1
|
Chen Q, Wang L, Deng Z, Wang R, Wang L, Jian C, Zhu YM. Cooperative multi-task learning and interpretable image biomarkers for glioma grading and molecular subtyping. Med Image Anal 2025; 101:103435. [PMID: 39778265 DOI: 10.1016/j.media.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Deep learning methods have been widely used for various glioma predictions. However, they are usually task-specific, segmentation-dependent and lack of interpretable biomarkers. How to accurately predict the glioma histological grade and molecular subtypes at the same time and provide reliable imaging biomarkers is still challenging. To achieve this, we propose a novel cooperative multi-task learning network (CMTLNet) which consists of a task-common feature extraction (CFE) module, a task-specific unique feature extraction (UFE) module and a unique-common feature collaborative classification (UCFC) module. In CFE, a segmentation-free tumor feature perception (SFTFP) module is first designed to extract the tumor-aware features in a classification manner rather than a segmentation manner. Following that, based on the multi-scale tumor-aware features extracted by SFTFP module, CFE uses convolutional layers to further refine these features, from which the task-common features are learned. In UFE, based on orthogonal projection and conditional classification strategies, the task-specific unique features are extracted. In UCFC, the unique and common features are fused with an attention mechanism to make them adaptive to different glioma prediction tasks. Finally, deep features-guided interpretable radiomic biomarkers for each glioma prediction task are explored by combining SHAP values and correlation analysis. Through the comparisons with recent reported methods on a large multi-center dataset comprising over 1800 cases, we demonstrated the superiority of the proposed CMTLNet, with the mean Matthews correlation coefficient in validation and test sets improved by (4.1%, 10.7%), (3.6%, 23.4%), and (2.7%, 22.7%) respectively for glioma grading, 1p/19q and IDH status prediction tasks. In addition, we found that some radiomic features are highly related to uninterpretable deep features and that their variation trends are consistent in multi-center datasets, which can be taken as reliable imaging biomarkers for glioma diagnosis. The proposed CMTLNet provides an interpretable tool for glioma multi-task prediction, which is beneficial for glioma precise diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Qijian Chen
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Lihui Wang
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China.
| | - Zeyu Deng
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Rongpin Wang
- Radiology department, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Li Wang
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Caiqing Jian
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Yue-Min Zhu
- University Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR5220, U1206, Lyon 69621, France
| |
Collapse
|
2
|
Zhang W, Xie Y, Chen F, Xie B, Yin Z. Development and validation of a neutrophil extracellular traps-related gene signature for lower-grade gliomas. Comput Biol Med 2025; 188:109844. [PMID: 39978096 DOI: 10.1016/j.compbiomed.2025.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
There is growing evidence linking neutrophil extracellular traps (NETs) to tumor genesis, growth, distant metastasis, and tumor-related thrombosis. However, the roles of NETs-related genes (NETRGs) on LGG prognosis remain unclear. The purpose of this study was to integrate multiple machine learning techniques and experiment validation to develop a reliable NETs-based signature that opens up novel approaches for assessing the prognosis and treatment response of LGG patients. Consensus clustering, k-means clustering and Nonnegative Matrix Factorization was used for the TCGA-LGG dataset and identified two NETs-related subgroups. The prognostic hallmark and nomogram for LGG were developed, which consist of five differentially expressed NETRGs (FPR1, PTAFR, SLC11A1, ICAM1, LTF) based on nine analytic approaches. The ROC curves and calibration curves of our NETRGs signature and nomogram exhibited strong and robust prognosis prediction abilities in both the TCGA-LGG training set and CGGA-325, CGGA-693 validation sets. The prognosis for LGG individuals in the low-risk category was better. The TISCH was used to examine the five NETRGs at the single-cell level. Common immunological checkpoints were expressed at greater levels in high-risk individuals. LGG individuals in the low-risk category posses a higher likelihood of being sensitive to Carmustine and Vincristine, as indicated by the drug sensitivity analysis. The qRT-PCR experiment and immunohistochemistry images confirmed that the expression of FPR1, PTAFR, SLC11A1 and ICAM1 are higher in low-grade oligodendroglioma. The NETRGs signature and nomogram can accurately and conveniently predict the LGG patients' prognosis, which can facilitate individualized treatment and the improvement of prognosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Youlong Xie
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, 410129, China
| | - Biao Xie
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
3
|
Bilgin M, Bilgin SS, Akkurt BH, Heindel W, Mannil M, Musigmann M. Computed Tomography-Image-Based Glioma Grading Using Radiomics and Machine Learning: A Proof-of-Principle Study. Cancers (Basel) 2025; 17:322. [PMID: 39858104 PMCID: PMC11763433 DOI: 10.3390/cancers17020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES In recent years, numerous studies have been published on determining the WHO grade of central nervous system (CNS) tumors using machine learning algorithms. These studies are usually based on magnetic resonance imaging (MRI) and sometimes also on positron emission tomography (PET) images. To date, however, there are virtually no corresponding studies based on routinely generated computed tomography (CT) images. The aim of our proof-of-concept study is to investigate whether machine learning-based tumor diagnosis is also possible using CT images. METHODS We investigate the differentiability of histologically confirmed low-grade and high-grade gliomas. Three conventional machine learning algorithms and a neural net are tested. In addition, we analyze which of the common imaging methods (MRI or CT) appears to be best suited for the diagnostic question under investigation when machine learning algorithms are used. For this purpose, we compare our results based on CT images with numerous studies based on MRI scans. RESULTS Our best-performing model includes six features and is obtained using univariate analysis for feature preselection and a Naive Bayes approach for model construction. Using independent test data, this model yields a mean AUC of 0.903, a mean accuracy of 0.839, a mean sensitivity of 0.807 and a mean specificity of 0.864. CONCLUSIONS Our results demonstrate that low-grade and high-grade gliomas can be differentiated with high accuracy using machine learning algorithms, not only based on the usual MRI scans, but also based on CT images. In the future, such CT-image-based models can help to further accelerate brain tumor diagnostics and to reduce the number of necessary biopsies.
