1
|
Chan Soe N, Fujimori T, Shiota K, Doya R, Mufalo W, Ito M, Sato T, Igarashi T, Ikenaka Y, Ishizuka M, Nakayama SMM. Assessing the efficacy of phosphate and lime amendments in immobilizing three forms of lead in contaminated soil: An in vivo study on C57/BL6 mice simulating environmentally realistic exposure pathways. CHEMOSPHERE 2025; 374:144201. [PMID: 39938323 DOI: 10.1016/j.chemosphere.2025.144201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Lead (Pb) bioavailability differs depending on the specific Pb species present in the area. Adding organic and inorganic soil amendments can ameliorate the mobility of Pb in the soil. However, there is a scarcity of in vivo studies investigating the impact of these amendments on mammals via environmentally realistic exposure pathways. We evaluated the accumulation of Pb in blood and tissues of mice living on soils spiked with one of three Pb species (hydrocerussite [2PbCO3·Pb(OH)2], lead sulfate [PbSO4], and lead sulfide [PbS]) and compared the efficacy of phosphate (triple super phosphate [TSP] or phosphoric acid) or liming (calcined dolomite) amendments in reducing Pb accumulation from these soils via realistic exposure pathways. The Pb species in the spiked soil were investigated via X-ray absorption near edge structures (XANES) spectroscopy. C57/BL6 mice (six per group) were exposed to both Pb-spiked and amended soils by housing them on the soil for three months and thus simulating realistic exposure pathways. XANES analysis revealed that Pb carbonates were the dominant phase in all Pb-spiked soils. The group exposed to 2PbCO3·Pb(OH)2 had the greatest Pb accumulation in brain, trachea, kidneys, liver, bone, and blood, but not lungs, whereas the PbS-exposed group accumulated more Pb in the lungs. TSP was the most effective chemical stabilizer of the three amendments, facilitating reductions in the 2PbCO3·Pb(OH)2, PbSO4, and PbS exposure groups of 68-88%, 44-62%, and 6-49%, respectively. This suggests that chemical remediation using phosphate sources may be effective for immobilizing various Pb species in soils.
Collapse
Affiliation(s)
- Nyein Chan Soe
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Department of Pharmacology and Parasitology, University of Veterinary Science, Yezin, Nay Pyi Taw, 150501, Myanmar
| | - Takashi Fujimori
- Ecology and Environmental Engineering Course, Faculty of Advanced Science and Technology, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu, Shiga, 520-2194, Japan
| | - Kenji Shiota
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto, 615-8540, Japan
| | - Rio Doya
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Walubita Mufalo
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Mayumi Ito
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | - Tsutomu Sato
- Faculty of Engineering, Hokkaido University, Sapporo, 060-8628, Japan
| | | | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; One Health Research Center, Hokkaido University, Sapporo, 060-0818, Japan; Water Research Group, School of Environmental Sciences and Development, North-West University, Potchefstroom, 2531, South Africa
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan; Biomedical Sciences Department, School of Veterinary Medicine, The University of Zambia, P.O. Box 32379, Lusaka, Zambia.
| |
Collapse
|
2
|
Pennington AF, Smith MR, Chuke SO, Cornwell CR, Allwood PB, Courtney JG. Effects of Blood Lead Levels <10 µg/dL in School-Age Children and Adolescents: A Scoping Review. Pediatrics 2024; 154:e2024067808F. [PMID: 39352036 PMCID: PMC11610497 DOI: 10.1542/peds.2024-067808f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/03/2024] Open
Abstract
CONTEXT Lead exposures among school-age children are a major public health issue. Although the harmful effects of lead exposure during the first years of life are well known, there is not as much understanding of the effects of low levels of lead exposure during later childhood. OBJECTIVES To review the effects of blood lead levels (BLLs) <10 µg/dL in school-age children and adolescents. DATA SOURCES We searched Medline, Embase, Global health, CINAHL, Scopus, and Environmental Science Collection databases between January 1, 2000, and May 11, 2023. STUDY SELECTION We included peer-reviewed English-language articles that presented data on the effects of BLLs <10 µg/dL in individuals ages 5 through 18 years. DATA EXTRACTION Data on country, population, analytic design, sample size, age, BLLs, outcomes, covariates, and results were extracted. RESULTS Overall, 115 of 3180 screened articles met the inclusion criteria. The reported mean or median BLL was <5 µg/dL in 98 articles (85%). Of the included articles, 89 (77%) presented some evidence of an association between BLLs <10 µg/dL during school age and detrimental outcomes in a wide range of categories. The strongest evidence of an association was for the outcomes of intelligence quotient and attention-deficit/hyperactivity disorder diagnoses or behaviors. LIMITATIONS Few articles controlled for BLLs at age <5 years, limiting conclusions about the relation between later BLLs and outcomes. CONCLUSIONS BLLs <10 µg/dL in school-age children and adolescents may be associated with negative outcomes. This review highlights areas that could benefit from additional investigation.
