1
|
Wei X, Franke N, Alsweiler JM, Brown GTL, Gamble GD, McNeill A, Rogers J, Thompson B, Turuwhenua J, Wouldes TA, Harding JE, McKinlay CJD. Neonatal Hypoglycemia and Neurocognitive Function at School Age: A Prospective Cohort Study. J Pediatr 2024; 272:114119. [PMID: 38815750 PMCID: PMC11688105 DOI: 10.1016/j.jpeds.2024.114119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE To determine the relationship between transient neonatal hypoglycemia in at-risk infants and neurocognitive function at 6-7 years of corrected age. STUDY DESIGN The pre-hPOD Study involved children born with at least 1 risk factor for neonatal hypoglycemia. Hypoglycemia was defined as ≥1 consecutive blood glucose concentrations <47 mg/dl (2.6 mmol/L), severe as <36 mg/dl (2.0 mmol/L), mild as 36 to <47 mg/dL (2.0 to <2.6 mmol/L), brief as 1-2 episodes, and recurrent as ≥3 episodes. At 6-7 years children were assessed for cognitive and motor function (NIH-Toolbox), learning, visual perception and behavior. The primary outcome was neurocognitive impairment, defined as >1 SD below the normative mean in ≥1 Toolbox tests. The 8 secondary outcomes covered children's cognitive, motor, language, emotional-behavioral, and visual perceptual development. Primary and secondary outcomes were compared between children who did and did not experience neonatal hypoglycemia, adjusting for potential confounding by gestation, birthweight, sex and receipt of prophylactic dextrose gel (pre-hPOD intervention). Secondary analysis included assessment by severity and frequency of hypoglycemia. RESULTS Of 392 eligible children, 315 (80%) were assessed at school age (primary outcome, n = 308); 47% experienced hypoglycemia. Neurocognitive impairment was similar between exposure groups (hypoglycemia 51% vs 50% no hypoglycemia; aRD -4%, 95% CI -15%, 7%). Children with severe or recurrent hypoglycemia had worse visual motion perception and increased risk of emotional-behavioral difficulty. CONCLUSION Exposure to neonatal hypoglycemia was not associated with risk of neurocognitive impairment at school-age in at-risk infants, but severe and recurrent episodes may have adverse impacts. TRIAL REGISTRATION Hypoglycemia Prevention in Newborns with Oral Dextrose: the Dosage Trial (pre-hPOD Study): ACTRN12613000322730.
Collapse
Affiliation(s)
- Xingyu Wei
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Nike Franke
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane M Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
| | - Gavin T L Brown
- Education and Social Work, University of Auckland, Auckland, New Zealand
| | - Gregory D Gamble
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Alicia McNeill
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jenny Rogers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Benjamin Thompson
- School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada; School of Optometry and Vision Science, University of Auckland, Auckland, New Zealand; Centre for Eye and Vision Research, Hong Kong, China
| | - Jason Turuwhenua
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Trecia A Wouldes
- Department of Psychological Medicine, University of Auckland, Auckland, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Christopher J D McKinlay
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
2
|
Stanley CA, De Leon DD. Etiology of the Neonatal Hypoglycemias. Adv Pediatr 2024; 71:119-134. [PMID: 38944478 DOI: 10.1016/j.yapd.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2024]
Abstract
To provide a more appropriate foundation for dealing with the problem of hypoglycemia in newborn infants, this article focuses on the mechanisms which underlie the various forms of neonatal hypoglycemia and discusses their implications for newborn care. Evidence indicates that all of the major forms of neonatal hypoglycemia are the result of hyperinsulinism due to dysregulation of pancreatic islet insulin secretion. Based on these observations, the authors propose that routine measurement of B-hydroxybutyrate should be considered an essential part of glucose monitoring in newborn infants.
