1
|
Ye Q, Zhu Y, Ma Y, Wang Z, Xu G. Emerging role of spasmolytic polypeptide-expressing metaplasia in gastric cancer. J Gastrointest Oncol 2024; 15:2673-2683. [PMID: 39816029 PMCID: PMC11732338 DOI: 10.21037/jgo-24-508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 01/18/2025] Open
Abstract
Gastric cancer (GC) ranks among the top five most diagnosed cancers globally, with particularly high incidence and mortality rates observed in Asian regions. Despite certain advancements achieved through early screening and treatment strategies in many countries, GC continues to pose a significant public health challenge. Approximately 20% of patients infected with Helicobacter pylori develop precancerous lesions, among which metaplasia is the most critical. Except for intestinal metaplasia (IM), which is characterized by goblet cells appearing in the stomach glands, one type of mucous cell metaplasia, spasmolytic polypeptide-expressing metaplasia (SPEM), has attracted much attention. SPEM represents a specific epithelial cell alteration within the gastric mucosa, characterized by the expressing trefoil factor 2 (TFF2) in basal glands, resembling the basal metaplasia of deep antral gland cells. It primarily arises from the transdifferentiation of mature chief cells, mucous neck cells (MNCs), or isthmus stem cells. SPEM is commonly regarded as a precursor lesion in the development of gastric inflammation and subsequent carcinogenesis. The formation of SPEM is intricately associated with chronic gastric inflammation, Helicobacter pylori infection, and various other environmental and genetic factors. Recently, with the profound exploration of the biological and molecular mechanisms underlying SPEM, a deeper understanding of its role in GC initiation and progression has emerged. This review summarizes the role, molecular mechanisms, and clinical significance of SPEM in the onset and progression of GC.
Collapse
Affiliation(s)
- Qiange Ye
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yanmei Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yichun Ma
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhangding Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, China
- Department of Gastroenterology, Affiliated Taikang Xianlin Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Arai J, Hayakawa Y, Tateno H, Fujiwara H, Kasuga M, Fujishiro M. The role of gastric mucins and mucin-related glycans in gastric cancers. Cancer Sci 2024; 115:2853-2861. [PMID: 39031976 PMCID: PMC11463072 DOI: 10.1111/cas.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/22/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Gastric mucins serve as a protective barrier on the stomach's surface, protecting from external stimuli including gastric acid and gut microbiota. Their composition typically changes in response to the metaplastic sequence triggered by Helicobacter pylori infection. This alteration in gastric mucins is also observed in cases of gastric cancer, although the precise connection between mucin expressions and gastric carcinogenesis remains uncertain. This review first introduces the relationship between mucin expressions and gastric metaplasia or cancer observed in humans and mice. Additionally, we discuss potential pathogenic mechanisms of how aberrant mucins and their glycans affect gastric carcinogenesis. Finally, we summarize challenges to target tumor-specific glycans by utilizing lectin-drug conjugates that can bind to specific glycans. Understanding the correlation and mechanism between these mucin expressions and gastric carcinogenesis could pave the way for new strategies in gastric cancer treatment.
Collapse
Affiliation(s)
- Junya Arai
- Division of Gastroenterology, The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Hiroaki Fujiwara
- Division of Gastroenterology, The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
| | - Masato Kasuga
- The Institute for Medical ScienceAsahi Life FoundationChuo‐ku, TokyoJapan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoBunkyo‐ku, TokyoJapan
| |
Collapse
|
3
|
Arai J, Hayakawa Y, Tateno H, Murakami K, Hayashi T, Hata M, Matsushita Y, Kinoshita H, Abe S, Kurokawa K, Oya Y, Tsuboi M, Ihara S, Niikura R, Suzuki N, Iwata Y, Shiokawa T, Shiomi C, Uekura C, Yamamoto K, Fujiwara H, Kawamura S, Nakagawa H, Mizuno S, Kudo T, Takahashi S, Ushiku T, Hirata Y, Fujii C, Nakayama J, Shibata S, Woods S, Worthley DL, Hatakeyama M, Wang TC, Fujishiro M. Impaired Glycosylation of Gastric Mucins Drives Gastric Tumorigenesis and Serves as a Novel Therapeutic Target. Gastroenterology 2024; 167:505-521.e19. [PMID: 38583723 DOI: 10.1053/j.gastro.2024.