Collapse
Affiliation(s)
- Audrey F. Pennington
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Madison R. Smith
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Stella O. Chuke
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Cheryl R. Cornwell
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Paul B. Allwood
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Joseph G. Courtney
- Lead Poisoning Prevention and Surveillance Branch, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA USA
| |
Collapse
|
3
|
Farmani R, Mehrpour O, Kooshki A, Nakhaee S. Exploring the link between toxic metal exposure and ADHD: a systematic review of pb and hg. J Neurodev Disord 2024; 16:44. [PMID: 39090571 PMCID: PMC11292919 DOI: 10.1186/s11689-024-09555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Attention-Deficit/Hyperactivity Disorder (ADHD) is a recognized neurodevelopmental disorder with a complex, multifactorial origin. Lead (Pb) and mercury (Hg) are highly toxic substances that can potentially impair brain development and have been implicated in the development of ADHD. This systematic review aims to analyze the epidemiological literature regarding the association between Pb and Hg exposure and the diagnosis of ADHD. METHODS From November 1983 to June 2, 2023, a comprehensive search was conducted in multiple databases and search engines, including PubMed, Web of Science, Scopus, and Google Scholar. Observational studies (case-control, cohort, and cross-sectional) measuring Pb and Hg levels in various biological samples (blood, hair, urine, nail, saliva, teeth, and bone) of children with ADHD or their parents and their association with ADHD symptoms were included. RESULTS Out of 2059 studies, 87 met the inclusion criteria and were included in this systematic review. Approximately two-thirds of the 74 studies investigating Pb levels in different biological samples reported associations with at least one subtype of ADHD. However, most studies examining Hg levels in various biological samples found no significant association with any ADHD subtype, although there were variations in exposure periods and diagnostic criteria. CONCLUSION The evidence gathered from the included studies supports an association between Pb exposure and the diagnosis of ADHD, while no significant association was found with Hg exposure. Importantly, even low levels of Pb were found to elevate the risk of ADHD. Further research is needed to explore the comprehensive range of risk factors for ADHD in children, considering its significance as a neurodevelopmental disorder.
Collapse
Affiliation(s)
- Reyhane Farmani
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Omid Mehrpour
- Michigan Poison & Drug Information Center, Wayne State University School of Medicine, Detroit, MI, USA
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
| | - Alireza Kooshki
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Nakhaee
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran.
| |
Collapse
|
4
|
Stanek LW, Xue J, Zartarian VG, Poulakos AG, Tornero-Velez R, Snyder EG, Walts A, Triantafillou K. Identification of high lead exposure locations in Ohio at the census tract scale using a generalizable geospatial hotspot approach. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:718-726. [PMID: 38575709 PMCID: PMC11303242 DOI: 10.1038/s41370-024-00666-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
BACKGROUND Lead is a persistent, ubiquitous pollutant whose historical sources have been largely addressed through regulation and voluntary actions. The United States (U.S.) has achieved significant decreases in children's blood lead levels (BLL) over the past 40 years; however, there is no known safe level of Pb exposure. Some communities continue to be disproportionately impacted by exposure to Pb, including Black children and families living in older homes. OBJECTIVE To identify Ohio (OH) census tracts with children exposed to Pb and evaluate potential exposure determinants. METHODS We obtained individual children's blood Pb data from 2005-2018 in OH. The percent of children with elevated BLL (EBLL) was calculated for OH census tracts using three blood Pb reference values (3.5, 5, and 10 µg/dL). Getis-Ord Gi* geospatial hotspot or top 20th percentile methodologies were then applied to identify "hotspots." Findings across multiple time periods and blood Pb reference values were evaluated and compared with existing Pb exposure indices and models. RESULTS Consistency was observed across different blood Pb reference values, with the main hotspots identified at 3.5 µg/dL, also identified at 5 and 10 µg/dL. Substantial gains in public health were demonstrated, with the biggest decreases in the number of census tracts with EBLL observed between 2008-2010 and 2011-2013. Across OH, 355 census tracts (of 2850) were identified as hotspots across 17 locations, with the majority in the most populated cites. Generally, old housing and sociodemographic factors were indicators of these EBLL hotspots. A smaller number of hotspots were not associated with these exposure determinants. Variables of race, income, and education level were all strong predictors of hotspots. IMPACT STATEMENT The Getis-Ord Gi* geospatial hotspot analysis can inform local investigations into potential Pb exposures for children living in OH. The successful application of a generalizable childhood blood Pb methodology at the census tract scale provides results that are more readily actionable. The moderate agreement of the measured blood Pb results with public Pb indices provide confidence that these indices can be used in the absence of available blood Pb surveillance data. While not a replacement for universal blood Pb testing, a consistent approach can be applied to identify areas where Pb exposure may be problematic.