Collapse
Affiliation(s)
- Charles A Stanley
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Diva D De Leon
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Hivert MF, Backman H, Benhalima K, Catalano P, Desoye G, Immanuel J, McKinlay CJD, Meek CL, Nolan CJ, Ram U, Sweeting A, Simmons D, Jawerbaum A. Pathophysiology from preconception, during pregnancy, and beyond. Lancet 2024; 404:158-174. [PMID: 38909619 DOI: 10.1016/s0140-6736(24)00827-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/07/2024] [Accepted: 04/19/2024] [Indexed: 06/25/2024]
Abstract
Gestational diabetes is the most common medical complication in pregnancy. Historically, gestational diabetes was considered a pregnancy complication involving treatment of rising glycaemia late in the second trimester. However, recent evidence challenges this view. Pre-pregnancy and pregnancy-specific factors influence gestational glycaemia, with open questions regarding roles of non-glycaemic factors in the aetiology and consequences of gestational diabetes. Varying patterns of insulin secretion and resistance in early and late pregnancy underlie a heterogeneity of gestational diabetes in the timing and pathophysiological subtypes with clinical implications: early gestational diabetes and insulin resistant gestational diabetes subtypes are associated with a higher risk of pregnancy complications. Metabolic perturbations of early gestational diabetes can affect early placental development, affecting maternal metabolism and fetal development. Fetal hyperinsulinaemia can affect the development of multiple fetal tissues, with short-term and long-term consequences. Pregnancy complications are prevented by managing glycaemia in early and late pregnancy in some, but not all women with gestational diabetes. A better understanding of the pathophysiology and heterogeneity of gestational diabetes will help to develop novel management approaches with focus on improved prevention of maternal and offspring short-term and long-term complications, from pre-conception, throughout pregnancy, and beyond.
Collapse
Affiliation(s)
- Marie-France Hivert
- Division of Chronic Disease Research Across the Lifecourse (CoRAL), Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA; Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Helena Backman
- Faculty of Medicine and Health, Department of Obstetrics and Gynecology, Örebro University, Örebro, Sweden
| | - Katrien Benhalima
- Endocrinology, University Hospital Gasthuisberg, KU Leuven, Leuven, Belgium
| | - Patrick Catalano
- Maternal Infant Research Institute, Obstetrics and Gynecology Research, Tufts Medical Center, Boston, MA, USA; School of Medicine, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Gernot Desoye
- Department of Obstetrics and Gynaecology, Medical University of Graz, Graz, Austria
| | - Jincy Immanuel
- School of Medicine, Western Sydney University, Sydney, NSW, Australia; Institute for Women's Health, College of Nursing, Texas Woman's University, Denton, TX, USA
| | - Christopher J D McKinlay
- Department of Paediatrics Child and Youth Health, University of Auckland, Auckland, New Zealand; Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Claire L Meek
- Leicester Diabetes Centre, Leicester General Hospital, University of Leicester, Leicester, UK
| | - Christopher J Nolan
- School of Medicine and Psychology, College of Health and Medicine, Australian National University, Canberra, ACT, Australia; Department of Endocrinology, Canberra Health Services, Woden, ACT, Australia
| | - Uma Ram
- Department of Obstetrics and Gynecology, Seethapathy Clinic and Hospital, Chennai, Tamilnadu, India
| | - Arianne Sweeting
- Department of Endocrinology, Royal Prince Alfred Hospital and University of Sydney, Sydney, NSW, Australia
| | - David Simmons
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.
| | - Alicia Jawerbaum
- Facultad de Medicina, Universidad de Buenos Aires (UBA)-CONICET, Buenos Aires, Argentina; Laboratory of Reproduction and Metabolism, CEFYBO-CONICET, Buenos Aires, Argentina
| |
Collapse
|
4
|
Laing D, Walsh EPG, Alsweiler JM, Hanning SM, Meyer MP, Ardern J, Cutfield WS, Rogers J, Gamble GD, Chase JG, Harding JE, McKinlay CJD. Diazoxide for Severe or Recurrent Neonatal Hypoglycemia: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2415764. [PMID: 38869900 PMCID: PMC11177163 DOI: 10.1001/jamanetworkopen.2024.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 06/14/2024] Open
Abstract
