize extracellular polysaccharides, and facilitate bacterial adhesion and aggregation. This leads to the formation of biofilms where the bacteria metabolize dietary carbohydrates to produce acids. Therefore, devising effective strategies to inhibit S. mutans biofilm formation is crucial for dental caries prevention and oral health promotion. Though preventive measures like mechanical removal and antibacterial drugs (fluoride, chlorhexidine) exist, they pose challenges such as time consumption, short-term effectiveness, antibiotic resistance, and disruption of oral flora balance. This review provides a comprehensive overview of emerging strategies such as antimicrobial peptides, probiotics, nanoparticles, and non-thermal plasma therapies for targeted inhibition of S. mutans biofilm formation. Moreover, current research insights into the regulatory mechanisms governing S. mutans biofilm formation are also elucidated. The objective is to foster the development of innovative, efficient and safe techniques for caries prevention and treatment, thereby expanding treatment options in clinical dentistry and promoting oral health.
Collapse
Affiliation(s)
- Zhen Gao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China
| | - Jiahui Xu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiao Liu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Qian
- Department of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Agricultural Product Processing Technology Innovation Platform, Chongqing 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, China; Citrus Research Institute, National Citrus Engineering Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Jiang S, Zha Y, Zhao T, Jin X, Zhu R, Wei S, Wang R, Song Y, Li L, Lyu J, Hu W, Zhang D, Wang M, Zhang Y. Antimicrobial peptide temporin derivatives inhibit biofilm formation and virulence factor expression of Streptococcus mutans. Front Microbiol 2023; 14:1267389. [PMID: 37822738 PMCID: PMC10562637 DOI: 10.3389/fmicb.2023.1267389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Introduction Temporin-GHa obtained from the frog Hylarana guentheri showed bactericidal efficacy against Streptococcus mutans. To enhance its antibacterial activity, the derived peptides GHaR and GHa11R were designed, and their antibacterial performance, antibiofilm efficacy and potential in the inhibition of dental caries were evaluated. Methods Bacterial survival assay, fluorescent staining assay and transmission electron microscopy observation were applied to explore how the peptides inhibited and killed S. mutans. The antibiofilm efficacy was assayed by examining exopolysaccharide (EPS) and lactic acid production, bacterial adhesion and cell surface hydrophobicity. The gene expression level of virulence factors of S. mutans was detected by qRT-PCR. Finally, the impact of the peptides on the caries induced ability of S. mutans was measured using a rat caries model. Results It has been shown that the peptides inhibited biofilm rapid accumulation by weakening the initial adhesion of S. mutans and reducing the production of EPS. Meanwhile, they also decreased bacterial acidogenicity and aciduricity, and ultimately prevented caries development in vivo. Conclusion GHaR and GHa11R might be promising candidates for controlling S. mutans infections.
Collapse
Affiliation(s)
- Shangjun Jiang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Yanmei Zha
- College of Life Sciences, Hainan University, Haikou, China
| | - Ting Zhao
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Xiao Jin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Ruiying Zhu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | | | - Rong Wang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Yanting Song
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Lushuang Li
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Junchen Lyu
- School of Science, Hainan University, Haikou, China
| | - Wenting Hu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| | - Daqi Zhang
- Department of Neurology, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Manchuriga Wang
- School of Animal Science and Technology, Hainan University, Haikou, China
| | - Yingxia Zhang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Collaborative Innovation Center of One Health, Hainan University, Haikou, China
| |
Collapse
|
10
|
Zheng T, Jing M, Gong T, Yan J, Wang X, Xu M, Zhou X, Zeng J, Li Y. Regulatory mechanisms of exopolysaccharide synthesis and biofilm formation in Streptococcus mutans. J Oral Microbiol 2023; 15:2225257. [PMID: 37346997 PMCID: PMC10281425 DOI: 10.1080/20002297.2023.2225257] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023] Open
Abstract
