1
|
Kulkarni GC, Saha R, Peters CJ. Ion channel expression and function in glioblastoma multiforme (GBM): pathophysiological mechanisms and therapeutic potential. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119982. [PMID: 40328081 DOI: 10.1016/j.bbamcr.2025.119982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/29/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
Glioblastoma Multiforme (GBM) is a highly malignant and diffusely invasive WHO Grade IV brain tumor arising from glial and neural stem cells. GBM is characterized by rapid proliferation and migration, aggressive invasion of local brain parenchyma, a hypoxic microenvironment, resistance to apoptosis and high vascular remodeling and angiogenesis. These hallmarks contribute to a near universal tumor recurrence after treatment or resection and poor patient prognosis. Ion channels, a superfamily of proteins responsible for permitting ion flux across otherwise impermeant membranes, show extensive remodeling in GBM with aberrant function mechanistically linked to manipulation of each of these hallmarks. In this review, we will discuss the known links between ion channel expression and activity and cellular processes that are enhanced or perturbed during GBM formation or progression. We will also discuss the extent to which basic or translational findings on ion channels in GBM samples or cell lines have shown preclinical promise towards the development of improved therapeutics against GBMs.
Collapse
Affiliation(s)
- Gauri C Kulkarni
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Rayna Saha
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Christian J Peters
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
2
|
Liotti F, Marotta M, Costanzo M, De Simone C, Zirpoli S, De Falco V, Melillo RM, Prevete N. Formyl peptide receptor 1 signaling strength orchestrates the switch from pro-inflammatory to pro-resolving responses: The way to exert its anti-angiogenic and tumor suppressor functions. Biomed Pharmacother 2025; 186:117961. [PMID: 40112515 DOI: 10.1016/j.biopha.2025.117961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/22/2025] Open
Abstract
The well-paced trigger of inflammation resolution following an inflammatory response is crucial for tissue homeostasis and cancer. In gastrointestinal tumors the Formyl peptide receptor 1 (FPR1) stimulates an inflammation resolution response able to restrain cancer angiogenesis and growth. A preceding inflammatory signal is necessary for the induction of the pro-resolving response. However, if FPR1-induced inflammation resolution and tumor suppressor function require an early pro-inflammatory trigger and how this is achieved remains unknown. A ROS-dependent signaling is activated in response to FPR1 activation. In colorectal carcinoma (CRC) cells, we carefully analyzed this signal showing that FPR1 activation by the fMLF peptide induces biphasic ROS production: a first wave, early, mitochondrial (mROS), followed by a second, late, NADPH oxidase (NOX1)-dependent. mROS cause SHP2 phosphatase inactivation restraining its ability to dephosphorylate and inactivate SRC. SRC, in turn, allows the activation of RAS and Rac1 GTPases. RAS activates MAPK signaling, while Rac1 supports NOX1 activation, that causes the second wave of ROS, reinforcing this signaling cycle. Importantly, for the first time, we demonstrate that mROS production precedes and is necessary for pro-inflammatory mediators' release, while NOX1-dependent ROS are only required for pro-resolving mediators' synthesis. Pharmacological and genetic approaches and functional assays show that this signaling cascade is essential for the pro-resolving and anti-angiogenic properties of FPR1 in CRC. In conclusion, we show that FPR1 elicits pro-resolving effects in CRC activating two waves of ROS production characterized by different strength and kinetics, that parallel and are necessary for pro-inflammatory or pro-resolving mediators' production.
Collapse
Affiliation(s)
- Federica Liotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Maria Marotta
- Institute of Endotypes in Oncology, Metabolism and Immunology (IEOMI), CNR, Naples, Italy
| | - Mattia Costanzo
- Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Chiara De Simone
- Department of Translational Medical Sciences, University of Naples Federico II, Italy
| | - Sara Zirpoli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy
| | - Valentina De Falco
- Institute of Endotypes in Oncology, Metabolism and Immunology (IEOMI), CNR, Naples, Italy
| | - Rosa Marina Melillo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Italy.
| | - Nella Prevete
- Department of Translational Medical Sciences, University of Naples Federico II, Italy.
| |
Collapse
|
3
|
Sun L, Li X, Xiao Y, Yu W, Chen X, Wang Z, Xia N, Chen X, Chen M, Zhu H, Li J, Wei J, Han S, Pu L. Mfsd2a suppresses colorectal cancer progression and liver metastasis via the S100A14/STAT3 axis. J Transl Med 2025; 23:59. [PMID: 39806334 PMCID: PMC11726956 DOI: 10.1186/s12967-024-05994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colorectal cancer (CRC) exhibits a high incidence globally, with the liver being the most common site of distant metastasis. At the time of diagnosis, 20-30% of CRC patients already present with liver metastases. Colorectal liver metastasis (CRLM) is a major cause of mortality among CRC patients. The pathogenesis of CRLM involves complex molecular mechanisms and the hepatic immune microenvironment, but current clinical prevention and treatment are significantly limited. Recent studies have revealed that the major facilitator superfamily domain containing protein-2a (Mfsd2a) plays a pivotal role in the development and metastasis of various cancers. For instance, Mfsd2a inhibits gastric cancer initiation and progression and may impact angiogenesis. However, the mechanisms by which Mfsd2a influences CRC progression and liver metastasis remain unclear. METHODS In this study, we conducted a survival analysis of Mfsd2a in colorectal cancer using data from the GEPIA and GEO databases, and examined the expression differences between primary tumor (PT) and liver metastasis (LM). We further assessed the clinical significance and prognostic relevance of Mfsd2a through immunohistochemical analysis of tissue samples from 70 CRLM patients. Moreover, Kaplan-Meier analysis was used to perform survival analysis on these patients. The biological function of Mfsd2a in CRLM was confirmed by a series of experiments conducted both in vitro and in vivo. Additionally, we investigated downstream molecular pathways using western blot, Co-immunoprecipitation, immunofluorescence, and mass spectrometry techniques. RESULTS We observed that Mfsd2a expression is reduced in LM compared to PT, and higher Mfsd2a levels are associated with better prognosis in CRLM patients. Furthermore, function assays demonstrated that Mfsd2a suppresses CRC cells proliferation, migration, invasion, and EMT in vitro, while also delaying tumor growth and liver metastasis in vivo. Mechanistically, Mfsd2a interacts with S100A14, enhancing its expression and inhibiting phosphorylation of STAT3. In addition, the STAT3 activator colivelin partially reversed the inhibitory effect of Mfsd2a overexpression on the progression of colorectal cancer and liver metastasis. CONCLUSION In summary, Mfsd2a inhibits colorectal cancer progression and liver metastasis by interacting with S100A14, thereby suppressing the phosphorylation of STAT3. Mfsd2a functions as a tumor suppressor in CRLM and could be a promising therapeutic target for treating CRC patients with liver metastasis.
Collapse
Affiliation(s)
- Linfeng Sun
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Xiangdong Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Yuhao Xiao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Wenjie Yu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Xuyang Chen
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Ziyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Nan Xia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Xuejiao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Minhao Chen
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Haoliang Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Jie Li
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Jie Wei
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China
| | - Sheng Han
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China.
| | - Liyong Pu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
- Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, Nanjing, 210029, China.
- NHC Key Laboratory of Living Donor Liver Transplantation (Nanjing Medical University), Nanjing, 210029, China.
| |
Collapse
|
4
|
Wen S, Huang X, Xiong L, Zeng H, Wu S, An K, Bai J, Zhou Z, Yin T. WDR12/RAC1 axis promoted proliferation and anti-apoptosis in colorectal cancer cells. Mol Cell Biochem 2024; 479:3341-3354. [PMID: 38341833 DOI: 10.1007/s11010-024-04937-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 01/09/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND WD repeat domain 12 (WDR12) plays a crucial role in the ribosome biogenesis pathway. However, its biological function in colorectal cancer (CRC) remains poorly understood. Therefore, this study aims to investigate the roles of WDR12 in the occurrence and progression of CRC, as well as its underlying mechanisms. METHODS The expression of WDR12 was assessed through The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA) database. Functional experiments including Celigo assay, MTT assay, and Caspase-3/7 assay were conducted to validate the role of WDR12 in the malignant progression of CRC. Additionally, mRNA chip-sequencing and ingenuity pathway analysis (IPA) were performed to identify the molecular mechanism. RESULTS WDR12 expression was significantly upregulated in CRC tissues compared to normal colorectal tissues. Knockdown of WDR12 reduced proliferation and promoted apoptosis of CRC cell lines in vitro and in vivo experiments. Furthermore, WDR12 expression had a significantly inverse association with diseases and functions, including cancer, cell cycle, DNA replication, recombination, cellular growth, proliferation and repair, as revealed by IPA analysis of mRNA chip-sequencing data. Moreover, the activation of cell cycle checkpoint kinases proteins in the cell cycle checkpoint control signaling pathway was enriched in the WDR12 knockdown CRC cell lines. Additionally, downregulation of rac family small GTPase 1 (RAC1) occurred upon WDR12 knockdown, thereby facilitating the proliferation and anti-apoptosis of CRC cells. CONCLUSION Our study demonstrates that the WDR12/RAC1 axis promotes tumor progression in CRC. Therefore, WDR12 may serve as a novel oncogene and a potential target for individualized therapy in CRC. These findings provide an experimental foundation for the clinical development of drugs targeting the WDR12/RAC1 axis.
Collapse
Affiliation(s)
- Su Wen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Xueqing Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Liping Xiong
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Hao Zeng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Shuang Wu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Kangli An
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China
| | - Jing Bai
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Zhipeng Zhou
- Geneplus-Beijing Institute, Zhongguancun Life Science Park, Peking University Medical Industrial Park, Life Park Road No.8, Beijing, 102205, China
| | - Tiejun Yin
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Road No.1095, Wuhan, 430030, Hubei, China.
| |
Collapse
|
5
|
Wahoski CC, Singh B. The Roles of RAC1 and RAC1B in Colorectal Cancer and Their Potential Contribution to Cetuximab Resistance. Cancers (Basel) 2024; 16:2472. [PMID: 39001533 PMCID: PMC11240352 DOI: 10.3390/cancers16132472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most diagnosed cancers and a leading contributor to cancer-related deaths in the United States. Clinically, standard treatment regimens include surgery, radiation, and chemotherapy; however, there has been increasing development and clinical use of targeted therapies for CRC. Unfortunately, many patients develop resistance to these treatments. Cetuximab, the first targeted therapy approved to treat advanced CRC, is a monoclonal antibody that targets the epidermal growth factor receptor and inhibits downstream pathway activation to restrict tumor cell growth and proliferation. CRC resistance to cetuximab has been well studied, and common resistance mechanisms include constitutive signal transduction through downstream protein mutations and promotion of the epithelial-to-mesenchymal transition. While the most common resistance mechanisms are known, a proportion of patients develop resistance through unknown mechanisms. One protein predicted to contribute to therapy resistance is RAC1, a small GTPase that is involved in cytoskeleton rearrangement, cell migration, motility, and proliferation. RAC1 has also been shown to be overexpressed in CRC. Despite evidence that RAC1 and its alternative splice isoform RAC1B play important roles in CRC and the pathways known to contribute to cetuximab resistance, there is a need to directly study the relationship between RAC1 and RAC1B and cetuximab resistance. This review highlights the recent studies investigating RAC1 and RAC1B in the context of CRC and suggests that these proteins could play a role in resistance to cetuximab.