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/10/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Gastric cancer is often accompanied by a loss of mucin 6 (MUC6), but its pathogenic role in gastric carcinogenesis remains unclear. METHODS Muc6 knockout (Muc6-/-) mice and Muc6-dsRED mice were newly generated. Tff1Cre, Golph3-/-, R26-Golgi-mCherry, Hes1flox/flox, Cosmcflox/flox, and A4gnt-/- mice were also used. Histology, DNA and RNA, proteins, and sugar chains were analyzed by whole-exon DNA sequence, RNA sequence, immunohistochemistry, lectin-binding assays, and liquid chromatography-mass spectrometry analysis. Gastric organoids and cell lines were used for in vitro assays and xenograft experiments. RESULTS Deletion of Muc6 in mice spontaneously causes pan-gastritis and invasive gastric cancers. Muc6-deficient tumor growth was dependent on mitogen-activated protein kinase activation, mediated by Golgi stress-induced up-regulation of Golgi phosphoprotein 3. Glycomic profiling revealed aberrant expression of mannose-rich N-linked glycans in gastric tumors, detected with banana lectin in association with lack of MUC6 expression. We identified a precursor of clusterin as a binding partner of mannose glycans. Mitogen-activated protein kinase activation, Golgi stress responses, and aberrant mannose expression are found in separate Cosmc- and A4gnt-deficient mouse models that lack normal O-glycosylation. Banana lectin-drug conjugates proved an effective treatment for mannose-rich murine and human gastric cancer. CONCLUSIONS We propose that Golgi stress responses and aberrant glycans are important drivers of and promising new therapeutic targets for gastric cancer.
Collapse
Affiliation(s)
- Junya Arai
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | - Hiroaki Tateno
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan.
| | - Keita Murakami
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yuki Matsushita
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroto Kinoshita
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sohei Abe
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yukiko Oya
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Sozaburo Ihara
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Ryota Niikura
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yusuke Iwata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Toshiro Shiokawa
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chihiro Shiomi
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chie Uekura
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Keisuke Yamamoto
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Division of Gastroenterology, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
| | - Satoshi Kawamura
- Department of Gastroenterology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Hayato Nakagawa
- Department of Gastroenterology, Graduate School of Medicine, Mie University, Mie, Japan
| | - Seiya Mizuno
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Laboratory Animal Science, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chifumi Fujii
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan; Department of Biotechnology, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Jun Nakayama
- Department of Molecular Pathology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shinsuke Shibata
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Susan Woods
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia; Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; Laboratory of Microbial Carcinogenesis, Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Tokyo, Japan; Center of Infection-Associated Cancer, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Timothy C Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Chong Y, Yu D, Lu Z, Nie F. Role and research progress of spasmolytic polypeptide‑expressing metaplasia in gastric cancer (Review). Int J Oncol 2024; 64:33. [PMID: 38299264 PMCID: PMC10836494 DOI: 10.3892/ijo.2024.5621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024] Open
Abstract
Gastric cancer ranks as one of the most prevalent cancers worldwide. While the incidence of gastric cancer in Western countries has notably diminished over the past century, it continues to be a leading cause of cancer‑related mortality on a global scale. The majority of gastric cancers in humans are attributed to chronic Helicobacter pylori infection and the progression of gastric cancer is often preceded by gastritis, atrophy, metaplasia and dysplasia. However, the precise mechanisms underlying the development of gastric cancer remain ambiguous, including the formation of gastric polyps and precancerous lesions. In humans, two types of precancerous metaplasia have been identified in relation to gastric malignancies: Intestinal metaplasia and spasmolytic polypeptide‑expressing metaplasia (SPEM). The role of SPEM in the induction of gastric cancer has gained recent attention and its link with early‑stage human gastric cancer is increasingly evident. To gain insight into SPEM, the present study reviewed the role and research progress of SPEM in gastric cancer.