Background Dental caries is a chronic, multifactorial and biofilm-mediated oral bacterial infection affecting almost every age group and every geographical region. Streptococcus mutans is considered an important pathogen responsible for the initiation and development of dental caries. It produces exopolysaccharides in situ to promote the colonization of cariogenic bacteria and coordinate dental biofilm development. Objective The understanding of the regulatory mechanism of S. mutans biofilm formation can provide a theoretical basis for the prevention and treatment of caries. Design At present, an increasing number of studies have identified many regulatory systems in S. mutans that regulate biofilm formation, including second messengers (e.g. c-di-AMP, Ap4A), transcription factors (e.g. EpsR, RcrR, StsR, AhrC, FruR), two-component systems (e.g. CovR, VicR), small RNA (including sRNA0426, srn92532, and srn133489), acetylation modifications (e.g. ActG), CRISPR-associated proteins (e.g. Cas3), PTS systems (e.g. EIIAB), quorum-sensing signaling system (e.g. LuxS), enzymes (including Dex, YidC, CopZ, EzrA, lmrB, SprV, RecA, PdxR, MurI) and small-molecule metabolites. Results This review summarizes the recent progress in the molecular regulatory mechanisms of exopolysaccharides synthesis and biofilm formation in S. mutans.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meiling Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mai Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Ren S, Yang Y, Xia M, Deng Y, Zuo Y, Lei L, Hu T. A Chinese herb preparation, honokiol, inhibits Streptococcus mutans biofilm formation. Arch Oral Biol 2023; 147:105610. [PMID: 36603516 DOI: 10.1016/j.archoralbio.2022.105610] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to investigate the antibiofilm and anticariogenic effects of honokiol, a traditional Chinese medicine, on the cariogenic bacterium Streptococcus mutans (S. mutans). DESIGN The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of honokiol on S. mutans UA159 were measured. Then, S. mutans were treated with honokiol at concentrations of 1/2 MIC and 1/4 MIC. Extracellular polysaccharide (EPS) synthesis was assessed with confocal laser scanning microscopy (CLSM) and the anthrone-sulfuric method. Crystal violet staining and scanning electron microscopy (SEM) were used to demonstrate the characteristics and morphology of S. mutans biofilms. Colony-forming unit (CFU) assay was performed to observe the antibacterial effect of honokiol. Lactic acid production of 24-h biofilms was measured by the lactic acid assay. The expression level of caries-related genes (gtfB/C/D, comD/E and ldh) was identified by quantitative real-time PCR (qRTPCR) to explore the relevant mechanism. And the cytotoxic effect on human gingival fibroblasts (HGFs) was evaluated by the Cell Counting Kit-8 (CCK-8) assay. RESULTS The MIC and MBC of honokiol on S. mutans were 30 μg/mL and 60 μg/mL, respectively. Honokiol inhibited biofilm formation, EPS synthesis and lactic acid production. It also decreased the expression of glucosyltransferases (Gtfs) and quorum sensing (QS) system encoding genes. Moreover, honokiol showed favorable biocompatibility with HGFs. CONCLUSIONS Honokiol has an inhibitory effect on S. mutans and favorable biocompatibility, with application potential as a novel anticaries agent.
Collapse
Affiliation(s)
- Shirui Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuling Zuo
- Hospital of Chengdu University of Traditional Chinese Medicine, Sichuan Province, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Zhao Z, Wu J, Sun Z, Fan J, Liu F, Zhao W, Liu WH, Zhang M, Hung WL. Postbiotics Derived from L. paracasei ET-22 Inhibit the Formation of S. mutans Biofilms and Bioactive Substances: An Analysis. Molecules 2023; 28:molecules28031236. [PMID: 36770903 PMCID: PMC9919839 DOI: 10.3390/molecules28031236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Globally, dental caries is one of the most common non-communicable diseases for patients of all ages; Streptococcus mutans (S. mutans) is its principal pathogen. Lactobacillus paracasei (L. paracasei) shows excellent anti-pathogens and immune-regulation functions in the host. The aim of this study is to evaluate the effects of L. paracasei ET-22 on the formation of S. mutans biofilms. The living bacteria, heat-killed bacteria, and secretions of L. paracasei ET-22 were prepared using the same number of bacteria. In vitro, they were added into artificial-saliva medium, and used to coculture with the S. mutans. Results showed that the living bacteria and secretions of L. paracasei ET-22 inhibited biofilm-growth, the synthesis of water-soluble polysaccharide and water-insoluble polysaccharide, and virulence-gene-expression levels related to the formation of S. mutans biofilms. Surprisingly, the heat-killed L. paracasei ET-22, which is a postbiotic, also showed a similar regulation function. Non-targeted metabonomics technology was used to identify multiple potential active-substances in the postbiotics of L. paracasei ET-22 that inhibit the formation of S. mutans biofilms, including phenyllactic acid, zidovudine monophosphate, and citrulline. In conclusion, live bacteria and its postbiotics of L. paracasei ET-22 all have inhibitory effects on the formation of S. mutans biofilm. The postbiotics of L. paracasei ET-22 may be a promising biological anticariogenic-agent.