Importance Neonatal hypoglycemia is an important preventable cause of neurodevelopmental impairment, but there is a paucity of evidence to guide treatment. Objective To evaluate whether early, low-dose oral diazoxide for severe or recurrent neonatal hypoglycemia reduces time to resolution of hypoglycemia. Design, Setting, and Participants This 2-arm, placebo-controlled randomized clinical trial was conducted from May 2020 to February 2023 in tertiary neonatal units at 2 New Zealand hospitals. Participants were neonates born at 35 or more weeks' gestation and less than 1 week of age with severe hypoglycemia (blood glucose concentration <22 mg/dL or <36 mg/dL despite 2 doses of dextrose gel) or recurrent hypoglycemia (≥3 episodes of a blood glucose concentration <47 mg/dL within 48 hours). Interventions Newborns were randomized 1:1 to receive diazoxide suspension (loading dose, 5 mg/kg; maintenance, 1.5 mg/kg every 12 hours) or placebo, titrated per protocol. Main Outcome and Measures The primary outcome was time to resolution of hypoglycemia, defined as enteral bolus feeding without intravenous fluids and normoglycemia (blood glucose concentration of 47-98 mg/dL) for at least 24 hours, compared between groups using adjusted Cox proportional hazards regression. Hazard ratios adjusted for stratification variables and gestation length are reported. Prespecified secondary outcomes, including number of blood glucose tests and episodes of hypoglycemia, duration of hypoglycemia, and time to enteral bolus feeding and weaning from intravenous fluids, were compared by generalized linear models. Newborns were followed up for at least 2 weeks. Results Of 154 newborns screened, 75 were randomized and 74 with evaluable data were included in the analysis (mean [SD] gestational age for the full cohort, 37.6 [1.6] weeks), 36 in the diazoxide group and 38 in the placebo group. Baseline characteristics were similar: in the diazoxide group, mean (SD) gestational age was 37.9 (1.6) weeks and 26 (72%) were male; in the placebo group, mean (SD) gestational age was 37.4 (1.5) weeks and 27 (71%) were male. There was no significant difference in time to resolution of hypoglycemia (adjusted hazard ratio [AHR], 1.39; 95% CI, 0.84-2.23), possibly due to increased episodes of elevated blood glucose concentration and longer time to normoglycemia in the diazoxide group. Resolution of hypoglycemia, when redefined post hoc as enteral bolus feeding without intravenous fluids for at least 24 hours with no further hypoglycemia, was reached by more newborns in the diazoxide group (AHR, 2.60; 95% CI, 1.53-4.46). Newborns in the diazoxide group had fewer blood glucose tests (adjusted count ratio [ACR], 0.63; 95% CI, 0.56-0.71) and episodes of hypoglycemia (ACR, 0.32; 95% CI, 0.17-0.63), reduced duration of hypoglycemia (adjusted ratio of geometric means [ARGM], 0.18; 95% CI, 0.06-0.53), and reduced time to enteral bolus feeding (ARGM, 0.74; 95% CI, 0.58-0.95) and weaning from intravenous fluids (ARGM, 0.72; 95% CI, 0.60-0.87). Only 2 newborns (6%) treated with diazoxide had hypoglycemia after the loading dose compared with 20 (53%) with placebo. Conclusions and Relevance In this randomized clinical trial, early treatment of severe or recurrent neonatal hypoglycemia with low-dose oral diazoxide did not reduce time to resolution of hypoglycemia but reduced time to enteral bolus feeding and weaning from intravenous fluids, duration of hypoglycemia, and frequency of blood glucose testing compared with placebo. Trial Registration ANZCTR.org.au Identifier: ACTRN12620000129987.
Collapse
Affiliation(s)
- Don Laing
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - Jane M. Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
- Te Whatu Ora Te Toka Tumai Auckland, Auckland, New Zealand
| | - Sara M. Hanning
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Michael P. Meyer
- Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | - Julena Ardern
- Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| | | | - Jenny Rogers
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | | - J. Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jane E. Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Christopher J. D. McKinlay
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
- Kidz First Neonatal Care, Te Whatu Ora Counties Manukau, Auckland, New Zealand
| |
Collapse
|
5
|
Harding JE, Alsweiler JM, Edwards TE, McKinlay CJD. Neonatal hypoglycaemia. BMJ MEDICINE 2024; 3:e000544. [PMID: 38618170 PMCID: PMC11015200 DOI: 10.1136/bmjmed-2023-000544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024]
Abstract
Low blood concentrations of glucose (hypoglycaemia) soon after birth are common because of the delayed metabolic transition from maternal to endogenous neonatal sources of glucose. Because glucose is the main energy source for the brain, severe hypoglycaemia can cause neuroglycopenia (inadequate supply of glucose to the brain) and, if severe, permanent brain injury. Routine screening of infants at risk and treatment when hypoglycaemia is detected are therefore widely recommended. Robust evidence to support most aspects of management is lacking, however, including the appropriate threshold for diagnosis and optimal monitoring. Treatment is usually initially more feeding, with buccal dextrose gel, followed by intravenous dextrose. In infants at risk, developmental outcomes after mild hypoglycaemia seem to be worse than in those who do not develop hypoglycaemia, but the reasons for these observations are uncertain. Here, the current understanding of the pathophysiology of neonatal hypoglycaemia and recent evidence regarding its diagnosis, management, and outcomes are reviewed. Recommendations are made for further research priorities.