Collapse
Affiliation(s)
- Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225000, P.R. China
| |
Collapse
|
5
|
Brackman LC, Dixon BREA, Bernard M, Revetta F, Cowell RP, Meenderink LM, Washington MK, Piazuelo MB, Algood HMS. IL-17 receptor A functions to help maintain barrier integrity and limit activation of immunopathogenic response to H. pylori infection. Infect Immun 2024; 92:e0029223. [PMID: 38014948 PMCID: PMC10790819 DOI: 10.1128/iai.00292-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/29/2023] [Indexed: 11/29/2023] Open
Abstract
Activation of Th17 cell responses, including the production of IL-17A and IL-21, contributes to host defense and inflammatory responses by coordinating adaptive and innate immune responses. IL-17A and IL-17F signal through a multimeric receptor, which includes the IL-17 receptor A (IL-17RA) subunit and the IL-17RC subunit. IL-17RA is expressed by many cell types, and data from previous studies suggest that loss of IL-17 receptor is required to limit immunopathology in the Helicobacter pylori model of infection. Here, an Il17ra-/- mouse was generated on the FVB/n background, and the role of IL-17 signaling in the maintenance of barrier responses to H. pylori was investigated. Generating the Il17ra-/- on the FVB/n background allowed for the examination of responses in the paragastric lymph node and will allow for future investigation into carcinogenesis. While uninfected Il17ra-/- mice do not develop spontaneous gastritis following H. pylori infection, Il17ra-/- mice develop severe gastric inflammation accompanied by lymphoid follicle production and exacerbated production of Th17 cytokines. Increased inflammation in the tissue, increased IgA levels in the lumen, and reduced production of Muc5ac in the corpus correlate with increased H. pylori-induced paragastric lymph node activation. These data suggest that the cross talk between immune cells and epithelial cells regulates mucin production, IgA production, and translocation, impacting the integrity of the gastric mucosa and therefore activating of the adaptive immune response.
Collapse
Affiliation(s)
- Lee C. Brackman
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Beverly R. E. A. Dixon
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Margaret Bernard
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - Frank Revetta
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rebecca P. Cowell
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Leslie M. Meenderink
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
| | - M. Kay Washington
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - M. Blanca Piazuelo
- Division of Gastroenterology, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Holly M. Scott Algood
- Division of Infectious Disease, Department of Medicine, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute of Infection, Immunity, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
6
|
He J, Liu Y, Li J, Zhao Y, Jiang H, Luo S, He G. Intestinal changes in permeability, tight junction and mucin synthesis in a mouse model of Alzheimer's disease. Int J Mol Med 2023; 52:113. [PMID: 37830152 PMCID: PMC10599350 DOI: 10.3892/ijmm.2023.5316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by the accumulation of amyloid‑β (Aβ) in the brain. The gut/brain axis may serve a role in AD pathogenesis. The present study investigated deposition of Aβ in the intestinal epithelium and its potential effects on intestinal barrier function in a transgenic mouse model of AD. To investigate alterations in the structure and functionality of the intestinal mucosal barrier in AD model mice, hematoxylin and eosin staining for Paneth cell count, Alcian blue‑periodic acid Schiff staining for goblet cells, immunohistochemistry and immunofluorescence for mucin (MUC)2 and wheat germ agglutin expression, transmission electron microscopy for mucosal ultrastructure, FITC‑labeled dextran assay for intestinal permeability, quantitative PCR for goblet cell precursor expression and western blot analysis for tight junction proteins, MUC2 and inflammatory cytokine detection were performed. The results showed that AD model mice exhibited excessive Aβ deposition in the intestinal epithelium, which was accompanied by increased intestinal permeability, inflammatory changes and decreased expression of tight junction proteins. These alterations in the intestinal barrier led to an increased proliferation of goblet and Paneth cells and increased mucus synthesis. Dysfunction of gut barrier occurs in AD and may contribute to its etiology. Future therapeutic strategies to reverse AD pathology may involve early manipulation of gut physiology and its microbiota.
Collapse
Affiliation(s)
- Jing He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Yuanjie Liu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Junhua Li
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Yueyang Zhao
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Hanxiao Jiang
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, P.R. China
| | - Shifang Luo
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| | - Guiqiong He
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
- Department of Anatomy, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016
| |
Collapse
|
7
|
Sockell A, Wong W, Longwell S, Vu T, Karlsson K, Mokhtari D, Schaepe J, Lo YH, Cornelius V, Kuo C, Van Valen D, Curtis C, Fordyce PM. A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids. Cell Syst 2023; 14:764-776.e6. [PMID: 37734323 DOI: 10.1016/j.cels.2023.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 02/24/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
Organoids are powerful experimental models for studying the ontogeny and progression of various diseases including cancer. Organoids are conventionally cultured in bulk using an extracellular matrix mimic. However, bulk-cultured organoids physically overlap, making it impossible to track the growth of individual organoids over time in high throughput. Moreover, local spatial variations in bulk matrix properties make it difficult to assess whether observed phenotypic heterogeneity between organoids results from intrinsic cell differences or differences in the microenvironment. Here, we developed a microwell-based method that enables high-throughput quantification of image-based parameters for organoids grown from single cells, which can further be retrieved from their microwells for molecular profiling. Coupled with a deep learning image-processing pipeline, we characterized phenotypic traits including growth rates, cellular movement, and apical-basal polarity in two CRISPR-engineered human gastric organoid models, identifying genomic changes associated with increased growth rate and changes in accessibility and expression correlated with apical-basal polarity. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Alexandra Sockell
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Wing Wong
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Scott Longwell
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Thy Vu
- Department of Biochemistry, UT Austin, Austin, TX 78712, USA
| | - Kasper Karlsson
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Daniel Mokhtari
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | - Julia Schaepe
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Yuan-Hung Lo
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Vincent Cornelius
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Calvin Kuo
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - David Van Valen
- Division of Biology and Bioengineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Christina Curtis
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA.