Collapse
Affiliation(s)
- Claudia C. Wahoski
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
6
|
Shi X, Chen W, Yin Y, Cao H, Wang X, Jiang W, Li Q, Li X, Yu Y, Wang X. RAC1 high NK cell-based immunotherapy in hepatocellular carcinoma via STAT3-NKG2D axis. Cancer Lett 2024; 592:216909. [PMID: 38679407 DOI: 10.1016/j.canlet.2024.216909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
Natural killer (NK) cells exert an indispensable role in innate immune responses against cancer progression, however NK cell dysfunction has been rarely reported in hepatocellular carcinoma (HCC). This study sought to uncover the immunoregulatory mechanisms of tumor-infiltrating NK cells in HCC. A consensus NK cell-based signature (NKS) was constructed using integrative machine learning algorithms based on multi-omics data of HCC patients. HCC tumors had lower numbers of infiltrating NK cells than para-tumor normal liver tissues. Based on the NK cell-associated genes, the NKS was built for HCC prognostic prediction and clinical utilities. Drug targets and novel compounds were then identified for high-NKS groups. RAC1 was confirmed as the hub gene in the NKS genes. RAC1 was upregulated in HCC tumors and positively correlated with shorter survival time. RAC1 overexpression in NK-92 cells facilitated the cancer-killing capacity by the anticancer cytotoxic effectors and the upregulated NKG2D. The survival time of PDX-bearing mice was also prolonged upon NK-92RAC1 cells. Mechanistically, RAC1 interacted with STAT3 and facilitated its activation, thereby enabling its binding to the promoter region of NKG2D and functioning as a transcriptional regulator in NK-92 via molecular docking, Co-IP assay, CHIP and luciferase experiments. Collectively, our study describes a novel function of RAC1 in potentiating NK cell-mediated cytotoxicity against HCC, highlighting the clinical utilities of NKS score and RAC1high NK cell subset in HCC immunotherapy.
Collapse
Affiliation(s)
- Xiaoli Shi
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, 210029, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China
| | - Wenwei Chen
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, 210029, China
| | - Yefeng Yin
- Department of Colorectal Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hengsong Cao
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, 210009, China
| | - Xinyi Wang
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu Province, 210009, China
| | - Wangjie Jiang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, 210029, China
| | - Qing Li
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, 210029, China.
| | - Xiangcheng Li
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, 210029, China.
| | - Yue Yu
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, 210029, China.
| | - Xuehao Wang
- Hepatobiliary/Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Living Donor Transplantation, Chinese Academy of Medical Sciences, Nanjing, Jiangsu Province, 210029, China; School of Medicine, Southeast University, Nanjing, Jiangsu Province, 210009, China.
| |
Collapse
|
7
|
Huang YT, Hsu YT, Wu PY, Yeh YM, Lin PC, Hsu KF, Shen MR. Tight junction protein cingulin variant is associated with cancer susceptibility by overexpressed IQGAP1 and Rac1-dependent epithelial-mesenchymal transition. J Exp Clin Cancer Res 2024; 43:65. [PMID: 38424547 PMCID: PMC10905802 DOI: 10.1186/s13046-024-02987-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Cingulin (CGN) is a pivotal cytoskeletal adaptor protein located at tight junctions. This study investigates the link between CGN mutation and increased cancer susceptibility through genetic and mechanistic analyses and proposes a potential targeted therapeutic approach. METHODS In a high-cancer-density family without known pathogenic variants, we performed tumor-targeted and germline whole-genome sequencing to identify novel cancer-associated variants. Subsequently, these variants were validated in a 222 cancer patient cohort, and CGN c.3560C > T was identified as a potential cancer-risk allele. Both wild-type (WT) (c.3560C > C) and variant (c.3560C > T) were transfected into cancer cell lines and incorporated into orthotopic xenograft mice model for evaluating their effects on cancer progression. Western blot, immunofluorescence analysis, migration and invasion assays, two-dimensional gel electrophoresis with mass spectrometry, immunoprecipitation assays, and siRNA applications were used to explore the biological consequence of CGN c.3560C > T. RESULTS In cancer cell lines and orthotopic animal models, CGN c.3560C > T enhanced tumor progression with reduced sensitivity to oxaliplatin compared to the CGN WT. The variant induced downregulation of epithelial marker, upregulation of mesenchymal marker and transcription factor, which converged to initiate epithelial-mesenchymal transition (EMT). Proteomic analysis was conducted to investigate the elements driving EMT in CGN c.3560C > T. This exploration unveiled overexpression of IQGAP1 induced by the variant, contrasting the levels observed in CGN WT. Immunoprecipitation assay confirmed a direct interaction between CGN and IQGAP1. IQGAP1 functions as a regulator of multiple GTPases, particularly the Rho family. This overexpressed IQGAP1 was consistently associated with the activation of Rac1, as evidenced by the analysis of the cancer cell line and clinical sample harboring CGN c.3560C > T. Notably, activated Rac1 was suppressed following the downregulation of IQGAP1 by siRNA. Treatment with NSC23766, a selective inhibitor for Rac1-GEF interaction, resulted in the inactivation of Rac1. This intervention mitigated the EMT program in cancer cells carrying CGN c.3560C > T. Consistently, xenograft tumors with WT CGN showed no sensitivity to NSC23766 treatment, but NSC23766 demonstrated the capacity to attenuate tumor growth harboring c.3560C > T. CONCLUSIONS CGN c.3560C > T leads to IQGAP1 overexpression, subsequently triggering Rac1-dependent EMT. Targeting activated Rac1 is a strategy to impede the advancement of cancers carrying this specific variant.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Ting Hsu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Division of Hematology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Ying Wu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Min Yeh
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Peng-Chan Lin
- Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Keng-Fu Hsu
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Meng-Ru Shen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
8
|
Yuan H, Zhao Z, Xu J, Zhang R, Ma L, Han J, Zhao W, Guo M, Song Y. Hypoxia-induced TMTC3 expression in esophageal squamous cell carcinoma potentiates tumor angiogenesis through Rho GTPase/STAT3/VEGFA pathway. J Exp Clin Cancer Res 2023; 42:249. [PMID: 37752569 PMCID: PMC10521530 DOI: 10.1186/s13046-023-02821-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Hypoxia is one of most typical features in the tumor microenvironment of solid tumor and an inducer of endoplasmic reticulum (ER) stress, and HIF-1α functions as a key transcription factor regulator to promote tumor angiogenesis in the adaptive response to hypoxia. Increasing evidence has suggested that hypoxia plays an important regulatory role of ER homeostasis. We previously identified TMTC3 as an ER stress mediator under nutrient-deficiency condition in esophageal squamous cell carcinoma (ESCC), but the molecular mechanism in hypoxia is still unclear. METHODS RNA sequencing data of TMTC3 knockdown cells and TCGA database were analyzed to determine the association of TMTC3 and hypoxia. Moreover, ChIP assay and dual-luciferase reporter assay were performed to detect the interaction of HIF-1α and TMTC3 promoter. In vitro and in vivo assays were used to investigate the function of TMTC3 in tumor angiogenesis. The molecular mechanism was determined using co-immunoprecipitation assays, immunofluorescence assays and western blot. The TMTC3 inhibitor was identified by high-throughput screening of FDA-approved drugs. The combination of TMTC3 inhibitor and cisplatin was conducted to confirm the efficiency in vitro and in vivo. RESULTS The expression of TMTC3 was remarkably increased under hypoxia and regulated by HIF-1α. Knockdown of TMTC3 inhibited the capability of tumor angiogenesis and ROS production in ESCC. Mechanistically, TMTC3 promoted the production of GTP through interacting with IMPDH2 Bateman domain. The activity of Rho GTPase/STAT3, regulated by cellular GTP levels, decreased in TMTC3 knockdown cells, whereas reversed by IMPDH2 overexpression. Additionally, TMTC3 regulated the expression of VEGFA through Rho GTPase/STAT3 pathway. Allopurinol inhibited the expression of TMTC3 and further reduced the phosphorylation and activation of STAT3 signaling pathway in a dose-dependent manner in ESCC. Additionally, the combination of allopurinol and cisplatin significantly inhibited the cell viability in vitro and tumor growth in vivo, comparing with single drug treatment, respectively. CONCLUSIONS Collectively, our study clarified the molecular mechanism of TMTC3 in regulating tumor angiogenesis and highlighted the potential therapeutic combination of TMTC3 inhibitor and cisplatin, which proposed a promising strategy for the treatment of ESCC.
Collapse
Affiliation(s)
- Hongyu Yuan
- Department of Gastroenterology & Hepatology, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Ruiping Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Liying Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jing Han
- Department of Medical Oncology, Hebei Medical University Fourth Affiliated Hospital and Hebei Provincial Tumor Hospital, Shijiazhuang, 050000, Hebei, China
| | - Weihong Zhao
- Medical Department, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China
| | - Mingzhou Guo
- Department of Gastroenterology & Hepatology, The First Medical Center, Chinese PLA General Hospital, 28 Fuxing Road, Beijing, 100853, China.
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Hashemi M, Abbaszadeh S, Rashidi M, Amini N, Talebi Anaraki K, Motahhary M, Khalilipouya E, Harif Nashtifani A, Shafiei S, Ramezani Farani M, Nabavi N, Salimimoghadam S, Aref AR, Raesi R, Taheriazam A, Entezari M, Zha W. STAT3 as a newly emerging target in colorectal cancer therapy: Tumorigenesis, therapy response, and pharmacological/nanoplatform strategies. ENVIRONMENTAL RESEARCH 2023; 233:116458. [PMID: 37348629 DOI: 10.1016/j.envres.2023.116458] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/11/2023] [Accepted: 06/17/2023] [Indexed: 06/24/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most aggressive tumor globally, and it can be categorized into two forms: colitis-mediated CRC and sporadic CRC. The therapeutic approaches for CRC encompass surgical intervention, chemotherapy, and radiotherapy. However, even with the implementation of these techniques, the 5-year survival rate for metastatic CRC remains at a mere 12-14%. In the realm of CRC treatment, gene therapy has emerged as a novel therapeutic approach. Among the crucial molecular pathways that govern tumorigenesis, STAT3 plays a significant role. This pathway is subject to regulation by cytokines and growth factors. Once translocated into the nucleus, STAT3 influences the expression levels of factors associated with cell proliferation and metastasis. Literature suggests that the upregulation of STAT3 expression is observed as CRC cells progress towards metastatic stages. Consequently, elevated STAT3 levels serve as a significant determinant of poor prognosis and can be utilized as a diagnostic factor for cancer patients. The biological and malignant characteristics of CRC cells contribute to low survival rates in patients, as the upregulation of STAT3 prevents apoptosis and promotes pro-survival autophagy, thereby accelerating tumorigenesis. Furthermore, STAT3 plays a role in facilitating the proliferation of CRC cells through the stimulation of glycolysis and promoting metastasis via the induction of epithelial-mesenchymal transition (EMT). Notably, an intriguing observation is that the upregulation of STAT3 can mediate resistance to 5-fluorouracil, oxaliplatin, and other anti-cancer drugs. Moreover, the radio-sensitivity of CRC diminishes with increased STAT3 expression. Compounds such as curcumin, epigallocatechin gallate, and other anti-tumor agents exhibit the ability to suppress STAT3 and its associated pathways, thereby impeding tumorigenesis in CRC. Furthermore, it is worth noting that nanostructures have demonstrated anti-proliferative and anti-metastatic properties in CRC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sahar Abbaszadeh
- Faculty of Medicine, Islamic Azad University Tonekabon Branch, Tonekabon, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nafisesadat Amini
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | | | | - Ensi Khalilipouya
- Department of Radiology, Mahdiyeh Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Sasan Shafiei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA; Xsphera Biosciences, Translational Medicine Group, 6 Tide Street, Boston, MA, 02210, USA
| | - Rasoul Raesi
- Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China.
| |
Collapse
|
10
|
Hosseini K, Frenzel A, Fischer-Friedrich E. EMT induces characteristic changes of Rho GTPases and downstream effectors with a mitosis-specific twist. Phys Biol 2023; 20:066001. [PMID: 37652025 DOI: 10.1088/1478-3975/acf5bd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/31/2023] [Indexed: 09/02/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a key cellular transformation for many physiological and pathological processes ranging from cancer over wound healing to embryogenesis. Changes in cell migration, cell morphology and cellular contractility were identified as hallmarks of EMT. These cellular properties are known to be tightly regulated by the actin cytoskeleton. EMT-induced changes of actin-cytoskeletal regulation were demonstrated by previous reports of changes of actin cortex mechanics in conjunction with modifications of cortex-associated f-actin and myosin. However, at the current state, the changes of upstream actomyosin signaling that lead to corresponding mechanical and compositional changes of the cortex are not well understood. In this work, we show in breast epithelial cancer cells MCF-7 that EMT results in characteristic changes of the cortical association of Rho-GTPases Rac1, RhoA and RhoC and downstream actin regulators cofilin, mDia1 and Arp2/3. In the light of our findings, we propose that EMT-induced changes in cortical mechanics rely on two hitherto unappreciated signaling paths-i) an interaction between Rac1 and RhoC and ii) an inhibitory effect of Arp2/3 activity on cortical association of myosin II.