Collapse
Affiliation(s)
- Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Jane M Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
- Te Whatu Ora Health New Zealand, Te Toka Tumai, Auckland, New Zealand
| | - Taygen E Edwards
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Chris JD McKinlay
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand
- Te Whatu Ora Health New Zealand, Counties Manukau, Auckland, New Zealand
| |
Collapse
|
6
|
Purohit TJ, Laing D, McKinlay CJD, Alsweiler JM, Hanning SM. Development and clinical application of a stability-indicating chromatography technique for the quantification of diazoxide. Heliyon 2023; 9:e20101. [PMID: 37810084 PMCID: PMC10559840 DOI: 10.1016/j.heliyon.2023.e20101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/21/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Diazoxide is a potential candidate for the treatment of transitional hypoglycaemia in infants. A clinical trial is currently underway to investigate whether low-dose oral diazoxide is beneficial for severe or recurrent transitional neonatal hypoglycaemia (the NeoGluCO Study, registration ANZCTR12620000129987). The present study aimed to develop and validate the parameters for quantifying diazoxide from neonatal plasma samples, and to assess the stability of extemporaneously prepared diazoxide suspensions to support the NeoGluCO Study. To determine the plasma concentration of diazoxide, a protein precipitation mediated extraction protocol was developed, which demonstrated >94% diazoxide extraction recoveries from all samples. The method was linear over the range of 0.2-40 μg/mL (R2 > 0.9994) with a limit of quantification of 0.2 μg/mL. Accuracy of the method was within 97-106% with relative standard deviation < 6% for all samples. Diazoxide-plasma samples were stable for up to three months at -20 °C and up to 48 h when stored in the auto-sampler. Samples were stable for up to two freeze-thaw cycles, with further cycles compromising stability of diazoxide in plasma. The developed method was applied to determine chemical stability of the extemporaneously prepared diazoxide suspensions. These were stable at both 2-8 °C and 25 °C/60% RH, with 98% of diazoxide remaining after 35 days in both storage conditions. Diazoxide was successfully quantified from plasma collected from six neonates enrolled in the NeoGluCO Study, using the developed protocol. Overall, an efficient and reproducible extraction protocol was developed and validated for the estimation of diazoxide from human plasma.
Collapse
Affiliation(s)
- Trusha J. Purohit
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Don Laing
- Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand
| | - Christopher JD. McKinlay
- Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
| | - Jane M. Alsweiler
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
- Neonatal Care, Starship Hospital, Auckland, New Zealand
| | - Sara M. Hanning
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
De Leon DD, Arnoux JB, Banerjee I, Bergada I, Bhatti T, Conwell LS, Fu J, Flanagan SE, Gillis D, Meissner T, Mohnike K, Pasquini TL, Shah P, Stanley CA, Vella A, Yorifuji T, Thornton PS. International Guidelines for the Diagnosis and Management of Hyperinsulinism. Horm Res Paediatr 2023; 97:279-298. [PMID: 37454648 PMCID: PMC11124746 DOI: 10.1159/000531766] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/16/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Hyperinsulinism (HI) due to dysregulation of pancreatic beta-cell insulin secretion is the most common and most severe cause of persistent hypoglycemia in infants and children. In the 65 years since HI in children was first described, there has been a dramatic advancement in the diagnostic tools available, including new genetic techniques and novel radiologic imaging for focal HI; however, there have been almost no new therapeutic modalities since the development of diazoxide. SUMMARY Recent advances in neonatal research and genetics have improved our understanding of the pathophysiology of both transient and persistent forms of neonatal hyperinsulinism. Rapid turnaround of genetic test results combined with advanced radiologic imaging can permit identification and localization of surgically-curable focal lesions in a large proportion of children with congenital forms of HI, but are only available in certain centers in "developed" countries. Diazoxide, the only drug currently approved for treating HI, was recently designated as an "essential medicine" by the World Health Organization but has been approved in only 16% of Latin American countries and remains unavailable in many under-developed areas of the world. Novel treatments for HI are emerging, but they await completion of safety and efficacy trials before being considered for clinical use. KEY MESSAGES This international consensus statement on diagnosis and management of HI was developed in order to assist specialists, general pediatricians, and neonatologists in early recognition and treatment of HI with the ultimate aim of reducing the prevalence of brain injury caused by hypoglycemia. A previous statement on diagnosis and management of HI in Japan was published in 2017. The current document provides an updated guideline for management of infants and children with HI and includes potential accommodations for less-developed regions of the world where resources may be limited.