| | - Polly M Fordyce
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94110, USA; ChEM-H Institute, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Niikura R, Hayakawa Y, Nagata N, Miyoshi-Akiayama T, Miyabayashi K, Tsuboi M, Suzuki N, Hata M, Arai J, Kurokawa K, Abe S, Uekura C, Miyoshi K, Ihara S, Hirata Y, Yamada A, Fujiwara H, Ushiku T, Woods SL, Worthley DL, Hatakeyama M, Han YW, Wang TC, Kawai T, Fujishiro M. Non- Helicobacter pylori Gastric Microbiome Modulates Prooncogenic Responses and Is Associated With Gastric Cancer Risk. GASTRO HEP ADVANCES 2023; 2:684-700. [PMID: 39129877 PMCID: PMC11307406 DOI: 10.1016/j.gastha.2023.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/08/2023] [Indexed: 08/13/2024]
Abstract
Background and Aims Although Helicobacter pylori is the most important bacterial carcinogen in gastric cancer (GC), GC can emerge even after H. pylori eradication. Studies suggest that various constituents of the gastric microbiome may influence GC development, but the role of individual pathogens is unclear. Methods Human gastric mucosal samples were analyzed by 16SrRNA sequencing to investigate microbiome composition and its association with clinical parameters, including GC risk. Identified bacteria in the stomach were cocultured with gastric epithelial cells or inoculated into mice, and transcriptomic changes, DNA damage, and inflammation were analyzed. Bacterial reads in GC tissues were examined together with transcriptomic and genetic sequencing data in the cancer genome atlas dataset. Results Patients after Helicobacter pylori eradication formed 3 subgroups based on the microbial composition revealed by 16SrRNA sequencing. One dysbiotic group enriched with Fusobacterium and Neisseria species was associated with a significantly higher GC incidence. These species activated prooncogenic pathways in gastric epithelial cells and promoted inflammation in mouse stomachs. Sugar chains that constitute gastric mucin attenuate host-bacteria interactions. Metabolites from Fusobacterium species were genotoxic, and the presence of the bacteria was associated with an inflammatory signature and a higher tumor mutation burden. Conclusion Gastric microbiota in the dysbiotic stomach is associated with GC development after H. pylori eradication and plays a pathogenic role through direct host-bacteria interaction.
Collapse
Affiliation(s)
- Ryota Niikura
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
- Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Yoku Hayakawa
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Naoyoshi Nagata
- Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Tohru Miyoshi-Akiayama
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Koji Miyabayashi
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Mayo Tsuboi
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Nobumi Suzuki
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Masahiro Hata
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Junya Arai
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Kurokawa
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Sohei Abe
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Chie Uekura
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Miyoshi
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Sozaburo Ihara
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihiro Hirata
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Atsuo Yamada
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Fujiwara
- Department of Gastroenterology, The Institute for Medical Science, Asahi-life Foundation, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| | - Susan L. Woods
- Cancer Theme, SAHMRI, Adelaide, South Australia, Australia
- Medical Specialties, Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | | | - Masanori Hatakeyama
- Department of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yiping W. Han
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York
- Department of Microbiology and Immunology, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York
- Section of Oral, Diagnostic and Rehabilitation Sciences, College of Dental Medicine, Columbia University, New York, New York
| | - Timothy C. Wang
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University, New York, New York
| | - Takashi Kawai
- Gastroenterological Endoscopy, Tokyo Medical University, Tokyo, Japan
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, Graduate school of medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
9
|
Wu D, Xiang Y. Role of mucociliary clearance system in respiratory diseases. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:275-284. [PMID: 36999475 PMCID: PMC10930340 DOI: 10.11817/j.issn.1672-7347.2023.220372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Indexed: 04/01/2023]
Abstract
Mucociliary clearance system is the primary innate defense mechanism of the lung. It plays a vital role in protecting airways from microbes and irritants infection. Mucociliary clearance system, which is mediated by the actions of airway and submucosal gland epithelial cells, plays a critical role in a multilayered defense system via secreting fluids, electrolytes, antimicrobial and anti-inflammatory proteins, and mucus onto airway surfaces. Changes in environment, drugs or diseases can lead to mucus overproduction and cilia dysfunction, which in turn decrease the rate of mucociliary clearance and enhance mucus gathering. The dysfunction of mucociliary clearance system often occurs in several respiratory diseases, such as primary ciliary dysfunction, cystic fibrosis, asthma and chronic obstructive pulmonary disease, which are characterized by goblet cell metaplasia, submucosal gland cell hypertrophy, mucus hypersecretion, cilia adhesion, lodging and loss, and airway obstruction.