Collapse
Affiliation(s)
- Kamran Hosseini
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Annika Frenzel
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Cluster of Excellence Physics of Life, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- Faculty of Physics, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Yamazaki M, Sekikawa S, Suzuki T, Ogane S, Hashimoto K, Sasaki A, Nomura T. Rac1 activation in oral squamous cell carcinoma as a predictive factor associated with lymph node metastasis. Int J Clin Oncol 2023; 28:1129-1138. [PMID: 37418142 DOI: 10.1007/s10147-023-02374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES Secondary lymph node metastasis (SLNM) indicates a poor prognosis, and limiting it can improve the survival rate in early-stage tongue squamous cell carcinoma (TSCC). Many factors have been identified as predictors of SLNM; however, there is no unified view. Ras-related C3 botulinum toxin substrate 1 (Rac1) was found to be a promoter of the epithelial-mesenchymal transition (EMT) and is also attracting attention as a new therapeutic target. This study aims to investigate the role of Rac1 in metastasis and its relationship with pathological findings in early-stage TSCC. MATERIALS AND METHODS Rac1 expression levels of 69 cases of stage I/II TSCC specimens and their association with clinicopathological characteristics were evaluated by immunohistochemical staining. The role of Rac1 in oral squamous cell carcinoma (OSCC) was examined after Rac1 in OSCC cell lines was silenced in vitro. RESULTS High Rac1 expression was significantly associated with the depth of invasion (DOI), tumor budding (TB), vascular invasion, and SLNM (p < 0.05). Univariate analyses revealed that Rac1 expression, DOI, and TB were factors significantly associated with SLNM (p < 0.05). Moreover, our multivariate analysis suggested that Rac1 expression was the only independent determinant of SLNM. An in vitro study revealed that Rac1 downregulation tended to decrease cell migration and proliferation. CONCLUSION Rac1 was suggested to be an important factor in the metastasis of OSCC, and it could be useful as a predictor of SLNM.
Collapse
Affiliation(s)
- Masae Yamazaki
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiyoda, Japan.
| | | | - Taiki Suzuki
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiyoda, Japan
- Oral Cancer Center, Tokyo Dental College, Chiyoda, Japan
| | - Satoru Ogane
- Department of Plastic, Oral and Maxillofacial Surgery, Teikyo University School of Medicine, Itabashi, Japan
| | - Kazuhiko Hashimoto
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, Chiyoda, Japan
| | - Aya Sasaki
- Department of Pathology and Laboratory Medicine, Ichikawa General Hospital, Tokyo Dental College, Chiyoda, Japan
| | - Takeshi Nomura
- Department of Oral Oncology, Oral and Maxillofacial Surgery, Tokyo Dental College, Chiyoda, Japan
- Oral Cancer Center, Tokyo Dental College, Chiyoda, Japan
| |
Collapse
|
12
|
Tam SY, Islam Khan MZ, Chen JY, Yip JHY, Yan HY, Tam TY, Law HKW. Proteomic Profiling of Chemotherapy Responses in FOLFOX-Resistant Colorectal Cancer Cells. Int J Mol Sci 2023; 24:9899. [PMID: 37373047 DOI: 10.3390/ijms24129899] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Chemoresistance mechanisms of colorectal cancer remain largely elusive. We aim to compare the difference of chemotherapy responses between FOLFOX-resistant and wild-type colorectal cancer cells by proteomic profiling to suggest novel treatment targets. FOLFOX-resistant colorectal cancer cells DLD1-R and HCT116-R were developed by chronic exposure to progressive FOLFOX doses. Proteomic profiling of FOLFOX-resistant and wild-type cells under FOLFOX exposure were conducted by mass-spectrometry-based protein-analysis technology. Verification of selected KEGG pathways was conducted by Western blot. DLD1-R had significantly higher FOLFOX-chemoresistance (10.81 times) than its wild-type counterpart. A total of 309 and 90 differentially expressed proteins were identified in DLD1-R and HCT116-R, respectively. In terms of gene ontology molecular function, RNA binding and cadherin binding ranked first for DLD1 and HCT116 groups, respectively. For gene set enrichment analysis, ribosome pathway and DNA replication were significantly up-regulated and down-regulated in DLD1-R, respectively. The most significantly up-regulated pathway in HCT116-R was regulation of the actin cytoskeleton. Up-regulations in the ribosome pathway (DLD1-R) and actin cytoskeleton (HCT116-R) were verified by Western blot. There were several significantly altered signaling pathways in FOLFOX-resistant colorectal cancer cells under FOLFOX with notable up-regulations in the ribosomal process and actin cytoskeleton.
Collapse
Affiliation(s)
- Shing-Yau Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Md Zahirul Islam Khan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ju-Yu Chen
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jerica Hiu-Yui Yip
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hong-Yiu Yan
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Tsz-Yan Tam
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Helen Ka-Wai Law
- Department of Health Technology and Informatics, Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
13
|
Liu G, Xia Y, Wang H, Jin X, Chen S, Chen W, Zhang C, He Y. Downregulation of CYRI-B promotes migration, invasion and EMT by activating the Rac1-STAT3 pathway in gastric cancer. Exp Cell Res 2023; 423:113453. [PMID: 36584745 DOI: 10.1016/j.yexcr.2022.113453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 11/20/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND CYRI-B plays key roles in regulating cell motility in nontumor cells. However, the role and function of CYRI-B have rarely been studied in cancer cells, including gastric cancer. The purpose of this study was to investigate the clinical significance, biological function and underlying molecular mechanism of CYRI-B in gastric cancer. METHOD CYRI-B protein levels were detected by immunohistochemistry (IHC) and western blotting (WB). Gastric cancer cells and organoid models were evaluated to explore the correlation of CYRI-B with collagen type I. The function of CYRI-B in proliferation, migration, invasion in gastric cancer was evaluated by in vitro and in vivo experiments. RESULT CYRI-B protein levels were downregulated in gastric cancer. Low expression of CYRI-B was related to later tumor stage and poorer prognosis. CYRI-B expression was reduced when cells were cultured in collagen type I, which was mediated by collagen receptor DDR1. Knockdown of CYRI-B promoted migration, invasion and EMT in vivo and in vitro. Mechanistically, knockdown of CYRI-B activated the Rac1-STAT3 pathway. CONCLUSION Our findings showed that CYRI-B plays an important role in the tumor microenvironment, and is associated with malignant characteristics acquired by gastric cancer. This study may provide new targets for future therapeutic interventions for tumor metastasis.
Collapse
Affiliation(s)
- Guangyao Liu
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China; Department of gastrointestinal surgery, Affiliated Yijishan Hospital, Wannan Medical College, Wuhu, 241000, China
| | - Yujian Xia
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China; Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Huijin Wang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China
| | - Xinghan Jin
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China
| | - Songyao Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China
| | - Wei Chen
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, No.628, Zhen yuan Road, Guang ming District, Shenzhen, 518107, China; Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, 58 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
14
|
Clinical Significance of Combined Epithelial-Mesenchymal Transition Markers Expression and Role of Rac1 in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:ijms24021765. [PMID: 36675278 PMCID: PMC9865966 DOI: 10.3390/ijms24021765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated in cancer progression, invasion, and metastasis. We aimed to evaluate the correlations between clinicopathological characteristics and EMT markers in patients with hepatocellular carcinoma (HCC) who underwent surgical resection and to identify the key regulator in EMT process. Fresh-frozen HCC tissues and adjacent nontumor liver tissues from 30 patients who underwent surgical resection were provided by the Gachon University Gil Medical Center Bio Bank. Human HCC cell lines, Hep3B, SNU449, and Huh7 cells were transfected with Rac1 siRNA and exposed to hypoxic conditions. The combined EMT markers expression (down-expression of E-cadherin and overexpression of p21-activated kinases 1 (PAK1)/Snail) by Western blot in HCC tissues when compared to adjacent nontumor liver tissues was significantly associated with macrovascular invasion (p = 0.021), microvascular invasion (p = 0.001), large tumor size (p = 0.021), and advanced tumor stage (p = 0.015). Patients with combined EMT markers expression showed early recurrence and poor overall survival. In vitro studies showed that Rac1 knockdown decreased the expression of EMT markers including PAK1 and Snail in hypoxia-induced Hep3B cells and suppressed the migration and invasion of hypoxia-induced HCC cells. Rac1 may be a potential therapeutic target for inhibition of EMT process through the inhibition of PAK1 and Snail in HCC.
Collapse
|
15
|
Zholudeva AO, Lomakina ME, Orlova EA, Wang Y, Fokin AI, Polesskaya A, Gautreau AM, Alexandrova AY. The Role of the Adapter Protein Anks1a in the Regulation of Breast Cancer Cell Motility. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1651-1661. [PMID: 36717454 DOI: 10.1134/s0006297922120203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a critical step in tumor progression that leads to the acquisition by cancer cells the capacity for migration using the mesenchymal motility mode regulated by the Rac→WAVE→Arp2/3 signaling pathway. Earlier it was shown that proteins interacting with Rac can regulate mesenchymal migration and thus determine the metastatic potential of the cells. The search for new regulators of cell migration is an important theoretical and practical task. The adaptor protein Anks1a is one of the proteins interacting with Rac, whose expression is altered in many types of tumors. The aim of this study was to find whether Anks1a affects the migration of cancer cells and to identify the mechanism underlying this effect. It was suggested that Anks1a can influence cancer cell migration either as a Rac1 effector or by activating human epidermal growth factor receptor 2 (HER2) exchange. We investigated how upregulation and inhibition of Anks1a expression affected migration of breast cancer cells with different HER2 status. Anks1a was shown to interact with the activated form of Rac1. In the MDA-MB-231 cells (triple negative cancer), which lack HER2, Anks1a accumulated at the active cell edge, which is characterized by enrichment with active Rac1, whereas no such accumulation was observed in the HER2-overexpressing SK-BR-3 cells. Downregulation of the ANKS1a expression with esiRNA had almost no effect on the cancer cell motility, except a slight increase in the average migration rate of MDA-MB-231 cells. Among three cell lines tested, overexpression of Anks1a increased the migration rate of HER2-overexpressng SK-BR-3 cells only. We showed that Anks1a is an effector of activated Rac1, but its influence on the cell migration in this capacity was minimal, at least in the studied breast cancer cells. Anks1a affected the motility of breast cancer cells due to its involvement in the EGF receptor exchange.