Collapse
Affiliation(s)
- Lindsay W Stanek
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, North Carolina, NC, USA.
| | - Jianping Xue
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, North Carolina, NC, USA
| | - Valerie G Zartarian
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, North Carolina, NC, USA
| | - Antonios G Poulakos
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, North Carolina, NC, USA
- LinTech Global, Inc., Boston, MA, USA
| | - Rogelio Tornero-Velez
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, North Carolina, NC, USA
| | - Emily G Snyder
- U.S. Environmental Protection Agency (EPA), Office of Research and Development (ORD), Research Triangle Park, North Carolina, NC, USA
| | | | | |
Collapse
|
5
|
Dufault RJ, Adler KM, Carpenter DO, Gilbert SG, Crider RA. Nutritional epigenetics education improves diet and attitude of parents of children with autism or attention deficit/hyperactivity disorder. World J Psychiatry 2024; 14:159-178. [PMID: 38327893 PMCID: PMC10845225 DOI: 10.5498/wjp.v14.i1.159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Unhealthy maternal diet leads to heavy metal exposures from the consumption of ultra-processed foods that may impact gene behavior across generations, creating conditions for the neurodevelopmental disorders known as autism and attention deficit/hyperactivity disorder (ADHD). Children with these disorders have difficulty metabolizing and excreting heavy metals from their bloodstream, and the severity of their symptoms correlates with the heavy metal levels measured in their blood. Psychiatrists may play a key role in helping parents reduce their ultra-processed food and dietary heavy metal intake by providing access to effective nutritional epigenetics education. AIM To test the efficacy of nutritional epigenetics instruction in reducing parental ultra-processed food intake. METHODS The study utilized a semi-randomized test and control group pretest-posttest pilot study design with participants recruited from parents having a learning-disabled child with autism or ADHD. Twenty-two parents who met the inclusion criteria were randomly selected to serve in the test (n = 11) or control (n = 11) group. The test group participated in the six-week online nutritional epigenetics tutorial, while the control group did not. The efficacy of the nutritional epigenetics instruction was determined by measuring changes in parent diet and attitude using data derived from an online diet survey administered to the participants during the pre and post intervention periods. Diet intake scores were derived for both ultra-processed and whole/organic foods. Paired sample t-tests were conducted to determine any differences in mean diet scores within each group. RESULTS There was a significant difference in the diet scores of the test group between the pre- and post-intervention periods. The parents in the test group significantly reduced their intake of ultra-processed foods with a pre-intervention diet score of 70 (mean = 5.385, SD = 2.534) and a post-intervention diet score of 113 (mean = 8.692, SD = 1.750) and the paired t-test analysis showing a significance of P < 0.001. The test group also significantly increased their consumption of whole and/or organic foods with a pre-intervention diet score of 100 (mean = 5.882, SD = 2.472) and post-intervention diet score of 121 (mean = 7.118, SD = 2.390) and the paired t-test analysis showing a significance of P < 0.05. CONCLUSION Here we show nutritional epigenetics education can be used to reduce ultra-processed food intake and improve attitude among parents having learning-disabled children with autism or ADHD.