Collapse
Affiliation(s)
- Di Wu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| | - Yang Xiang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| |
Collapse
|
10
|
A Complex Connection Between the Diversity of Human Gastric Mucin O-Glycans, Helicobacter pylori Binding, Helicobacter Infection and Fucosylation. Mol Cell Proteomics 2022; 21:100421. [PMID: 36182101 PMCID: PMC9661725 DOI: 10.1016/j.mcpro.2022.100421] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 01/18/2023] Open
Abstract
Helicobacter pylori colonizes the stomach of half of the human population. Most H. pylori are located in the mucus layer, which is mainly comprised by glycosylated mucins. Using mass spectrometry, we identified 631 glycans (whereof 145 were fully characterized and the remainder assigned as compositions) on mucins isolated from 14 Helicobacter spp.-infected and 14 Helicobacter spp.-noninfected stomachs. Only six identified glycans were common to all individuals, from a total of 60 to 189 glycans in each individual. An increased number of unique glycan structures together with an increased intraindividual diversity and larger interindividual variation were identified among O-glycans from Helicobacter spp.-infected stomachs compared with noninfected stomachs. H. pylori strain J99, which carries the blood group antigen-binding adhesin (BabA), the sialic acid-binding adhesin (SabA), and the LacdiNAc-binding adhesin, bound both to Lewis b (Leb)-positive and Leb-negative mucins. Among Leb-positive mucins, H. pylori J99 binding was higher to mucins from Helicobacter spp.-infected individuals than noninfected individuals. Statistical correlation analysis, binding experiments with J99 wt, and J99ΔbabAΔsabA and inhibition experiments using synthetic glycoconjugates demonstrated that the differences in H. pylori-binding ability among these four groups were governed by BabA-dependent binding to fucosylated structures. LacdiNAc levels were lower in mucins that bound to J99 lacking BabA and SabA than in mucins that did not, suggesting that LacdiNAc did not significantly contribute to the binding. We identified 24 O-glycans from Leb-negative mucins that correlated well with H. pylori binding whereof 23 contained α1,2-linked fucosylation. The large and diverse gastric glycan library identified, including structures that correlated with H. pylori binding, could be used to select glycodeterminants to experimentally investigate further for their importance in host-pathogen interactions and as candidates to develop glycan-based therapies.