Collapse
Affiliation(s)
- Anna O Zholudeva
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Maria E Lomakina
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia.,CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Evgeniya A Orlova
- N. N. Blokhin National Medical Research Center of Oncology, Moscow, 115478, Russia
| | - Yanan Wang
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Artem I Fokin
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Anna Polesskaya
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | | |
Collapse
|
16
|
Hiratsuka K, Miyoshi T, Kroll KT, Gupta NR, Valerius MT, Ferrante T, Yamashita M, Lewis JA, Morizane R. Organoid-on-a-chip model of human ARPKD reveals mechanosensing pathomechanisms for drug discovery. SCIENCE ADVANCES 2022; 8:eabq0866. [PMID: 36129975 PMCID: PMC9491724 DOI: 10.1126/sciadv.abq0866] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2022] [Indexed: 05/23/2023]
Abstract
Organoids serve as a novel tool for disease modeling in three-dimensional multicellular contexts. Static organoids, however, lack the requisite biophysical microenvironment such as fluid flow, limiting their ability to faithfully recapitulate disease pathology. Here, we unite organoids with organ-on-a-chip technology to unravel disease pathology and develop therapies for autosomal recessive polycystic kidney disease. PKHD1-mutant organoids-on-a-chip are subjected to flow that induces clinically relevant phenotypes of distal nephron dilatation. Transcriptomics discover 229 signal pathways that are not identified by static models. Mechanosensing molecules, RAC1 and FOS, are identified as potential therapeutic targets and validated by patient kidney samples. On the basis of this insight, we tested two U.S. Food and Drug Administration-approved and one investigational new drugs that target RAC1 and FOS in our organoid-on-a-chip model, which suppressed cyst formation. Our observations highlight the vast potential of organoid-on-a-chip models to elucidate complex disease mechanisms for therapeutic testing and discovery.
Collapse
Affiliation(s)
- Ken Hiratsuka
- Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Tomoya Miyoshi
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Katharina T. Kroll
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Navin R. Gupta
- Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
| | - M. Todd Valerius
- Harvard Medical School, Boston, MA, USA
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
| | - Thomas Ferrante
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer A. Lewis
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
| | - Ryuji Morizane
- Nephrology Division, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Division of Renal Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Stem Cell Institute (HSCI), Cambridge, MA, USA
| |
Collapse
|
17
|
Sadrkhanloo M, Entezari M, Orouei S, Ghollasi M, Fathi N, Rezaei S, Hejazi ES, Kakavand A, Saebfar H, Hashemi M, Goharrizi MASB, Salimimoghadam S, Rashidi M, Taheriazam A, Samarghandian S. STAT3-EMT axis in tumors: Modulation of cancer metastasis, stemness and therapy response. Pharmacol Res 2022; 182:106311. [PMID: 35716914 DOI: 10.1016/j.phrs.2022.106311] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/07/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) mechanism is responsible for metastasis of tumor cells and their spread to various organs and tissues of body, providing undesirable prognosis. In addition to migration, EMT increases stemness and mediates therapy resistance. Hence, pathways involved in EMT regulation should be highlighted. STAT3 is an oncogenic pathway that can elevate growth rate and migratory ability of cancer cells and induce drug resistance. The inhibition of STAT3 signaling impairs cancer progression and promotes chemotherapy-mediated cell death. Present review focuses on STAT3 and EMT interaction in modulating cancer migration. First of all, STAT3 is an upstream mediator of EMT and is able to induce EMT-mediated metastasis in brain tumors, thoracic cancers and gastrointestinal cancers. Therefore, STAT3 inhibition significantly suppresses cancer metastasis and improves prognosis of patients. EMT regulators such as ZEB1/2 proteins, TGF-β, Twist, Snail and Slug are affected by STAT3 signaling to stimulate cancer migration and invasion. Different molecular pathways such as miRNAs, lncRNAs and circRNAs modulate STAT3/EMT axis. Furthermore, we discuss how STAT3 and EMT interaction affects therapy response of cancer cells. Finally, we demonstrate targeting STAT3/EMT axis by anti-tumor agents and clinical application of this axis for improving patient prognosis.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sima Orouei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghollasi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Nikoo Fathi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
18
|
Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharmacol 2022; 203:115180. [PMID: 35853497 DOI: 10.1016/j.bcp.2022.115180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Small molecule inhibitors of GTPases are increasingly considered for the treatment of multiple human pathologies. The GTPase Rac1 (Ras-related C3 botulinum toxin substrate 1) plays major roles in vital cellular processes, notably in the control cell motility and dynamic, the regulation of oxidative stress, and in inflammatory and immune surveillance. As such, Rac1 is viewed as a potential target to combat cancers but also diverse inflammatory, metabolic, neurodegenerative, respiratory, cardiovascular, viral, and parasitic diseases. Potent and selective Rac1 inhibitors have been identified and designed, such as compounds GYS32661 and MBQ-167 both in preclinical development for the treatment of advanced solid tumors. The pleiotropic roles and ubiquitous expression of the protein can be viewed as limitations for anticancer approaches. However, the frequent overexpression and/or hyperactivation of the Rac1 in difficult-to-treat chemoresistant cancers, make Rac1 an attractive target in oncology. The key roles of Rac1 in multiple cellular pathways, together with its major implications in carcinogenesis, tumor proliferation and metastasis, support the development of small molecule inhibitors. The challenge is high and the difficulty shall not be underestimated, but the target is innovative and promising in combination with chemo- and/or immuno-therapy. Opportunities and challenges associated with the targeting of Rac1 are discussed.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, Lille (Wasquehal), 59290, France.
| | - Julien Beignet
- SATT Ouest Valorisation, 30 boulevard Vincent Gâche, CS 70211, 44202 Nantes cedex, France
| | - Gervaise Loirand
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| | - Vincent Sauzeau
- Université de Nantes, CHU Nantes, CNRS, INSERM, Institut du thorax, Nantes, France
| |
Collapse
|
19
|
Thwarting of Lphn3 Functions in Cell Motility and Signaling by Cancer-Related GAIN Domain Somatic Mutations. Cells 2022; 11:cells11121913. [PMID: 35741042 PMCID: PMC9221416 DOI: 10.3390/cells11121913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/21/2022] [Accepted: 05/31/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer progression relies on cellular transition states accompanied by changes in the functionality of adhesion molecules. The gene for adhesion G protein-coupled receptor latrophilin-3 (aGPCR Lphn3 or ADGRL3) is targeted by tumor-specific somatic mutations predominantly affecting the conserved GAIN domain where most aGPCRs are cleaved. However, it is unclear how these GAIN domain-altering mutations impact Lphn3 function. Here, we studied Lphn3 cancer-related mutations as a proxy for revealing unknown GAIN domain functions. We found that while intra-GAIN cleavage efficiency was unaltered, most mutations produced a ligand-specific impairment of Lphn3 intercellular adhesion profile paralleled by an increase in cell-matrix actin-dependent contact structures for cells expressing the select S810L mutation. Aberrant remodeling of the intermediate filament vimentin, which was found to coincide with Lphn3-induced modification of nuclear morphology, had less impact on the nuclei of S810L expressing cells. Notoriously, receptor signaling through G13 protein was deficient for all variants bearing non-homologous amino acid substitutions, including the S810L variant. Analysis of cell migration paradigms revealed a non-cell-autonomous impairment in collective cell migration indistinctly of Lphn3 or its cancer-related variants expression, while cell-autonomous motility was potentiated in the presence of Lphn3, but this effect was abolished in S810L GAIN mutant-expressing cells. These data identify the GAIN domain as an important regulator of Lphn3-dependent cell motility, thus furthering our understanding of cellular and molecular events linking Lphn3 genetic somatic mutations to cancer-relevant pathogenesis mechanisms.
Collapse
|
20
|
Wang S, Zhao Y, Song Y, Qiao G, Di Y, Zhao J, Sun P, Zheng H, Huang H, Huang H. ERBB2D16 Expression in HER2 Positive Gastric Cancer Is Associated With Resistance to Trastuzumab. Front Oncol 2022; 12:855308. [PMID: 35463314 PMCID: PMC9021701 DOI: 10.3389/fonc.2022.855308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human epidermal growth factor receptor-2 (ERBB2; formerly HER2)isoform ERBB2ΔEx16 (ERBB2d16) was oncogenic by mediating epithelial-mesenchymal transition (EMT), immune evasion, and resistance cell death to the anti-HER2 (trastuzumab) therapy. However, its physiological implications in gastric cancer were unclear. In this study, we examined a total of 110 patients with either locally advanced or metastatic HER2+ gastric cancer for the expression of ERBB2d16 and EMT markers, and the infiltration of CD3+ T cells in tumor tissues, and evaluated their relevance with the responses to the standard chemotherapy plus trastuzumab according to the RECIST criteria. We found that the ERBB2d16 isoform was present at a relatively high level in about half of the tumor samples examined (53/110) and an elevated ERBB2d16/ERBB2 ratio was positively associated with the expression of high E-cadherin and low vimentin indicating EMT, and with poor CD3+ T cell infiltration and strong intratumoral expression of programmed death 1 (PD-1) and programmed death ligand 1 (PD-L1) as well as reduced diversity of T cell receptor clones. Moreover, the progression-free survival and overall survival of patients treated with trastuzumab were substantially shorter in those with a high ERBB2d16/ERBB2 ratio. In agreement, analysis by Cox proportional hazards models confirmed that high ERBB2d16 expression was a risk factor associated with an adverse prognosis. Thus, our data fit well with an oncogenic role of ERBB2d16 in gastric cancer by promoting EMT and immunosuppression. We also found that ERBB2d16 expression resists gastric cell death in patients treated with trustuzumab, and the ERBB2d16/ERBB2 ratio may serve as a novel prognostic maker for patients with gastric cancer that receive trastuzumab therapy.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuze Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Yuguang Song
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guoliang Qiao
- Department of Surgical Oncology, Massachusetts General Hospital, Boston, MA, United States
| | - Yan Di
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Jing Zhao
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Pingping Sun
- Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Huixia Zheng
- Department of Pathology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - He Huang
- Department of General Surgery, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
21
|
LINC00022 acts as an oncogene in colorectal cancer progression via sponging miR-375-3p to regulate FOXF1 expression. BMC Cancer 2022; 22:453. [PMID: 35468741 PMCID: PMC9040237 DOI: 10.1186/s12885-022-09566-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/25/2022] [Indexed: 12/23/2022] Open
Abstract
Background Abnormal expression of long non-coding RNAs (lncRNAs) has been shown to be associated with the pathogenesis of cancers, including colorectal cancer (CRC). It has been reported that LINC00022 is highly expressed in some typs of cancer and its overexpression indicates poor prognosis. The function of LINC00022 in CRC progression remains unclear and is mainly investigated in the present study. Methods LINC00022 expression in CRC tissues was analyzed by using the TNMplot software. LINC00022 expression in CRC cells was measured by quantitative real-time PCR. The effects of LINC00022 on the malignant behaviors of CRC cells were detected by a series of in vitro and in vivo experiments. Dual-luciferase assays were used to verify the targeting relationship between LINC00022 and miR-375-3p and between miR-375-3p and Forkhead box F1 (FOXF1), followed by the rescue experiment. Results LINC00022 was highly expressed in CRC tissues compared with paired para-carcinoma tissues (n = 41). CRC cells with LINC00022 knockdown exhibited decreased cell proliferation, migration, and invasion abilities but increased apoptosis accompanied by decreased protein levels of c-Myc, cyclin D1, cleaved caspase 3, cleaved poly(ADP-ribose) polymerase, matrix metalloproteinase (MMP) 2, and MMP9. Additionally, LINC00022 downregulation in CRC cells suppressed the tube formation of human umbilical vein endothelial cells (HUVECs) as evidenced by decreased vascular endothelial growth factor A levels in LINC00022-silenced cells. The inhibitory effect of LINC00022 knockdown on tumor growth was also observed in an in vivo model. Conversely, LINC00022 overexpression showed that opposite effect. We further demonsrtaed that LINC00022 could upregulate FOXF1 expression through sponging miR-375-3p. Moreover, miR-375-3p knockdown reversed the effects of LINC00022 down-regulation. Conclusions LINC00022 may up-regulate FOXF1 expression via competitively binding miR-375-3p, thereby promoting the development of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09566-5.