Collapse
Affiliation(s)
- Zhi Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Jianmin Wu
- China Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Zhe Sun
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
| | - Jinbo Fan
- College of Food Science and Engineering, Bohai University, Jinzhou 121013, China
| | - Fudong Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Wen Zhao
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Wei-Hsien Liu
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
| | - Ming Zhang
- School of Food and Health, Beijing Technology and Business University, Beijing 100024, China
- Correspondence: (M.Z.); (W.-L.H.)
| | - Wei-Lian Hung
- Inner Mongolia Dairy Technology Research Institute Co., Ltd., Hohhot 010110, China
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, China
- Correspondence: (M.Z.); (W.-L.H.)
| |
Collapse
|
13
|
Sun Y, Chen H, Xu M, He L, Mao H, Yang S, Qiao X, Yang D. Exopolysaccharides metabolism and cariogenesis of Streptococcus mutans biofilm regulated by antisense vicK RNA. J Oral Microbiol 2023; 15:2204250. [PMID: 37138664 PMCID: PMC10150615 DOI: 10.1080/20002297.2023.2204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background Streptococcus mutans (S. mutans) is a pivotal cariogenic pathogen contributing to its multiple virulence factors, one of which is synthesizing exopolysaccharides (EPS). VicK, a sensor histidine kinase, plays a major role in regulating genes associated with EPS synthesis and adhesion. Here we first identified an antisense vicK RNA (ASvicK) bound with vicK into double-stranded RNA (dsRNA). Objective This study aims to investigate the effect and mechanism of ASvicK in the EPS metabolism and cariogenesis of S. mutans. Methods The phenotypes of biofilm were detected by scanning electron microscopy (SEM), gas chromatography-mass spectrometery (GC-MS) , gel permeation chromatography (GPC) , transcriptome analysis and Western blot. Co-immunoprecipitation (Co-ip) assay and enzyme activity experiment were adopted to investigate the mechanism of ASvicK regulation. Caries animal models were developed to study the relationship between ASvicK and cariogenicity of S. mutans. Results Overexpression of ASvicK can inhibit the growth of biofilm, reduce the production of EPS and alter genes and protein related to EPS metabolism. ASvicK can adsorb RNase III to regulate vicK and affect the cariogenicity of S. mutans. Conclusions ASvicK regulates vicK at the transcriptional and post-transcriptional levels, effectively inhibits EPS synthesis and biofilm formation and reduces its cariogenicity in vivo.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen He
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- CONTACT Deqin Yang Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing4404100, China
| |
Collapse
|
14
|
Exploiting Conserved Quorum Sensing Signals in Streptococcus mutans and Streptococcus pneumoniae. Microorganisms 2022; 10:microorganisms10122386. [PMID: 36557639 PMCID: PMC9785397 DOI: 10.3390/microorganisms10122386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Bacterial species of the Streptococcus genera are considered either commensal bacteria or potential pathogens, according to their metabolic evolution and production of quorum sensing (QS)-controlled virulence factors. S. mutans, in particular, has become one of the best-studied examples of bacteria that are able to get along or cheat commensal species, even of the same genera. S. mutans and S. pneumoniae share homolog QS pathways and a competence stimulating peptide (CSP) for regulating bacteriocin production. Intriguingly, the abundance of S. pneumoniae and S. mutans alternates in complex microbial communities, thus opening the role for the fratricide communication of homolog QS systems. Since the inhibition of the QS has been proposed in treating bacterial infections, in this study, we designed and synthesized analogs of S. pneumoniae CSP with precise residual modifications. We reported that S. pneumoniae CSP analogs reduced the expression of genes involved in the QS of S. mutans and biofilm formation without affecting bacterial growth. The CSP analogs inhibited bacteriocin production in S. mutans, as reported by co-cultures with commensal bacteria of the oral cavity. The peptide CSP1AA, bearing substitutions in the residues involved in QS receptor recognition and activation, reported the most significant quorum-quenching activities. Our findings provide new insights into specific chemical drivers in the CSP sequences controlling the interconnection between S. mutans and S. pneumoniae. We think that the results reported in this study open the way for new therapeutic interventions in controlling the virulence factors in complex microbial communities such as the oral microbiota.