Collapse
|
11
|
Wang P, Xu T, Yan Z, Zheng X, Zhu F. Jian-Pi-Yi-Qi-Fang ameliorates chronic atrophic gastritis in rats through promoting the proliferation and differentiation of gastric stem cells. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:932. [PMID: 36172111 PMCID: PMC9511200 DOI: 10.21037/atm-22-3749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/17/2022] [Indexed: 11/14/2022]
Abstract
Background Jian-Pi-Yi-Qi-Fang (JPYQF) is a traditional Chinese medicine (TCM) herbal formula for treating chronic atrophic gastritis (CAG) in the clinic; however, its related mechanism remains unclear. The purpose of this study was to explore the potential mechanisms of JPYQF in treating CAG by examining proteins and genes related to the proliferation and differentiation of gastric stem cells and Wnt signaling. Methods A CAG model was established in Sprague-Dawley (SD) rats which were induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) and ranitidine. We randomly divided 25 CAG rats into 5 groups: the model group, positive drug group, low-dose group of JPYQF (JPYQF-L), middle-dose group of JPYQF (JPYQF-M), and high-dose group of JPYQF (JPYQF-H), with 5 rats of the same age classified into the control group. The body weight of rats was measured and their gastric morphology was visually assessed. Furthermore, pathological analysis of rat gastric tissue was performed. The expression levels of proteins and genes associated with the proliferation and differentiation of gastric stem cells and Wnt signaling were measured via immunohistochemistry and reverse transcription quantitative polymerase chain reaction (RT-qPCR). Results Compared with the model group, treatment with JPYQF increased the body weight of the rats, and relieved the gastric atrophy and inflammation. Compared with the control group, the protein and messenger RNA (mRNA) expression levels of gastric stem cell proliferation and differentiation markers Lgr5, Sox2, Ki67, PCNA, Muc5AC, and Wnt signaling initiator Wnt3A and enhancer R-spondin-1 (Rspo1) were decreased in the model group. Treatment with JPYQF increased the protein and mRNA expression levels of these markers. Conclusions The Wnt signaling of CAG rats may be in a low activation state, which inhibits the proliferation and differentiation of gastric stem cells, so that gland cells cannot be replenished in time to repair the damaged gastric mucosa. The TCM formula JPYQF could enhance Wnt signaling to promote the restricted proliferation and normal differentiation of gastric stem cells, thereby improving gastric mucosal atrophy in CAG rats, which provides a novel and robust theoretical basis for CAG treatment.
Collapse
Affiliation(s)
- Pei Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tingting Xu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhanpeng Yan
- Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Xue Zheng
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangshi Zhu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, China.,Department of Gastroenterology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,Clinical Research Department of Chinese and Western Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
12
|
Sheng YH, Hasnain SZ. Mucus and Mucins: The Underappreciated Host Defence System. Front Cell Infect Microbiol 2022; 12:856962. [PMID: 35774401 PMCID: PMC9238349 DOI: 10.3389/fcimb.2022.856962] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The mucosal surfaces that form the boundary between the external environment and the underlying tissue are protected by a mucus barrier. Mucin glycoproteins, both secreted and cell surface mucins, are the major components of the barrier. They can exclude pathogens and toxins while hosting the commensal bacteria. In this review, we highlight the dynamic function of the mucins and mucus during infection, how this mucosal barrier is regulated, and how pathogens have evolved mechanisms to evade this defence system.
Collapse
Affiliation(s)
- Yong Hua Sheng
- Immunopathology Group, Mater Research Institute−The University of Queensland, Translational Research Institute, Brisbane, Qld, Australia
| | - Sumaira Z. Hasnain
- Immunopathology Group, Mater Research Institute−The University of Queensland, Translational Research Institute, Brisbane, Qld, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld, Australia
- *Correspondence: Sumaira Z. Hasnain,
| |
Collapse
|
13
|
Liu X, Li T, Ma Z, Riederer B, Yuan D, Zhu J, Li Y, An J, Wen G, Jin H, Yang X, Seidler U, Tuo B. SLC26A9 deficiency causes gastric intraepithelial neoplasia in mice and aggressive gastric cancer in humans. Cell Oncol (Dordr) 2022; 45:381-398. [PMID: 35426084 PMCID: PMC9187568 DOI: 10.1007/s13402-022-00672-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Solute carrier family 26 member (SLC26A9) is a Cl- uniporter with very high expression levels in the gastric mucosa. Here, we describe morphological and molecular alterations in gastric mucosa of slc26a9-/- mice and in selective parietal cell-deleted slc26a9fl/fl/Atp4b-Cre mice and correlate SLC26A9 expression levels with morphological and clinical parameters in a cohort of gastric cancer (GC) patients. METHODS The expression patterns of genes related to transport and enzymatic function, proliferation, apoptosis, inflammation, barrier integrity, metaplasia and neoplasia development were studied by immunohistochemistry (IHC), quantitative RT-PCR, in situ hybridization and RNA microarray analysis. SLC26A9 expression and cellular/clinical phenotypes were studied in primary human GC tissues and GC cell lines. RESULTS We found that both complete and parietal cell-selective Slc26a9 deletion in mice caused spontaneous development of gastric premalignant and malignant lesions. Dysregulated differentiation of gastric stem cells in an inflammatory environment, activated Wnt signaling, cellular hyperproliferation, apoptosis inhibition and metaplasia were observed. Analysis of human gastric precancerous and cancerous tissues revealed that SLC26A9 expression progressively decreased from atrophic gastritis to GC, and that downregulation of SLC26A9 was correlated with patient survival. Exogenous expression of SLC26A9 in GC cells induced upregulation of the Cl-/HCO3- exchanger AE2, G2/M cell cycle arrest and apoptosis and suppressed their proliferation, migration and invasion. CONCLUSIONS Our data indicate that SLC26A9 deletion in parietal cells is sufficient to trigger gastric metaplasia and the development of neoplastic lesions. In addition, we found that SLC26A9 expression decreases during human gastric carcinogenesis, and that exogenous SLC26A9 expression in GC cells reduces their malignant behavior.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China.