Collapse
Affiliation(s)
- Renee J Dufault
- College of Graduate Health Studies, A.T. Still University, Kirksville, MO 63501, United States
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| | - Katherine M Adler
- Department of Health Sciences, University of New Haven, West Haven, CT 06516, United States
| | - David O Carpenter
- Institute for Health and the Environment, School of Public Health, State University of New York, Albany, NY 12222, United States
| | - Steven G Gilbert
- Department of Research, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
- Department of Research, Institute of Neurotoxicology and Neurological Disorders, Seattle, WA 98105, United States
| | - Raquel A Crider
- Department of Statistics, Food Ingredient and Health Research Institute, Naalehu, HI 96772, United States
| |
Collapse
|
6
|
Mallard TT, Grotzinger AD, Smoller JW. Examining the shared etiology of psychopathology with genome-wide association studies. Physiol Rev 2023; 103:1645-1665. [PMID: 36634217 PMCID: PMC9988537 DOI: 10.1152/physrev.00016.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/19/2022] [Accepted: 01/03/2023] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWASs) have ushered in a new era of reproducible discovery in psychiatric genetics. The field has now identified hundreds of common genetic variants that are associated with mental disorders, and many of them influence more than one disorder. By advancing the understanding of causal biology underlying psychopathology, GWAS results are poised to inform the development of novel therapeutics, stratification of at-risk patients, and perhaps even the revision of top-down classification systems in psychiatry. Here, we provide a concise review of GWAS findings with an emphasis on findings that have elucidated the shared genetic etiology of psychopathology, summarizing insights at three levels of analysis: 1) genome-wide architecture; 2) networks, pathways, and gene sets; and 3) individual variants/genes. Three themes emerge from these efforts. First, all psychiatric phenotypes are heritable, highly polygenic, and influenced by many pleiotropic variants with incomplete penetrance. Second, GWAS results highlight the broad etiological roles of neuronal biology, system-wide effects over localized effects, and early neurodevelopment as a critical period. Third, many loci that are robustly associated with multiple forms of psychopathology harbor genes that are involved in synaptic structure and function. Finally, we conclude our review by discussing the implications that GWAS results hold for the field of psychiatry, as well as expected challenges and future directions in the next stage of psychiatric genetics.
Collapse
Affiliation(s)
- Travis T Mallard
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, United States
| | - Andrew D Grotzinger
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, Colorado, United States
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado, United States
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, United States
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Chen Z, Deng X, Fang L, Sun K, Wu Y, Che T, Zou J, Cai J, Liu H, Wang Y, Wang T, Tian Y, Zheng N, Yan X, Sun R, Xu X, Zhou X, Ge S, Liang Y, Yi L, Yang J, Zhang J, Ajelli M, Yu H. Epidemiological characteristics and transmission dynamics of the outbreak caused by the SARS-CoV-2 Omicron variant in Shanghai, China: A descriptive study. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2022; 29:100592. [PMID: 36090701 PMCID: PMC9448412 DOI: 10.1016/j.lanwpc.2022.100592] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Background In early March 2022, a major outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant spread rapidly throughout Shanghai, China. Here we aimed to provide a description of the epidemiological characteristics and spatiotemporal transmission dynamics of the Omicron outbreak under the population-based screening and lockdown policies implemented in Shanghai. Methods We extracted individual information on SARS-CoV-2 infections reported between January 1 and May 31, 2022, and on the timeline of the adopted non-pharmaceutical interventions. The epidemic was divided into three phases: i) sporadic infections (January 1-February 28), ii) local transmission (March 1-March 31), and iii) city-wide lockdown (April 1 to May 31). We described the epidemic spread during these three phases and the subdistrict-level spatiotemporal distribution of the infections. To evaluate the impact on the transmission of SARS-CoV-2 of the adopted targeted interventions in Phase 2 and city-wide lockdown in Phase 3, we estimated the dynamics of the net reproduction number (Rt ). Findings A surge in imported infections in Phase 1 triggered cryptic local transmission of the Omicron variant in early March, resulting in the largest outbreak in mainland China since the original wave. A total of 626,000 SARS-CoV-2 infections were reported in 99.5% (215/216) of the subdistricts of Shanghai until the end of May. The spatial distribution of the infections was highly heterogeneous, with 37% of the subdistricts accounting for 80% of all infections. A clear trend from the city center towards adjacent suburban and rural areas was observed, with a progressive slowdown of the epidemic spread (from 463 to 244 meters/day) prior to the citywide lockdown. During Phase 2, Rt remained well above 1 despite the implementation of multiple targeted interventions. The citywide lockdown imposed on April 1 led to a marked decrease in transmission, bringing Rt below the epidemic threshold in the entire city on April 14 and ultimately leading to containment of the outbreak. Interpretation Our results highlight the risk of widespread outbreaks in mainland China, particularly under the heightened pressure of imported infections. The targeted interventions adopted in March 2022 were not capable of halting transmission, and the implementation of a strict, prolonged city-wide lockdown was needed to successfully contain the outbreak, highlighting the challenges for containing Omicron outbreaks. Funding Key Program of the National Natural Science Foundation of China (82130093); Shanghai Rising-Star Program (22QA1402300).