Collapse
|
22
|
T-box transcription factor 19 promotes hepatocellular carcinoma metastasis through upregulating EGFR and RAC1. Oncogene 2022; 41:2225-2238. [PMID: 35217793 DOI: 10.1038/s41388-022-02249-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/21/2022]
Abstract
The effect of targeted therapy for metastatic hepatocellular carcinoma (HCC) is still unsatisfactory. Exploring the underlying mechanism of HCC metastasis is favorable to provide new therapeutic strategies. T-box (TBX) transcription factor family genes, which are crucial regulators in embryo and organ development, are vital for regulating tumor initiation, growth and metastasis. Here we explored the role of TBX19 in HCC metastasis, which is one of the most upregulated TBX family genes in human HCC tissues. TBX19 expression was markedly upregulated in HCC tissues and elevated TBX19 expression predicted poor prognosis. Overexpression of TBX19 enhanced HCC metastasis through upregulating epidermal growth factor receptor (EGFR) and Rac family small GTPase 1 (RAC1) expression. Downregulation of EGFR and RAC1 inhibited TBX19-mediated HCC metastasis, while upregulation of EGFR and RAC1 restored inhibition of HCC metastasis mediated by TBX19 knockdown. Furthermore, epidermal growth factor (EGF)/EGFR signaling upregulated TBX19 expression via the extracellular signal-regulated kinase (ERK)/nuclear factor (NF)-kB axis. Besides, the combined application of EGFR inhibitor Erlotinib and RAC1 inhibitor NSC23766 markedly inhibited TBX19-mediated HCC metastasis. In HCC cohorts, TBX19 expression was positively associated with EGFR and RAC1 expression. Patients with positive coexpression of TBX19/EGFR or TBX19/RAC1 displayed the poorest prognosis. In conclusion, EGF/EGFR signaling upregulated TBX19 expression via ERK/NF-kB pathway and TBX19 fostered HCC metastasis by enhancing EGFR and RAC1 expression, which formed an EGF-TBX19-EGFR positive feedback loop. Targeting this signaling pathway may offer a potential therapeutic strategy to efficiently restrain TBX19-mediated HCC metastasis.
Collapse
|
23
|
Ali A, Shafarin J, Unnikannan H, Al-Jabi N, Jabal RA, Bajbouj K, Muhammad JS, Hamad M. Co-targeting BET bromodomain BRD4 and RAC1 suppresses growth, stemness and tumorigenesis by disrupting the c-MYC-G9a-FTH1axis and downregulating HDAC1 in molecular subtypes of breast cancer. Int J Biol Sci 2021; 17:4474-4492. [PMID: 34803511 PMCID: PMC8579449 DOI: 10.7150/ijbs.62236] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 09/24/2021] [Indexed: 01/09/2023] Open
Abstract
BET bromodomain BRD4 and RAC1 oncogenes are considered important therapeutic targets for cancer and play key roles in tumorigenesis, survival and metastasis. However, combined inhibition of BRD4-RAC1 signaling pathways in different molecular subtypes of breast cancer including luminal-A, HER-2 positive and triple-negative breast (TNBC) largely remains unknown. Here, we demonstrated a new co-targeting strategy by combined inhibition of BRD4-RAC1 oncogenic signaling in different molecular subtypes of breast cancer in a context-dependent manner. We show that combined treatment of JQ1 (inhibitor of BRD4) and NSC23766 (inhibitor of RAC1) suppresses cell growth, clonogenic potential, cell migration and mammary stem cells expansion and induces autophagy and cellular senescence in molecular subtypes of breast cancer cells. Mechanistically, JQ1/NSC23766 combined treatment disrupts MYC/G9a axis and subsequently enhances FTH1 to exert antitumor effects. Furthermore, combined treatment targets HDAC1/Ac-H3K9 axis, thus suggesting a role of this combination in histone modification and chromatin modeling. C-MYC depletion and co-treatment with vitamin-C sensitizes different molecular subtypes of breast cancer cells to JQ1/NSC23766 combination and further reduces cell growth, cell migration and mammosphere formation. Importantly, co-targeting RAC1-BRD4 suppresses breast tumor growth in vivo using xenograft mouse model. Clinically, RAC1 and BRD4 expression positively correlates in breast cancer patient's samples and show high expression patterns across different molecular subtypes of breast cancer. Both RAC1 and BRD4 proteins predict poor survival in breast cancer patients. Taken together, our results suggest that combined inhibition of BRD4-RAC1 pathways represents a novel and potential therapeutic approach in different molecular subtypes of breast cancer and highlights the importance of co-targeting RAC1-BRD4 signaling in breast tumorigenesis via disruption of C-MYC/G9a/FTH1 axis and down regulation of HDAC1.
Collapse
Affiliation(s)
- Amjad Ali
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Jasmin Shafarin
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Hema Unnikannan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Nour Al-Jabi
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Rola Abu Jabal
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Khuloud Bajbouj
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mawieh Hamad
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
24
|
Huang S, Deng W, Wang P, Yan Y, Xie C, Cao X, Chen M, Zhang C, Shi D, Dong Y, Cheng P, Xu H, Zhu W, Hu Z, Tang B, Zhu J. Fermitin family member 2 promotes melanoma progression by enhancing the binding of p-α-Pix to Rac1 to activate the MAPK pathway. Oncogene 2021; 40:5626-5638. [PMID: 34321603 PMCID: PMC8445820 DOI: 10.1038/s41388-021-01954-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 06/06/2021] [Accepted: 07/09/2021] [Indexed: 01/02/2023]
Abstract
We identified fermitin family member 2 (FERMT2, also known as kindlin-2) as a potential target in A375 cell line by siRNA library screening. Drugs that target mutant BRAF kinase lack durable efficacy in the treatment of melanoma because of acquired resistance, thus the identification of novel therapeutic targets is needed. Immunohistochemistry was used to identify kindlin-2 expression in melanoma samples. The interaction between kindlin-2 and Rac1 or p-Rac/Cdc42 guanine nucleotide exchange factor 6 (α-Pix) was investigated. Finally, the tumor suppressive role of kindlin-2 was validated in vitro and in vivo. Analysis of clinical samples and Oncomine data showed that higher levels of kindlin-2 predicted a more advanced T stage and M stage and facilitated metastasis and recurrence. Kindlin-2 knockdown significantly inhibited melanoma growth and migration, whereas kindlin-2 overexpression had the inverse effects. Further study showed that kindlin-2 could specifically bind to p-α-Pix(S13) and Rac1 to induce a switch from the inactive Rac1-GDP conformation to the active Rac1-GTP conformation and then stimulate the downstream MAPK pathway. Moreover, we revealed that a Rac1 inhibitor suppressed melanoma growth and metastasis and the combination of the Rac1 inhibitor and vemurafenib resulted in a better therapeutic outcome than monotherapy in melanoma with high kindlin-2 expression and BRAF mutation. Our results demonstrated that kindlin-2 promoted melanoma progression, which was attributed to specific binding to p-α-Pix(S13) and Rac1 to stimulate the downstream MAPK pathway. Thus, kindlin-2 could be a potential therapeutic target for treating melanoma.
Collapse
Affiliation(s)
- Shaobin Huang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Peng Wang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yue Yan
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Chuanbo Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Xiaoling Cao
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Miao Chen
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Changlin Zhang
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Dingbo Shi
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, China
| | - Yunxian Dong
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pu Cheng
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hailin Xu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenkai Zhu
- Department of Chemistry, Portland State University, Portland, OR, USA
| | - Zhicheng Hu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Bing Tang
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| | - Jiayuan Zhu
- The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
25
|
Activation of STAT transcription factors by the Rho-family GTPases. Biochem Soc Trans 2021; 48:2213-2227. [PMID: 32915198 PMCID: PMC7609038 DOI: 10.1042/bst20200468] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/08/2023]
Abstract
The Rho-family of small GTPases are biological molecular switches that are best known for their regulation of the actin cytoskeleton. Through their activation and stimulation of downstream effectors, the Rho-family control pathways involved in cellular morphology, which are commonly activated in cancer cell invasion and metastasis. While this makes them excellent potential therapeutic targets, a deeper understanding of the downstream signalling pathways they influence will be required for successful drug targeting. Signal transducers and activators of transcription (STATs) are a family of transcription factors that are hyper-activated in most cancer types and while STATs are widely understood to be activated by the JAK family of kinases, many additional activators have been discovered. A growing number of examples of Rho-family driven STAT activation, largely of the oncogenic family members, STAT3 and STAT5, are being identified. Cdc42, Rac1, RhoA, RhoC and RhoH have all been implicated in STAT activation, contributing to Rho GTPase-driven changes in cellular morphology that lead to cell proliferation, invasion and metastasis. This highlights the importance and therapeutic potential of the Rho-family as regulators of non-canonical activation of STAT signalling.
Collapse
|
26
|
Xie N, Meng Q, Zhang Y, Luo Z, Xue F, Liu S, Li Y, Huang Y. MicroRNA‑142‑3p suppresses cell proliferation, invasion and epithelial‑to‑mesenchymal transition via RAC1‑ERK1/2 signaling in colorectal cancer. Mol Med Rep 2021; 24:568. [PMID: 34109430 PMCID: PMC8201444 DOI: 10.3892/mmr.2021.12207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant expression of microRNAs (miRNAs/miRs) is associated with the initiation and progression of colorectal cancer (CRC), but how they regulate colorectal tumorigenesis is still unknown. The present study was designed to investigate the expression profile of miRNAs in human CRC tissues, and to reveal the molecular mechanism of miRNA-142-3p in suppressing colon cancer cell proliferation. The expression of miRNA was examined using an Exiqon miRNA array. Bioinformatics was used to predict the target genes of differentially expressed miRNAs and to analyze their biological function in CRC. The effect of miR-142-3p in colon cancer cells was evaluated in vitro using cell proliferation, colony formation and Transwell assays. Dual-luciferase reporter gene assays were performed to investigate the association between miR-142-3p and Rac family small GTPase 1 (RAC1). The effect of miR-142-3p regulation on colon cancer proliferation was assessed through western blotting and quantitative polymerase chain reaction analysis. Compared with their expression in adjacent non-cancer mucosal tissues, 76 miRNAs were upregulated and 102 miRNAs were downregulated in CRC. One of the most significantly and differentially regulated miRNAs was miR-142-3p, which was downregulated in 81.0% (51/63) of primary CRC tissues. After transfection of miR-142-3p mimics into colon cancer cells, proliferation and colony formation were decreased, and migration and invasion were markedly suppressed. RAC1 was a possible target of miR-142-3p, which was confirmed by dual-luciferase reporter assay. Transfection of miR-142-3p mimics decreased the levels of RAC1 and suppressed epithelial-to-mesenchymal transition in colon cancer cells. The phosphorylation of extraceullar signal-regulated kinase (ERK) was decreased significantly by the inhibition of RAC1 or transfection of miR-142-3p mimics in colon cancer cells. In conclusion, aberrant miRNAs are implicated in CRC. Decreased expression of miR-142-3p may be associated with CRC tumorigenesis via Rac1-ERK signaling.