Collapse
Affiliation(s)
- Diva D. De Leon
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Baptiste Arnoux
- Reference Center for Inherited Metabolic Diseases, Necker-Enfants Malades Hospital, AP-HP, University of Paris-Cité, Paris, France
| | - Indraneel Banerjee
- Paediatric Endocrinology, Royal Manchester Children’s Hospital, University of Manchester, Manchester, UK
| | - Ignacio Bergada
- Centro de Investigaciones Endocrinológicas “Dr. César Bergadá” (CONICET – FEI), Division de Endrocrinología, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Tricia Bhatti
- Department of Clinical Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia and Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Louise S. Conwell
- Australia and Children’s Health Queensland Clinical Unit, Department of Endocrinology and Diabetes, Queensland Children’s Hospital, Children’s Health Queensland, Greater Brisbane Clinical School, Medical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Junfen Fu
- National Clinical Research Center for Child Health, Department of Endocrinology, The Children’s Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Sarah E. Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - David Gillis
- Hadassah Medical Center, Department of Pediatrics, Ein-Kerem, Jerusalem and Faculty of Medicine, Hebrew-University, Jerusalem, Israel
| | - Thomas Meissner
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children’s Hospital, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - Klaus Mohnike
- Department of General Pediatrics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Tai L.S. Pasquini
- Research and Policy Director, Congenital Hyperinsulinism International, Glen Ridge, NJ, USA
| | - Pratik Shah
- Pediatric Endocrinology, The Royal London Children’s Hospital, Queen Mary University of London, London, UK
| | - Charles A. Stanley
- Congenital Hyperinsulinism Center and Division of Endocrinology and Diabetes, Department of Pediatrics, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Vella
- Division of Diabetes, Endocrinology and Metabolism, Mayo Clinic, Rochester, MN, USA
| | - Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Children’s Medical Center, Osaka City General Hospital, Osaka, Japan
| | - Paul S. Thornton
- Congenital Hyperinsulinism Center, Cook Children’s Medical Center and Texas Christian University Burnett School of Medicine, Fort Worth, TX, USA
| |
Collapse
|
8
|
Laing D, Walsh E, Alsweiler JM, Hanning SM, Meyer MP, Ardern J, Cutfield WS, Rogers J, Gamble GD, Chase JG, Harding JE, McKinlay CJ. Oral diazoxide versus placebo for severe or recurrent neonatal hypoglycaemia: Neonatal Glucose Care Optimisation (NeoGluCO) study - a randomised controlled trial. BMJ Open 2022; 12:e059452. [PMID: 35977769 PMCID: PMC9389093 DOI: 10.1136/bmjopen-2021-059452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION Infants with severe or recurrent transitional hypoglycaemia continue to have high rates of adverse neurological outcomes and new treatment approaches are needed that target the underlying pathophysiology. Diazoxide is one such treatment that acts on the pancreatic β-cell in a dose-dependent manner to decrease insulin secretion. METHODS AND ANALYSIS Phase IIB, double-blind, two-arm, parallel, randomised trial of diazoxide versus placebo in neonates ≥35 weeks' gestation for treatment of severe (blood glucose concentration (BGC)<1.2 mmol/L or BGC 1.2 to <2.0 mmol/L despite two doses of buccal dextrose gel and feeding in a single episode) or recurrent (≥3 episodes <2.6 mmol/L in 48 hours) transitional hypoglycaemia. Infants are loaded with diazoxide 5 mg/kg orally and then commenced on a maintenance dose of 1.5 mg/kg every 12 hours, or an equal volume of placebo. The intervention is titrated from the third maintenance dose by protocol to target BGC in the range of 2.6-5.4 mmol/L. The primary outcome is time to resolution of hypoglycaemia, defined as the first point at which the following criteria are met concurrently for ≥24 hours: no intravenous fluids, enteral bolus feeding and normoglycaemia. Groups will be compared for the primary outcome using Cox's proportional hazard regression analysis, expressed as adjusted HR with a 95% CI. ETHICS AND DISSEMINATION This trial has been approved by the Health and Disability Ethics Committees of New Zealand (19CEN189). Findings will be disseminated in peer-reviewed journals, to clinicians and researchers at local and international conferences and to the public. TRIAL REGISTRATION NUMBER ACTRN12620000129987.