Collapse
Affiliation(s)
- Zhiyuan Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xiaowei Deng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Liqun Fang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Kaiyuan Sun
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Yanpeng Wu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Tianle Che
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Junyi Zou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Jun Cai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Hengcong Liu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Tao Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yuyang Tian
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Nan Zheng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xuemei Yan
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Ruijia Sun
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xiangyanyu Xu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Xiaoyu Zhou
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Shijia Ge
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxia Liang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Lan Yi
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| | - Juanjuan Zhang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Stein CR, Wu H, Bellinger DC, Smith DR, Wolff MS, Savitz DA. Exposure to metal mixtures and neuropsychological functioning in middle childhood. Neurotoxicology 2022; 93:84-91. [PMID: 36122627 PMCID: PMC10513744 DOI: 10.1016/j.neuro.2022.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/09/2023]
Abstract
Elevated exposure to multiple trace metals can be neurotoxic even at relatively low levels. These findings are primarily evident from adult occupational studies as well as in children exposed prenatally or in early childhood. Less research has focused on the neurodevelopmental impacts of exposure to metals among school-aged children. We examined associations between exposure to a mixture of four metals (arsenic, cadmium, manganese, lead) measured in hair and markers of cognition, attention, and behavior among 222 6-12 year old children who participated in a 2009-2010 neurodevelopmental follow-up to the C8 Health Project. Using quantile-based g-computation we estimated the adjusted overall metal mixture effect ψ (95 % CI) as the change in outcome per decile increase in all metals in the mixture. Hair metal levels varied by metal, with cadmium being lowest (median 0.007, interquartile range (IQR) 0.013 μg/g) and lead the highest concentration (median 0.152, IQR 0.252 μg/g). Children's cognitive skills and development, attention/impulsivity, and behavior were all close to standardized population means. Each decile increase in all metals was associated with a Full Scale IQ reduction of 1.01 points (95 % confidence interval (CI) -1.88, -0.15) and Verbal IQ reduction of 1.11 points (95 % CI -1.97, -0.25), adjusted for child age, sex, secondhand smoke exposure, HOME score, maternal education, maternal IQ, and examiner. Maternal report of ADHD-like behaviors and executive functioning also showed adverse associations with the metal mixture. Our findings suggest that similar to exposure during prenatal and early childhood periods, recent exposure to metals during middle childhood is associated with adverse neurodevelopmental consequences. Middle childhood may also be a developmental window of susceptibility to the negative consequences of exposure to environmental neurotoxicants.
Collapse
Affiliation(s)
- Cheryl R Stein
- Hassenfeld Children's Hospital at NYU Langone, Department of Child and Adolescent Psychiatry, Child Study Center, One Park Avenue, 7th Floor, New York, NY 10016, USA.
| | - Haotian Wu
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th St, New York, NY 10032, USA.
| | - David C Bellinger
- Department of Neurology, Boston Children's Hospital, Farley Basement Box 127, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, 442 Physical Sciences Building, Santa Cruz, CA 95064, USA.
| | - Mary S Wolff
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, 17 East 102 Street, New York, NY 10029, USA.
| | - David A Savitz
- Department of Epidemiology, Brown University School of Public Health, 121 S. Main Street, Box G-S-121-2, Providence, RI 02912, USA.
| |
Collapse
|