Collapse
Affiliation(s)
- Na Xie
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Qiuping Meng
- Department of Pathology, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yixin Zhang
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Zhifei Luo
- Department of Pathology, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Fenggui Xue
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Sisi Liu
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Ying Li
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| | - Yousheng Huang
- Department of Pathology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
| |
Collapse
|
27
|
Chinigò G, Castel H, Chever O, Gkika D. TRP Channels in Brain Tumors. Front Cell Dev Biol 2021; 9:617801. [PMID: 33928077 PMCID: PMC8076903 DOI: 10.3389/fcell.2021.617801] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Malignant glioma including glioblastoma (GBM) is the most common group of primary brain tumors. Despite standard optimized treatment consisting of extensive resection followed by radiotherapy/concomitant and adjuvant therapy, GBM remains one of the most aggressive human cancers. GBM is a typical example of intra-heterogeneity modeled by different micro-environmental situations, one of the main causes of resistance to conventional treatments. The resistance to treatment is associated with angiogenesis, hypoxic and necrotic tumor areas while heterogeneity would accumulate during glioma cell invasion, supporting recurrence. These complex mechanisms require a focus on potential new molecular actors to consider new treatment options for gliomas. Among emerging and underexplored targets, transient receptor potential (TRP) channels belonging to a superfamily of non-selective cation channels which play critical roles in the responses to a number of external stimuli from the external environment were found to be related to cancer development, including glioma. Here, we discuss the potential as biological markers of diagnosis and prognosis of TRPC6, TRPM8, TRPV4, or TRPV1/V2 being associated with glioma patient overall survival. TRPs-inducing common or distinct mechanisms associated with their Ca2+-channel permeability and/or kinase function were detailed as involving miRNA or secondary effector signaling cascades in turn controlling proliferation, cell cycle, apoptotic pathways, DNA repair, resistance to treatment as well as migration/invasion. These recent observations of the key role played by TRPs such as TRPC6 in GBM growth and invasiveness, TRPV2 in proliferation and glioma-stem cell differentiation and TRPM2 as channel carriers of cytotoxic chemotherapy within glioma cells, should offer new directions for innovation in treatment strategies of high-grade glioma as GBM to overcome high resistance and recurrence.
Collapse
Affiliation(s)
- Giorgia Chinigò
- Laboratory of Cell Physiology, Department of Life Sciences, Univ. Lille, Inserm, U1003 - PHYCEL, University of Lille, Lille, France.,Laboratory of Cellular and Molecular Angiogenesis, Department of Life Sciences and Systems Biology, University of Torino, Turin, Italy
| | - Hélène Castel
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Oana Chever
- UNIROUEN, Inserm U1239, DC2N, Normandie Université, Rouen, France.,Institute for Research and Innovation in Biomedicine, Rouen, France
| | - Dimitra Gkika
- CNRS, Inserm, CHU Lille, Centre Oscar Lambret, UMR 9020-UMR 1277-Canther-Cancer Heterogeneity, Plasticity and Resistance to Therapies, University of Lille, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
28
|
Zeng RJ, Zheng CW, Chen WX, Xu LY, Li EM. Rho GTPases in cancer radiotherapy and metastasis. Cancer Metastasis Rev 2020; 39:1245-1262. [PMID: 32772212 DOI: 10.1007/s10555-020-09923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/28/2020] [Indexed: 02/05/2023]
Abstract
Despite treatment advances, radioresistance and metastasis markedly impair the benefits of radiotherapy to patients with malignancies. Functioning as molecular switches, Rho guanosine triphosphatases (GTPases) have well-recognized roles in regulating various downstream signaling pathways in a wide range of cancers. In recent years, accumulating evidence indicates the involvement of Rho GTPases in cancer radiotherapeutic efficacy and metastasis, as well as radiation-induced metastasis. The functions of Rho GTPases in radiotherapeutic efficacy are divergent and context-dependent; thereby, a comprehensive integration of their roles and correlated mechanisms is urgently needed. This review integrates current evidence supporting the roles of Rho GTPases in mediating radiotherapeutic efficacy and the underlying mechanisms. In addition, their correlations with metastasis and radiation-induced metastasis are discussed. Under the prudent application of Rho GTPase inhibitors based on critical evaluations of biological contexts, targeting Rho GTPases can be a promising strategy in overcoming radioresistance and simultaneously reducing the metastatic potential of tumor cells.
Collapse
Affiliation(s)
- Rui-Jie Zeng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Chun-Wen Zheng
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Wan-Xian Chen
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China
| | - Li-Yan Xu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou, 515041, China.
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 515041, China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
29
|
Hosseini K, Taubenberger A, Werner C, Fischer‐Friedrich E. EMT-Induced Cell-Mechanical Changes Enhance Mitotic Rounding Strength. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001276. [PMID: 33042748 PMCID: PMC7539203 DOI: 10.1002/advs.202001276] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/18/2020] [Indexed: 05/26/2023]
Abstract
To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer. Here, it is shown that the epithelial-mesenchymal transition (EMT), a hallmark of cancer progression and metastasis, gives rise to cell-mechanical changes in breast epithelial cells. These changes are opposite in interphase and mitosis and correspond to an enhanced mitotic rounding strength. Furthermore, it is shown that cell-mechanical changes correlate with a strong EMT-induced change in the activity of Rho GTPases RhoA and Rac1. Accordingly, it is found that Rac1 inhibition rescues the EMT-induced cortex-mechanical phenotype. The findings hint at a new role of EMT in successful mitotic rounding and division in mechanically confined environments such as a growing tumor.
Collapse
Affiliation(s)
- Kamran Hosseini
- Biotechnology CenterTechnische Universität DresdenTatzberg 47–49Dresden01307Germany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresden01062Germany
| | - Anna Taubenberger
- Biotechnology CenterTechnische Universität DresdenTatzberg 47–49Dresden01307Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research DresdenMax Bergmann CenterHohe Str. 6Dresden01069Germany
| | - Elisabeth Fischer‐Friedrich
- Biotechnology CenterTechnische Universität DresdenTatzberg 47–49Dresden01307Germany
- Cluster of Excellence Physics of LifeTechnische Universität DresdenDresden01062Germany
| |
Collapse
|
30
|
Baker MJ, Cooke M, Kreider-Letterman G, Garcia-Mata R, Janmey PA, Kazanietz MG. Evaluation of active Rac1 levels in cancer cells: A case of misleading conclusions from immunofluorescence analysis. J Biol Chem 2020; 295:13698-13710. [PMID: 32817335 DOI: 10.1074/jbc.ra120.013919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
A large number of aggressive cancer cell lines display elevated levels of activated Rac1, a small GTPase widely implicated in cytoskeleton reorganization, cell motility, and metastatic dissemination. A commonly accepted methodological approach for detecting Rac1 activation in cancer cells involves the use of a conformation-sensitive antibody that detects the active (GTP-bound) Rac1 without interacting with the GDP-bound inactive form. This antibody has been extensively used in fixed cell immunofluorescence and immunohistochemistry. Taking advantage of prostate and pancreatic cancer cell models known to have high basal Rac1-GTP levels, here we have established that this antibody does not recognize Rac1 but rather detects the intermediate filament protein vimentin. Indeed, Rac1-null PC3 prostate cancer cells or cancer models with low levels of Rac1 activation still show a high signal with the anti-Rac1-GTP antibody, which is lost upon silencing of vimentin expression. Moreover, this antibody was unable to detect activated Rac1 in membrane ruffles induced by epidermal growth factor stimulation. These results have profound implications for the study of this key GTPase in cancer, particularly because a large number of cancer cell lines with characteristic mesenchymal features show simultaneous up-regulation of vimentin and high basal Rac1-GTP levels when measured biochemically. This misleading correlation can lead to assumptions about the validity of this antibody and inaccurate conclusions that may affect the development of appropriate therapeutic approaches for targeting the Rac1 pathway.
Collapse
Affiliation(s)
- Martin J Baker
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Medicine, Einstein Medical Center Philadelphia, Philadelphia, Pennsylvania, USA
| | | | | | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
31
|
Subcellular Localization Relevance and Cancer-Associated Mechanisms of Diacylglycerol Kinases. Int J Mol Sci 2020; 21:ijms21155297. [PMID: 32722576 PMCID: PMC7432101 DOI: 10.3390/ijms21155297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 12/12/2022] Open
Abstract
An increasing number of reports suggests a significant involvement of the phosphoinositide (PI) cycle in cancer development and progression. Diacylglycerol kinases (DGKs) are very active in the PI cycle. They are a family of ten members that convert diacylglycerol (DAG) into phosphatidic acid (PA), two-second messengers with versatile cellular functions. Notably, some DGK isoforms, such as DGKα, have been reported to possess promising therapeutic potential in cancer therapy. However, further studies are needed in order to better comprehend their involvement in cancer. In this review, we highlight that DGKs are an essential component of the PI cycle that localize within several subcellular compartments, including the nucleus and plasma membrane, together with their PI substrates and that they are involved in mediating major cancer cell mechanisms such as growth and metastasis. DGKs control cancer cell survival, proliferation, and angiogenesis by regulating Akt/mTOR and MAPK/ERK pathways. In addition, some DGKs control cancer cell migration by regulating the activities of the Rho GTPases Rac1 and RhoA.
Collapse
|
32
|
Active RAC1 Promotes Tumorigenic Phenotypes and Therapy Resistance in Solid Tumors. Cancers (Basel) 2020; 12:cancers12061541. [PMID: 32545340 PMCID: PMC7352592 DOI: 10.3390/cancers12061541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/16/2022] Open
Abstract
Acting as molecular switches, all three members of the Guanosine triphosphate (GTP)-ase-family, Ras-related C3 botulinum toxin substrate (RAC), Rho, and Cdc42 contribute to various processes of oncogenic transformations in several solid tumors. We have reviewed the distribution of patterns regarding the frequency of Ras-related C3 botulinum toxin substrate 1 (RAC1)-alteration(s) and their modes of actions in various cancers. The RAC1 hyperactivation/copy-number gain is one of the frequently observed features in various solid tumors. We argued that RAC1 plays a critical role in the progression of tumors and the development of resistance to various therapeutic modalities applied in the clinic. With this perspective, here we interrogated multiple functions of RAC1 in solid tumors pertaining to the progression of tumors and the development of resistance with a special emphasis on different tumor cell phenotypes, including the inhibition of apoptosis and increase in the proliferation, epithelial-to-mesenchymal transition (EMT), stemness, pro-angiogenic, and metastatic phenotypes. Our review focuses on the role of RAC1 in adult solid-tumors and summarizes the contextual mechanisms of RAC1 involvement in the development of resistance to cancer therapies.