| | - Taolang Li
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Brigitte Riederer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Dumin Yuan
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Jiaxing Zhu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Yunhua Li
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Jiaxing An
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Guorong Wen
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Hai Jin
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ursula Seidler
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Dalian Road 149, Zunyi, 563000, China.
| |
Collapse
|
14
|
Hoffmann W. Self-Renewal and Cancers of the Gastric Epithelium: An Update and the Role of the Lectin TFF1 as an Antral Tumor Suppressor. Int J Mol Sci 2022; 23:ijms23105377. [PMID: 35628183 PMCID: PMC9141172 DOI: 10.3390/ijms23105377] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
In 2020, gastric cancer was the fourth leading cause of cancer deaths globally. About 90% of gastric cancers are sporadic and the vast majority are correlated with Helicobacter pylori infection; whereas familial clustering is observed in about 10% of cases. Gastric cancer is now considered to be a disease originating from dysregulated self-renewal of the gastric glands in the setting of an inflammatory environment. The human stomach contains two types of gastric units, which show bi-directional self-renewal from a complex variety of stem cells. This review focuses on recent progress concerning the characterization of the different stem cell populations and the mainly mesenchymal signals triggering their stepwise differentiation as well as the genesis of pre-cancerous lesions and carcinogenesis. Furthermore, a model is presented (Lectin-triggered Receptor Blocking Hypothesis) explaining the role of the lectin TFF1 as an antral tumor suppressor possibly regulating Lgr5+ antral stem cells in a paracrine or maybe autocrine fashion, with neighboring antral gland cells having a role as niche cells.
Collapse
Affiliation(s)
- Werner Hoffmann
- Institute of Molecular Biology and Medicinal Chemistry, Otto-von-Guericke University Magdeburg, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
15
|
Syed ZA, Zhang L, Ten Hagen KG. In vivo models of mucin biosynthesis and function. Adv Drug Deliv Rev 2022; 184:114182. [PMID: 35278522 PMCID: PMC9068269 DOI: 10.1016/j.addr.2022.114182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
The secreted mucus layer that lines and protects epithelial cells is conserved across diverse species. While the exact composition of this protective layer varies between organisms, certain elements are conserved, including proteins that are heavily decorated with N-acetylgalactosamine-based sugars linked to serines or threonines (O-linked glycosylation). These heavily O-glycosylated proteins, known as mucins, exist in many forms and are able to form hydrated gel-like structures that coat epithelial surfaces. In vivo studies in diverse organisms have highlighted the importance of both the mucin proteins as well as their constituent O-glycans in the protection and health of internal epithelia. Here, we summarize in vivo approaches that have shed light on the synthesis and function of these essential components of mucus.
Collapse
Affiliation(s)
- Zulfeqhar A Syed
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Liping Zhang
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States.