Collapse
|
15
|
Liu Y, Wang Z, Zhou Z, Ma Q, Li J, Huang J, Lei L, Zhou X, Cheng L, Zou J, Ren B. Candida albicans CHK1 gene regulates its cross-kingdom interactions with Streptococcus mutans to promote caries. Appl Microbiol Biotechnol 2022; 106:7251-7263. [PMID: 36195704 DOI: 10.1007/s00253-022-12211-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/08/2022] [Accepted: 09/24/2022] [Indexed: 01/14/2023]
Abstract
The cross-kingdom interactions between Candida albicans and Streptococcus mutans have played important roles in early childhood caries (ECC). However, the key pathways of C. albicans promoting the cariogenicity of S. mutans are still unclear. Here, we found that C. albicans CHK1 gene was highly upregulated in their dual-species biofilms. C. albicans chk1Δ/Δ significantly reduced the synergistical growth promotion, biofilm formation, and exopolysaccharides (EPS) production of S. mutans, the key cariogenic agent, compared to C. albicans wild type (WT) and CHK1 complementary strains. C. albicans WT upregulated the expressions of S. mutans EPS biosynthesis genes gtfB, gtfC, and gtfD, and their regulatory genes vicR and vicK, but chk1Δ/Δ had no effects. Both C. albicans WT and chk1Δ/Δ failed to promote the biofilm formation and EPS production of S. mutans ΔvicK and antisense-vicR strains, indicating that C. albicans CHK1 upregulated S. mutans vicR and vicK to increase the EPS biosynthesis gene expression, then enhanced the EPS production and biofilm formation to promote the cariogenicity. In rat caries model, the coinfection with chk1Δ/Δ and S. mutans decreased the colonization of S. mutans and developed less caries especially the severe caries compared to that from the combinations of S. mutans with C. albicans WT, indicating the essential role of C. albicans CHK1 gene in the development of dental caries. Our study for the first time demonstrated the key roles of C. albicans CHK1 gene in dental caries and suggested that it may be a practical target to reduce or treat ECC. KEY POINTS: • C. albicans CHK1 gene is important for its interaction with S. mutans. • CHK1 regulates S. mutans two-component system to promote its cariogenicity. • CHK1 gene regulates the cariogenicity of S. mutans in rat dental caries.
Collapse
Affiliation(s)
- Yaqi Liu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ziyi Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China. .,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Lu Y, Lei L, Deng Y, Zhang H, Xia M, Wei X, Yang Y, Hu T. RNase III coding genes modulate the cross-kingdom biofilm of Streptococcus mutans and Candida albicans. Front Microbiol 2022; 13:957879. [PMID: 36246231 PMCID: PMC9563999 DOI: 10.3389/fmicb.2022.957879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Streptococcus mutans constantly coexists with Candida albicans in plaque biofilms of early childhood caries (ECC). The progression of ECC can be influenced by the interactions between S. mutans and C. albicans through exopolysaccharides (EPS). Our previous studies have shown that rnc, the gene encoding ribonuclease III (RNase III), is implicated in the cariogenicity of S. mutans by regulating EPS metabolism. The DCR1 gene in C. albicans encodes the sole functional RNase III and is capable of producing non-coding RNAs. However, whether rnc or DCR1 can regulate the structure or cariogenic virulence of the cross-kingdom biofilm of S. mutans and C. albicans is not yet well understood. By using gene disruption or overexpression assays, this study aims to investigate the roles of rnc and DCR1 in modulating the biological characteristics of dual-species biofilms of S. mutans and C. albicans and to reveal the molecular mechanism of regulation. The morphology, biomass, EPS content, and lactic acid production of the dual-species biofilm were assessed. Quantitative real-time polymerase chain reaction (qRT-PCR) and transcriptomic profiling were performed to unravel the alteration of C. albicans virulence. We found that both rnc and DCR1 could regulate the biological traits of cross-kingdom biofilms. The rnc gene prominently contributed to the formation of dual-species biofilms by positively modulating the extracellular polysaccharide synthesis, leading to increased biomass, biofilm roughness, and acid production. Changes in the microecological system probably impacted the virulence as well as polysaccharide or pyruvate metabolism pathways of C. albicans, which facilitated the assembly of a cariogenic cross-kingdom biofilm and the generation of an augmented acidic milieu. These results may provide an avenue for exploring new targets for the effective prevention and treatment of ECC.