Collapse
Affiliation(s)
- Don Laing
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Eamon Walsh
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Jane M Alsweiler
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
- Starship Children's Health, Auckland, New Zealand
| | - Sara M Hanning
- School of Pharmacy, The University of Auckland, Auckland, New Zealand
| | - Michael P Meyer
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
- Kidz First Neonatal Care, Counties Manukau District Health Board, Auckland, New Zealand
| | - Julena Ardern
- Kidz First Neonatal Care, Counties Manukau District Health Board, Auckland, New Zealand
| | - Wayne S Cutfield
- Liggins Institute, The University of Auckland, Auckland, New Zealand
- Starship Children's Health, Auckland, New Zealand
| | - Jenny Rogers
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Greg D Gamble
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - J Geoffrey Chase
- College of Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jane E Harding
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Christopher Jd McKinlay
- Department of Paediatrics: Child and Youth Health, The University of Auckland, Auckland, New Zealand
- Kidz First Neonatal Care, Counties Manukau District Health Board, Auckland, New Zealand
| |
Collapse
|
9
|
Chandran S, R PR, Mei Chien C, Saffari SE, Rajadurai VS, Yap F. Safety and efficacy of low-dose diazoxide in small-for-gestational-age infants with hyperinsulinaemic hypoglycaemia. Arch Dis Child Fetal Neonatal Ed 2022; 107:359-363. [PMID: 34544689 DOI: 10.1136/archdischild-2021-322845] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Diazoxide (DZX) is the drug of choice for treating hyperinsulinaemic hypoglycaemia (HH), and it has potentially serious adverse effects. We studied the safety and efficacy of low-dose DZX in small-for-gestational-age (SGA) infants with HH. DESIGN An observational cohort study from 1 September 2014 to 31 September 2020. SETTING A tertiary Women's and Children's Hospital in Singapore. PATIENTS All SGA infants with HH. INTERVENTION Diazoxide, at 3-5 mg/kg/day. MAIN OUTCOME MEASURES Short-term outcomes; adverse drug events and fasting studies to determine 'safe to go home' and 'resolution' of HH. RESULTS Among 71 836 live births, 11 493 (16%) were SGA. Fifty-six (0.5%) SGA infants with HH were identified, of which 27 (47%) with a mean gestational age of 36.4±2 weeks and birth weight of 1942±356 g required DZX treatment. Diazoxide was initiated at 3 mg/kg/day at a median age of 10 days. The mean effective dose was 4.6±2.2 mg/kg/day, with 24/27 (89%) receiving 3-5 mg/kg/day. Generalised hypertrichosis occurred in 2 (7.4%) and fluid retention in 1 (3.7%) infant. A fasting study was performed before home while on DZX in 26/27 (96%) cases. Diazoxide was discontinued at a median age of 63 days (9-198 days), and resolution of HH was confirmed in 26/27 (96%) infants on passing a fasting study. CONCLUSION Our study demonstrates that low-dose DZX effectively treats SGA infants with HH as measured by fasting studies. Although the safety profile was excellent, minimal adverse events were still observed with DZX, even at low doses.