Collapse
|
33
|
Salaymeh Y, Farago M, Sebban S, Shalom B, Pikarsky E, Katzav S. Vav1 and mutant K-Ras synergize in the early development of pancreatic ductal adenocarcinoma in mice. Life Sci Alliance 2020; 3:e202000661. [PMID: 32277014 PMCID: PMC7156281 DOI: 10.26508/lsa.202000661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 02/06/2023] Open
Abstract
To explore the contribution of Vav1, a hematopoietic signal transducer, to pancreatic ductal adenocarcinoma (PDAC) development, we generated transgenic mouse lines expressing, Vav1, K-RasG12D, or both K-RasG12D and Vav1 in pancreatic acinar cells. Co-expression of Vav1 and K-RasG12D synergistically enhanced acinar-to-ductal metaplasia (ADM) formation, far exceeding the number of lesions developed in K-RasG12D mice. Mice expressing only Vav1 did not develop ADM. Moreover, the incidence of PDAC in K-RasG12D/Vav1 was significantly higher than in K-RasG12D mice. Discontinuing Vav1 expression in K-RasG12D/Vav1 mice elicited a marked regression of malignant lesions in the pancreas, demonstrating Vav1 is required for generation and maintenance of ADM. Rac1-GTP levels in the K-RasG12D/Vav1 mice pancreas clearly demonstrated an increase in Rac1 activity. Treatment of K-RasG12D and K-RasG12D/Vav1 mice with azathioprine, an immune-suppressor drug which inhibits Vav1's activity as a GDP/GTP exchange factor, dramatically reduced the number of malignant lesions. These results suggest that Vav1 plays a role in the development of PDAC when co-expressed with K-RasG12D via its activity as a GEF for Rac1GTPase.
Collapse
Affiliation(s)
- Yaser Salaymeh
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Marganit Farago
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shulamit Sebban
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Batel Shalom
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Eli Pikarsky
- The Lautenberg Center for Immunology and Cancer Research and Department of Pathology, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Shulamit Katzav
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
34
|
Rac1 activation in human breast carcinoma as a prognostic factor associated with therapeutic resistance. Breast Cancer 2020; 27:919-928. [PMID: 32314182 DOI: 10.1007/s12282-020-01091-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND RAS-related C3 botulinus toxin substrate 1 (Rac1) is a molecular switch fluctuating between GDP-bound inactive form (Rac1-GDP) and GTP-bound active form (Rac1-GTP) and involved in diverse function in both normal and malignant cells such as breast carcinoma cells. Although several studies have demonstrated immunolocalization of Rac1 protein in human breast carcinoma tissues, activation status of Rac1 still remains to be elucidated. METHODS We immunolocalized active form of Rac1 (Rac1-GTP) as well as total Rac1 using antibody specific for them in 115 invasive breast carcinoma tissues and correlated with clinicopathological parameters and clinical outcomes. RESULTS Rac1-GTP was frequently immunolocalized in the cytoplasm or cell membrane of breast carcinoma cells and it was positively correlated with Ki-67 labeling index and total Rac1 while negatively correlated with progesterone receptor. On the other hand, immunohistochemical Rac1-GTP status was significantly correlated with increased risk of recurrence and breast cancer-specific mortality of breast cancer patients and multivariate analyses did demonstrate Rac1-GTP as an independent worse prognostic factor for both disease-free and breast cancer-specific survival. In addition, Rac1-GTP was still correlated with worse prognosis in the patients who had received adjuvant chemotherapy or endocrine therapy. CONCLUSION These findings suggested Rac1 activation played pivotal roles in the progression and therapeutic resistance of breast cancers and Rac1 might be an important therapeutic target for improvement of the therapy for breast cancer patients.
Collapse
|
35
|
Tiwari A, Saraf S, Jain A, Panda PK, Verma A, Jain SK. Basics to advances in nanotherapy of colorectal cancer. Drug Deliv Transl Res 2020; 10:319-338. [PMID: 31701486 DOI: 10.1007/s13346-019-00680-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Colorectal cancer (CRC) is the third most common cancer existing across the globe. It begins with the formation of polyps leading to the development of metastasis, especially in advanced stage patients, who necessitate intensive chemotherapy that usually results in a poor response and high morbidity owing to multidrug resistance and severe untoward effects to the non-cancerous cells. Advancements in the targeted drug delivery permit the targeting of tumor cells without affecting the non-tumor cells. Various nanocarriers such as liposomes, polymeric nanoparticles, carbon nanotubes, micelles, and nanogels, etc. are being developed and explored for effective delivery of cytotoxic drugs to the target site thereby enhancing the drug distribution and bioavailability, simultaneously subduing the side effects. Moreover, immunotherapy for CRC is being explored for last few decades. Few clinical trials have even potentially benefited patients suffering from CRC, still immunotherapy persists merely an experimental alternative. Assessment of the ongoing and completed trials is to be warranted for effective treatment of CRC. Scientists are paying efforts to develop novel carrier systems that may enhance the targeting potential of low therapeutic index chemo- and immune-therapeutics. Several preclinical studies have revealed the superior efficacy of nanotherapy in CRC as compared to conventional approaches. Clinical trials are being recruited to ascertain the safety and efficacy of CRC therapies. The present review discourses in a nutshell the molecular interventions including the genetics, signaling pathways involved in CRC, and advances in various strategies explored for the treatment of CRC with a special emphasis on nanocarriers based drug targeting.
Collapse
Affiliation(s)
- Ankita Tiwari
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Shivani Saraf
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Ankit Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
- Institute of Pharmaceutical Research, GLA University, NH-2, Mathura-Delhi Road, Mathura, 281 406 (U.P.), India
| | - Pritish K Panda
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Amit Verma
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India
| | - Sanjay K Jain
- Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Central University, Sagar, 470 003 (M.P.), India.
| |
Collapse
|
36
|
Kotelevets L, Chastre E. Rac1 Signaling: From Intestinal Homeostasis to Colorectal Cancer Metastasis. Cancers (Basel) 2020; 12:cancers12030665. [PMID: 32178475 PMCID: PMC7140047 DOI: 10.3390/cancers12030665] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/06/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022] Open
Abstract
The small GTPase Rac1 has been implicated in a variety of dynamic cell biological processes, including cell proliferation, cell survival, cell-cell contacts, epithelial mesenchymal transition (EMT), cell motility, and invasiveness. These processes are orchestrated through the fine tuning of Rac1 activity by upstream cell surface receptors and effectors that regulate the cycling Rac1-GDP (off state)/Rac1-GTP (on state), but also through the tuning of Rac1 accumulation, activity, and subcellular localization by post translational modifications or recruitment into molecular scaffolds. Another level of regulation involves Rac1 transcripts stability and splicing. Downstream, Rac1 initiates a series of signaling networks, including regulatory complex of actin cytoskeleton remodeling, activation of protein kinases (PAKs, MAPKs) and transcription factors (NFkB, Wnt/β-catenin/TCF, STAT3, Snail), production of reactive oxygen species (NADPH oxidase holoenzymes, mitochondrial ROS). Thus, this GTPase, its regulators, and effector systems might be involved at different steps of the neoplastic progression from dysplasia to the metastatic cascade. After briefly placing Rac1 and its effector systems in the more general context of intestinal homeostasis and in wound healing after intestinal injury, the present review mainly focuses on the several levels of Rac1 signaling pathway dysregulation in colorectal carcinogenesis, their biological significance, and their clinical impact.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| | - Eric Chastre
- Institut National de la Santé et de la Recherche Médicale, UMR S 938, Centre de Recherche Saint-Antoine, 75012 Paris, France
- Sorbonne Université, Hôpital Saint-Antoine, Site Bâtiment Kourilsky, 75012 Paris, France
- Correspondence: (L.K.); (E.C.)
| |
Collapse
|
37
|
Li D, Ding X, Xie M, Huang Z, Han P, Tian D, Xia L. CAMSAP2-mediated noncentrosomal microtubule acetylation drives hepatocellular carcinoma metastasis. Am J Cancer Res 2020; 10:3749-3766. [PMID: 32206120 PMCID: PMC7069094 DOI: 10.7150/thno.42596] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 01/13/2023] Open
Abstract
Rationale: Emerging evidence suggests that noncentrosomal microtubules play an essential role in intracellular transport, cell polarity and cell motility. Whether these noncentrosomal microtubules exist or function in cancer cells remains unclear. Methods: The expression and prognostic values of CAMSAP2 and its functional targets were analyzed by immunohistochemistry in two independent HCC cohorts. Immunofluorescence and co-immunoprecipitation were used for detection of CAMSAP2-decorated noncentrosomal microtubule. Chromatin immunoprecipitation and luciferase report assays were used to determine the c-Jun binding sites in HDAC6 promoter region. In vitro migration and invasion assays and in vivo orthotopic metastatic models were utilized to investigate invasion and metastasis. Results: We reported a microtubule minus‑end‑targeting protein, CAMSAP2, is significantly upregulated in hepatocellular carcinoma (HCC) and correlated with poor prognosis. CAMSAP2 was specifically deposited on microtubule minus ends to serve as a “seed” for noncentrosomal microtubule outgrowth in HCC cells. Upon depletion of CAMSAP2, the noncentrosomal microtubule array was transformed into a completely radial centrosomal pattern, thereby impairing HCC cell migration and invasion. We further demonstrated that CAMSAP2 cooperates with EB1 to regulate microtubule dynamics and invasive cell migration via Trio/Rac1 signaling. Strikingly, both immunofluorescence staining and western blotting showed that CAMSAP2 depletion strongly reduced the abundance of acetylated microtubules in HCC cells. Our results revealed that HDAC6, a promising target for cancer therapy, was inversely downregulated in HCC and uniquely endowed with tumor-suppressive activity by regulation CAMSAP2-mediated microtubule acetylation. Mechanistically, CAMSAP2 activates c-Jun to induce transrepression of HDAC6 through Trio-dependent Rac1/JNK pathway. Furthermore, NSC23766, a Rac1-specific inhibitor significantly inhibited CAMSAP2-mediated HCC invasion and metastasis. Conclusions: CAMSAP2 is functionally, mechanistically, and clinically oncogenic in HCC. Targeting CAMSAP2-mediated noncentrosomal microtubule acetylation may provide new therapeutic strategies for HCC metastasis.
Collapse
|
38
|
Role of JAK/STAT3 Signaling in the Regulation of Metastasis, the Transition of Cancer Stem Cells, and Chemoresistance of Cancer by Epithelial-Mesenchymal Transition. Cells 2020; 9:cells9010217. [PMID: 31952344 PMCID: PMC7017057 DOI: 10.3390/cells9010217] [Citation(s) in RCA: 299] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The JAK/STAT3 signaling pathway plays an essential role in various types of cancers. Activation of this pathway leads to increased tumorigenic and metastatic ability, the transition of cancer stem cells (CSCs), and chemoresistance in cancer via enhancing the epithelial–mesenchymal transition (EMT). EMT acts as a critical regulator in the progression of cancer and is involved in regulating invasion, spread, and survival. Furthermore, accumulating evidence indicates the failure of conventional therapies due to the acquisition of CSC properties. In this review, we summarize the effects of JAK/STAT3 activation on EMT and the generation of CSCs. Moreover, we discuss cutting-edge data on the link between EMT and CSCs in the tumor microenvironment that involves a previously unknown function of miRNAs, and also discuss new regulators of the JAK/STAT3 signaling pathway.
Collapse
|
39
|
Yang L, Lin S, Xu L, Lin J, Zhao C, Huang X. Novel activators and small-molecule inhibitors of STAT3 in cancer. Cytokine Growth Factor Rev 2019; 49:10-22. [PMID: 31677966 DOI: 10.1016/j.cytogfr.2019.10.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Excessive activation of signal transducer and activator of transcription 3 (STAT3) signaling is observed in a subset of many cancers, making activated STAT3 a highly promising potential therapeutic target supported by multiple preclinical and clinical studies. However, early-phase clinical trials have produced mixed results with STAT3-targeted cancer therapies, revealing substantial complexity to targeting aberrant STAT3 signaling. This review discusses the diverse mechanisms of oncogenic activation of STAT3, and the small molecule inhibitors of STAT3 in cancer treatment.