Collapse
Affiliation(s)
- Yangyu Lu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengying Xia
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xi Wei
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Yingming Yang,
| | - Tao Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Tao Hu,
| |
Collapse
|
17
|
Xia M, Zhuo N, Ren S, Zhang H, Yang Y, Lei L, Hu T. Enterococcus faecalis rnc gene modulates its susceptibility to disinfection agents: a novel approach against biofilm. BMC Oral Health 2022; 22:416. [PMID: 36127648 PMCID: PMC9490916 DOI: 10.1186/s12903-022-02462-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Enterococcus faecalis (E. faecalis) plays an important role in the failure of root canal treatment and refractory periapical periodontitis. As an important virulence factor of E. faecalis, extracellular polysaccharide (EPS) serves as a matrix to wrap bacteria and form biofilms. The homologous rnc gene, encoding Ribonuclease III, has been reported as a regulator of EPS synthesis. In order to develop novel anti-biofilm targets, we investigated the effects of the rnc gene on the biological characteristics of E. faecalis, and compared the biofilm tolerance towards the typical root canal irrigation agents and traditional Chinese medicine fluid Pudilan. METHODS E. faecalis rnc gene overexpression (rnc+) and low-expression (rnc-) strains were constructed. The growth curves of E. faecalis ATCC29212, rnc+, and rnc- strains were obtained to study the regulatory effect of the rnc gene on E. faecalis. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), and crystal violet staining assays were performed to evaluate the morphology and composition of E. faecalis biofilms. Furthermore, the wild-type and mutant biofilms were treated with 5% sodium hypochlorite (NaOCl), 2% chlorhexidine (CHX), and Pudilan. The residual viabilities of E. faecalis biofilms were evaluated using crystal violet staining and colony counting assays. RESULTS The results demonstrated that the rnc gene could promote bacterial growth and EPS synthesis, causing the EPS-barren biofilm morphology and low EPS/bacteria ratio. Both the rnc+ and rnc- biofilms showed increased susceptibility to the root canal irrigation agents. The 5% NaOCl group showed the highest biofilm removing effect followed by Pudilan and 2% CHX. The colony counting results showed almost complete removal of bacteria in the 5% NaOCl, 2% CHX, and Chinese medicine agents' groups. CONCLUSIONS This study concluded that the rnc gene could positively regulate bacterial proliferation, EPS synthesis, and biofilm formation in E. faecalis. The rnc mutation caused an increase in the disinfectant sensitivity of biofilm, indicating a potential anti-biofilm target. In addition, Pudilan exhibited an excellent ability to remove E. faecalis biofilm.
Collapse
Affiliation(s)
- Mengying Xia
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Niya Zhuo
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Shirui Ren
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Hongyu Zhang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| | - Yingming Yang
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China.
| | - Lei Lei
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China.
| | - Tao Hu
- Department of Preventive Dentistry, West China Hospital of Stomatology, Key Laboratory of Oral Diseases, Sichuan University, NO. 14 Third Section Renmin South Road, Chengdu, China
| |
Collapse
|
18
|
Shi Y, Liang J, Zhou X, Ren B, Wang H, Han Q, Li H, Cheng L. Effects of a Novel, Intelligent, pH-Responsive Resin Adhesive on Cariogenic Biofilms In Vitro. Pathogens 2022; 11:pathogens11091014. [PMID: 36145446 PMCID: PMC9502692 DOI: 10.3390/pathogens11091014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Secondary caries often result in a high failure rate of resin composite restoration. Herein, we studied the dodecylmethylaminoethyl methacrylate−modified resin adhesive (DMAEM@RA) to investigate its pH-responsive antimicrobial effect on Streptococcus mutans and Candida albicans dual-species biofilms and on secondary caries. Methods: Firstly, the pH-responsive antimicrobial experiments including colony-forming units, scanning electron microscopy and exopoly-saccharide staining were measured. Secondly, lactic acid measurement and transverse microradiography analysis were performed to determine the preventive effect of DMAEM@RA on secondary caries. Lastly, quantitative real-time PCR was applied to investigate the antimicrobial effect of DMAEM@RA on cariogenic virulence genes. Results: DMAEM@RA significantly inhibited the growth, EPS, and acid production of Streptococcus mutans and Candida albicans dual-species biofilms under acidic environments (p < 0.05). Moreover, at pH 5 and 5.5, DMAEM@RA remarkably decreased the mineral loss and lesion depth of tooth hard tissue (p < 0.05) and down-regulated the expression of cariogenic genes, virulence-associated genes, and pH-regulated genes of dual-species biofilms (p < 0.05). Conclusions: DMAEM@RA played an antibiofilm role on Streptococcus mutans and Candida albicans dual-species biofilms, prevented the demineralization process, and attenuated cariogenic virulence in a pH-dependent manner.
Collapse
Affiliation(s)
- Yangyang Shi
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingou Liang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Pediatric Dentistry, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Hao Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.L.); (L.C.)
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu 610041, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Correspondence: (H.L.); (L.C.)
| |
Collapse
|