Collapse
Affiliation(s)
- Suresh Chandran
- Department of Neonatology, KK Women's and Children's Hospital, Singapore .,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,Paediatrics Academic Clinical Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Pravin R R
- Department of Pediatrics, KK Women's and Children's Hospital, Singapore
| | - Chua Mei Chien
- Department of Neonatology, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,Paediatrics Academic Clinical Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Seyed Ehsan Saffari
- Center for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore
| | - Victor Samuel Rajadurai
- Department of Neonatology, KK Women's and Children's Hospital, Singapore.,Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore.,Paediatrics Academic Clinical Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Fabian Yap
- Paediatrics Academic Clinical Programme, Duke-NUS Medical School, Singapore .,Paediatrics Academic Clinical Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.,Department of Pediatrics, KK Women's and Children's Hospital, Singapore
| |
Collapse
|
10
|
What's in a name? That which we call perinatal stress hyperinsulinism by any other name would smell so bitter. J Perinatol 2021; 41:2110. [PMID: 33931735 DOI: 10.1038/s41372-021-01056-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/02/2021] [Accepted: 03/29/2021] [Indexed: 01/31/2023]
|
11
|
Abstract
PURPOSE OF REVIEW To highlight recent advances in early diagnosis and the changing treatment paradigm for hyperinsulinism (HI) which can result in shorter hospitalizations, higher rates of cure and improved neurological outcome. RECENT FINDINGS Recent literature has shown that following publication of the pediatric endocrinology society guidelines for diagnosing hypoglycemia there have been higher rates of diagnosis of acquired and genetic HI. Studies of neurological outcome have found that poor outcomes are associated with delay between initial hypoglycemia and instigation of treatment for HI, hypoglycemic seizures and frequency of glucose <20 mg/dL. Rapid genetic testing can decrease the time from the discovery of diazoxide unresponsiveness to referral to multidisciplinary centers with the availability of 18-F-L 3,4-Dihydroxyphenylalanine positron emission tomography (18F-DOPA PET). Proper selection of patients for 18F-DOPA PET and careful interpretation of the images can result in greater than 90% cure for patients with focal HI. SUMMARY Recent advances in the early diagnosis of HI and rapid turnaround genetic testing can lead to prompt transfer to centers with multidisciplinary care teams where proper selection of patients for 18F-DOPA PET scan gives the best opportunity for cure for patients with focal disease. Minimizing severe hypoglycemia maximizes the opportunity for improved neurological outcome.
Collapse
|
12
|
Alsweiler JM, Harris DL, Harding JE, McKinlay CJD. Strategies to improve neurodevelopmental outcomes in babies at risk of neonatal hypoglycaemia. THE LANCET. CHILD & ADOLESCENT HEALTH 2021; 5:513-523. [PMID: 33836151 PMCID: PMC8528170 DOI: 10.1016/s2352-4642(20)30387-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/26/2020] [Accepted: 12/04/2020] [Indexed: 10/21/2022]
Abstract
Neonatal hypoglycaemia is associated with adverse development, particularly visual-motor and executive function impairment, in childhood. As neonatal hypoglycaemia is common and frequently asymptomatic in at-risk babies-ie, those born preterm, small or large for gestational age, or to mothers with diabetes, it is recommended that these babies are screened for hypoglycaemia in the first 1-2 days after birth with frequent blood glucose measurements. Neonatal hypoglycaemia can be prevented and treated with buccal dextrose gel, and it is also common to treat babies with hypoglycaemia with infant formula and intravenous dextrose. However, it is uncertain if screening, prophylaxis, or treatment improves long-term outcomes of babies at risk of neonatal hypoglycaemia. This narrative review assesses the latest evidence for screening, prophylaxis, and treatment of neonates at risk of hypoglycaemia to improve long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Jane M Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand.
| | - Deborah L Harris
- School of Nursing Midwifery and Health Practice, Victoria University of Wellington, Wellington, New Zealand
| | - Jane E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
13
|
McKinlay CJD, Alsweiler JM, Bailey MJ, Cutfield WS, Rout A, Harding JE. A better taxonomy for neonatal hypoglycemia is needed. J Perinatol 2021; 41:1205-1206. [PMID: 33850290 DOI: 10.1038/s41372-021-01058-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 02/26/2021] [Accepted: 03/29/2021] [Indexed: 11/09/2022]
Affiliation(s)
- C J D McKinlay
- Liggins Institute, University of Auckland, Auckland, New Zealand. .,Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand.
| | - J M Alsweiler
- Department of Paediatrics: Child and Youth Health, University of Auckland, Auckland, New Zealand.,Neonatal Care, Starship Children's Health, Auckland, New Zealand
| | - M J Bailey
- Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand.,Neonatal Care, Starship Children's Health, Auckland, New Zealand
| | - W S Cutfield
- Liggins Institute, University of Auckland, Auckland, New Zealand.,Paediatric Endocrinology, Starship Children's Health, Auckland, New Zealand.,A Better Start Science Challenge, Auckland, New Zealand
| | - A Rout
- Kidz First Neonatal Care, Counties Manukau Health, Auckland, New Zealand
| | - J E Harding
- Liggins Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|