Collapse
Affiliation(s)
- Lehe Yang
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China; Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Shichong Lin
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Lingyuan Xu
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China; Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chengguang Zhao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, University Town, Wenzhou, Zhejiang 325035, China.
| | - Xiaoying Huang
- Department of Respiratory Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
40
|
Ji Z, Pan X, Shang Y, Ni DT, Wu FL. KIF18B as a regulator in microtubule movement accelerates tumor progression and triggers poor outcome in lung adenocarcinoma. Tissue Cell 2019; 61:44-50. [PMID: 31759406 DOI: 10.1016/j.tice.2019.09.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 12/24/2022]
Abstract
KIF18B is involved in several tumor progression and exerts critical effects on microtubule growth during mitosis, but its role in lung adenocarcinoma still remains rare. Hence, we attempted to explore the biological function of KIF18B in lung adenocarcinoma. We first analyzed the expressional pattern of KIF18B in lung adenocarcinoma, and detected the correlation between KIF18B expression and clinical characteristics in lung adenocarcinoma based on The Cancer Genome Atlas (TCGA) database and Oncomine dataset. Subsequently, cell counting kit-8 (CCK-8) assay, wound-healing analysis, and transwell method were performed to assess the effects of KIF18B in lung adenocarcinoma cells. Quantitative real-time reverse transcription-PCR (qRT-PCR) and western blotting were utilized to measure the mRNA and protein expression levels. Our results illustrated that KIF18B expression was significantly up-regulated in lung adenocarcinoma samples compared to normal specimens. High levels of KIF18B were associated with unfavorable prognosis of lung adenocarcinoma patients. Down-regulation of KIF18B in lung adenocarcinoma cells inhibited cell prolifartion, migration, and invasion. Western blot assay demonstrated that KIF18B knockdown markedly decreased Rac1-GTP expression, an important marker of migration and invasion in tumors. Moreover, the phosphorylation of AKT and mTOR expression levels were attenuated after KIF18B knockdown. Taken together, these data enhanced the point that KIF18B might promote lung adenocarcinoma cell proliferation, migration, and invasion by activating Rac1 and mediating the AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Ze Ji
- Department of Respiratory Medicine, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, 215028, PR China
| | - Xing Pan
- Department of Nursing, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, 215028, PR China
| | - Yan Shang
- Department of Respiratory and Critical Care Medicine, Changhai Hospital, Second Military Medical University, Shanghai, 200433, PR China
| | - Dian-Tao Ni
- Department of Respiratory Medicine, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, Suzhou, Jiangsu, 215028, PR China.
| | - Feng-Lei Wu
- Department of Oncology, First People Hospital of Lianyungang, Lianyungang, Jiangsu, 222002, PR China.
| |
Collapse
|
41
|
Xia L, Lin J, Su J, Oyang L, Wang H, Tan S, Tang Y, Chen X, Liu W, Luo X, Tian Y, Liang J, Su Q, Liao Q, Zhou Y. Diallyl disulfide inhibits colon cancer metastasis by suppressing Rac1-mediated epithelial-mesenchymal transition. Onco Targets Ther 2019; 12:5713-5728. [PMID: 31410018 PMCID: PMC6645609 DOI: 10.2147/ott.s208738] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022] Open
Abstract
Background Prevention of epithelial-mesenchymal transition (EMT) provides a novel treatment strategy for tumor metastasis. Our previous studies have shown that diallyl disulfide (DADS) inhibits Ras related C3 botulinum toxin substrate1 (Rac1) expression, being a potential agent that suppresses migration and invasion of colon cancer cells. The study provides information on the underlying mechanisms. Methods The expression of Rac1 and EMT markers (vimentin, N-cadherin and E-cadherin) in colon cancer samples was detected. Colon cancer cell lines treated with or without DADS were used to examine EMT markers, Rac1 and its related molecules. Various cell functions related to metastasis were performed in vitro, and further confirmed in vivo. Results Rac1 was highly expressed in colon cancer, and associated with aberrant expression of EMT markers and poor prognosis. Rac1 overexpression induced cell migration and invasion in vitro and metastasis in vivo with down-regulation of E-cadherin and up-regulation of N-cadherin, vimentin, and snail1, whereas inhibition of Rac1 impaired the oncogenic function. DADS suppressed Rac1 expression and activity via inhibition of PI3K/Akt pathway, thus suppressing EMT and invasion and migration of colon cancer cells. The tumor inhibition of DADS was enhanced by knockdown of Rac1, but antagonized by overexpression of Rac1. We further found that DADS blocked EMT via targeting the Rac1-mediated PAK1-LIMK1-Cofilins signaling. Conclusion Rac1 is a potential target molecule for the inhibitory effect of DADS on EMT and invasion and metastasis of colon cancer cells.
Collapse
Affiliation(s)
- Longzheng Xia
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Jingguan Lin
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Jian Su
- Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Linda Oyang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Heran Wang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Shiming Tan
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Yanyan Tang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Xiaoyan Chen
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Wenbin Liu
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Xia Luo
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Yutong Tian
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Jiaxin Liang
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Qi Su
- Cancer Research Institute, University of South China, Hengyang, Hunan, People's Republic of China
| | - Qianjin Liao
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| | - Yujuan Zhou
- Key Laboratory of Translational Radiation Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University and Hunan Cancer Hospital, Changsha 410013, Hunan, People's Republic of China
| |
Collapse
|
42
|
Coordination between Rac1 and Rab Proteins: Functional Implications in Health and Disease. Cells 2019; 8:cells8050396. [PMID: 31035701 PMCID: PMC6562727 DOI: 10.3390/cells8050396] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
The small GTPases of the Rho family regulate many aspects of actin dynamics, but are functionally connected to many other cellular processes. Rac1, a member of this family, besides its known function in the regulation of actin cytoskeleton, plays a key role in the production of reactive oxygen species, in gene transcription, in DNA repair, and also has been proven to have specific roles in neurons. This review focuses on the cooperation between Rac1 and Rab proteins, analyzing how the coordination between these GTPases impact on cells and how alterations of their functions lead to disease.
Collapse
|
43
|
RAC1 Takes the Lead in Solid Tumors. Cells 2019; 8:cells8050382. [PMID: 31027363 PMCID: PMC6562738 DOI: 10.3390/cells8050382] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Three GTPases, RAC, RHO, and Cdc42, play essential roles in coordinating many cellular functions during embryonic development, both in healthy cells and in disease conditions like cancers. We have presented patterns of distribution of the frequency of RAC1-alteration(s) in cancers as obtained from cBioPortal. With this background data, we have interrogated the various functions of RAC1 in tumors, including proliferation, metastasis-associated phenotypes, and drug-resistance with a special emphasis on solid tumors in adults. We have reviewed the activation and regulation of RAC1 functions on the basis of its sub-cellular localization in tumor cells. Our review focuses on the role of RAC1 in cancers and summarizes the regulatory mechanisms, inhibitory efficacy, and the anticancer potential of RAC1-PAK targeting agents.
Collapse
|
44
|
De Bessa TC, Pagano A, Moretti AIS, Oliveira PVS, Mendonça SA, Kovacic H, Laurindo FRM. Subverted regulation of Nox1 NADPH oxidase-dependent oxidant generation by protein disulfide isomerase A1 in colon carcinoma cells with overactivated KRas. Cell Death Dis 2019; 10:143. [PMID: 30760703 PMCID: PMC6374413 DOI: 10.1038/s41419-019-1402-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 12/24/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Protein disulfide isomerases including PDIA1 are implicated in cancer progression, but underlying mechanisms are unclear. PDIA1 is known to support vascular Nox1 NADPH oxidase expression/activation. Since deregulated reactive oxygen species (ROS) production underlies tumor growth, we proposed that PDIA1 is an upstream regulator of tumor-associated ROS. We focused on colorectal cancer (CRC) with distinct KRas activation levels. Analysis of RNAseq databanks and direct validation indicated enhanced PDIA1 expression in CRC with constitutive high (HCT116) vs. moderate (HKE3) and basal (Caco2) Ras activity. PDIA1 supported Nox1-dependent superoxide production in CRC; however, we first reported a dual effect correlated with Ras-level activity: in Caco2 and HKE3 cells, loss-of-function experiments indicate that PDIA1 sustains Nox1-dependent superoxide production, while in HCT116 cells PDIA1 restricted superoxide production, a behavior associated with increased Rac1 expression/activity. Transfection of Rac1G12V active mutant into HKE3 cells induced PDIA1 to become restrictive of Nox1-dependent superoxide, while in HCT116 cells treated with Rac1 inhibitor, PDIA1 became supportive of superoxide. PDIA1 silencing promoted diminished cell proliferation and migration in HKE3, not detectable in HCT116 cells. Screening of cell signaling routes affected by PDIA1 silencing highlighted GSK3β and Stat3. Also, E-cadherin expression after PDIA1 silencing was decreased in HCT116, consistent with PDIA1 support of epithelial-mesenchymal transition. Thus, Ras overactivation switches the pattern of PDIA1-dependent Rac1/Nox1 regulation, so that Ras-induced PDIA1 bypass can directly activate Rac1. PDIA1 may be a crucial regulator of redox-dependent adaptive processes related to cancer progression.
Collapse
Affiliation(s)
- Tiphany Coralie De Bessa
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Faculté de Pharmacie, 27, Boulevard Jean Moulin - 13385 Marseille CEDEX 5-France, Marseille, France
| | - Alessandra Pagano
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Faculté de Pharmacie, 27, Boulevard Jean Moulin - 13385 Marseille CEDEX 5-France, Marseille, France
| | - Ana Iochabel Soares Moretti
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Percillia Victoria Santos Oliveira
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Samir Andrade Mendonça
- Centro de Investigação Translacional em Oncologia do Instituto do Câncer do Estado de São Paulo (Icesp), Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Herve Kovacic
- Aix Marseille Univ, CNRS, UMR 7051, INP, Inst Neurophysiopathol, Faculté de Pharmacie, 27, Boulevard Jean Moulin - 13385 Marseille CEDEX 5-France, Marseille, France.
| | - Francisco Rafael Martins Laurindo
- LIM 64, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
45
|
TRPV4 promotes the migration and invasion of glioma cells via AKT/Rac1 signaling. Biochem Biophys Res Commun 2018; 503:876-881. [PMID: 29928875 DOI: 10.1016/j.bbrc.2018.06.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 06/17/2018] [Indexed: 01/13/2023]
Abstract
Experimental evidence indicates a critical role of TRPV4 (Transient Receptor Potential Vanilloid 4) in controlling the cell migratory activity of multiple tumors. However, the oncogenic role of TRPV4 in glioma still remains elusive. In this study, we tried to investigate the oncogenic role of TRPV4 in glioma. We found that the expression levels of TRPV4 were upregulated in glioma and the high levels of TRPV4 indicated a worse prognosis in patients with glioma. TRPV4 was critical for glioma migration and invasion: activating TRPV4 by agonist GSK1016790 A enhanced glioma migration and invasion, while, the specific TRPV4 antagonist HC-067047 suppressed glioma migration and invasion. Mechanically, activated TRPV4 promoted the activation of Rac1 (Ras-related C3 botulinum toxin substrate 1) by targeting the AKT for phosphorylation, then enhanced glioma migration and invasion. All these results suggested that TRPV4 accelerates glioma migration and invasion through the AKT/Rac1 signaling, and TRPV4 might be considered as a potential target for glioma therapy.
Collapse
|