| |
Collapse
|
16
|
Cho HY, Park S, Miller L, Lee HC, Langenbach R, Kleeberger SR. Role for Mucin-5AC in Upper and Lower Airway Pathogenesis in Mice. Toxicol Pathol 2021; 49:1077-1099. [PMID: 33938323 DOI: 10.1177/01926233211004433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mucin-5AC (MUC5AC) is a major secreted mucin in pathogenic airways. To determine its role in mucus-related airway disorders, Muc5ac-deficient (Muc5ac-/-) and wild-type (Muc5ac+/+) mice were compared in bleomycin-induced pulmonary fibrosis, respiratory syncytial virus (RSV) disease, and ozone toxicity. Significantly greater inflammation and fibrosis by bleomycin were developed in Muc5ac-/- lungs compared to Muc5ac+/+ lungs. More severe mucous cell metaplasia in fibrotic Muc5ac-/- lungs coincided with bronchial Muc2, Muc4, and Muc5b overexpression. Airway RSV replication was higher in Muc5ac-/- than in Muc5ac+/+ during early infection. RSV-caused pulmonary epithelial death, bronchial smooth muscle thickening, and syncytia formation were more severe in Muc5ac-/- compared to Muc5ac+/+. Nasal septal damage and subepithelial mucoserous gland enrichment by RSV were greater in Muc5ac-/- than in Muc5ac+/+. Ozone exposure developed more severe nasal airway injury accompanying submucosal gland hyperplasia and pulmonary proliferation in Muc5ac-/- than in Muc5ac+/+. Ozone caused periodic acid-Schiff-positive secretion only in Muc5ac-/- nasal airways. Lung E-cadherin level was relatively lower in Muc5ac-/- than in Muc5ac+/+ basally and after bleomycin, RSV, and ozone exposure. Results indicate that MUC5AC is an essential mucosal component in acute phase airway injury protection. Subepithelial gland hyperplasia and adaptive increase of other epithelial mucins may compensate airway defense in Muc5ac-/- mice.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Soojung Park
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Laura Miller
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Huei-Chen Lee
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Robert Langenbach
- Signal Transduction Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| | - Steven R Kleeberger
- Immunity, Inflammation and Disease Laboratory, 6857National Institute of Environmental Health Sciences, National Institutes of Health, NC, USA
| |
Collapse
|
17
|
Ratan C, Cicily K D D, Nair B, Nath LR. MUC Glycoproteins: Potential Biomarkers and Molecular Targets for Cancer Therapy. Curr Cancer Drug Targets 2021; 21:132-152. [PMID: 33200711 DOI: 10.2174/1568009620666201116113334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/02/2020] [Accepted: 10/04/2020] [Indexed: 02/08/2023]
Abstract
MUC proteins have great significance as prognostic and diagnostic markers as well as a potential target for therapeutic interventions in most cancers of glandular epithelial origin. These are high molecular weight glycosylated proteins located in the epithelial lining of several tissues and ducts. Mucins belong to a heterogeneous group of large O-glycoproteins that can be either secreted or membrane-bound. Glycosylation, a post-translational modification affects the biophysical, functional and biochemical properties and provides structural complexity for these proteins. Aberrant expression and glycosylation of mucins contribute to tumour survival and proliferation in many cancers, which in turn activates numerous signalling pathways such as NF-kB, ERα, HIF, MAPK, p53, c-Src, Wnt and JAK-STAT, etc. This subsequently induces cancer cell growth, proliferation and metastasis. The present review mainly demonstrates the functional aspects of MUC glycoproteins along with its unique signalling mechanism and role of aberrant glycosylation in cancer progression and therapeutics. The importance of MUC proteins and its subtypes in a wide spectrum of cancers including but not limited to breast cancer, colorectal cancer, endometrial and cervical cancer, lung cancer, primary liver cancer, pancreatic cancer, prostate cancer and ovarian cancer has been exemplified with significance in targeting the same. Several patents associated with the MUC proteins in the field of cancer therapy are also emphasized in the current review.
Collapse
Affiliation(s)
- Chameli Ratan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Dalia Cicily K D
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala 682041, India
| |
Collapse
|
18
|
Chen WQ, Yang XJ, Zhang JW. Progress in research of gastric spasmolytic polypeptide expressing metaplasia. Shijie Huaren Xiaohua Zazhi 2020; 28:254-259. [DOI: 10.11569/wcjd.v28.i7.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Spasmolytic polypeptide expressing metaplasia (SPEM) is a critical precursor of gastric precancerous lesions and can lead to dysplasia or neoplasia in the presence of continuous chronic inflammation. Current research on SPEM using mouse models implies that the immune dysfunction of the gastric mucosa triggered by Helicobacter pylori infection might result in the progression of SPEM to intestinal metaplasia and even gastric cancer. Therefore, elucidating the origin and mechanism of progression of SPEM can help avoid the occurrence of SPEM, prevent SPEM progressing to intestinal metaplasia, and reduce the incidence of gastric cancer. In this paper, we will review the progress in the research of SPEM over the recent 10 years.
Collapse
Affiliation(s)
- Wan-Qun Chen
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400037, China
| | - Xiao-Jun Yang
- Department of Gastroenterology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400037, China
| | - Jin-Wei Zhang
- Department of Dermatology and Cosmetology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400037, China
| |
Collapse
|