Collapse
|
4
|
Ikeda S, Sakata A, Arakawa Y, Mineharu Y, Makino Y, Takeuchi Y, Fushimi Y, Okuchi S, Nakajima S, Otani S, Nakamoto Y. Clinical and imaging characteristics of supratentorial glioma with IDH2 mutation. Neuroradiology 2024; 66:973-981. [PMID: 38653782 DOI: 10.1007/s00234-024-03361-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE The rarity of IDH2 mutations in supratentorial gliomas has led to gaps in understanding their radiological characteristics, potentially resulting in misdiagnosis based solely on negative IDH1 immunohistochemical staining. We aimed to investigate the clinical and imaging characteristics of IDH2-mutant gliomas. METHODS We analyzed imaging data from adult patients with pathologically confirmed diffuse lower-grade gliomas and known IDH1/2 alteration and 1p/19q codeletion statuses obtained from the records of our institute (January 2011 to August 2022, Cohort 1) and The Cancer Imaging Archive (TCIA, Cohort 2). Two radiologists evaluated clinical information and radiological findings using standardized methods. Furthermore, we compared the data for IDH2-mutant and IDH-wildtype gliomas. Multivariate logistic regression was used to identify the predictors of IDH2 mutation status, and receiver operating characteristic curve analysis was employed to assess the predictive performance of the model. RESULTS Of the 20 IDH2-mutant supratentorial gliomas, 95% were in the frontal lobes, with 75% classified as oligodendrogliomas. Age and the T2-FLAIR discordance were independent predictors of IDH2 mutations. Receiver operating characteristic curve analysis for the model using age and T2-FLAIR discordance demonstrated a strong potential for discriminating between IDH2-mutant and IDH-wildtype gliomas, with an area under the curve of 0.96 (95% CI, 0.91-0.98, P = .02). CONCLUSION A high frequency of oligodendrogliomas with 1p/19q codeletion was observed in IDH2-mutated gliomas. Younger age and the presence of the T2-FLAIR discordance were associated with IDH2 mutations and these findings may help with precise diagnoses and treatment decisions in clinical practice.
Collapse
Affiliation(s)
- Satoshi Ikeda
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yohei Mineharu
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasuhide Makino
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasuhide Takeuchi
- Department of Diagnostic Pathology, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Satoshi Nakajima
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Sayo Otani
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| |
Collapse
|
5
|
Richter V, Ernemann U, Bender B. Novel Imaging Approaches for Glioma Classification in the Era of the World Health Organization 2021 Update: A Scoping Review. Cancers (Basel) 2024; 16:1792. [PMID: 38791871 PMCID: PMC11119220 DOI: 10.3390/cancers16101792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
The 2021 WHO classification of CNS tumors is a challenge for neuroradiologists due to the central role of the molecular profile of tumors. The potential of novel data analysis tools in neuroimaging must be harnessed to maintain its role in predicting tumor subgroups. We performed a scoping review to determine current evidence and research gaps. A comprehensive literature search was conducted regarding glioma subgroups according to the 2021 WHO classification and the use of MRI, radiomics, machine learning, and deep learning algorithms. Sixty-two original articles were included and analyzed by extracting data on the study design and results. Only 8% of the studies included pediatric patients. Low-grade gliomas and diffuse midline gliomas were represented in one-third of the research papers. Public datasets were utilized in 22% of the studies. Conventional imaging sequences prevailed; data on functional MRI (DWI, PWI, CEST, etc.) are underrepresented. Multiparametric MRI yielded the best prediction results. IDH mutation and 1p/19q codeletion status prediction remain in focus with limited data on other molecular subgroups. Reported AUC values range from 0.6 to 0.98. Studies designed to assess generalizability are scarce. Performance is worse for smaller subgroups (e.g., 1p/19q codeleted or IDH1/2 mutated gliomas). More high-quality study designs with diversity in the analyzed population and techniques are needed.
Collapse
Affiliation(s)
- Vivien Richter
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, 72076 Tübingen, Germany; (U.E.); (B.B.)
| | | | | |
Collapse
|
6
|
Rai HM, Yoo J, Dashkevych S. Two-headed UNetEfficientNets for parallel execution of segmentation and classification of brain tumors: incorporating postprocessing techniques with connected component labelling. J Cancer Res Clin Oncol 2024; 150:220. [PMID: 38684578 PMCID: PMC11058623 DOI: 10.1007/s00432-024-05718-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 03/21/2024] [Indexed: 05/02/2024]
Abstract
PURPOSE The purpose of this study is to develop accurate and automated detection and segmentation methods for brain tumors, given their significant fatality rates, with aggressive malignant tumors like Glioblastoma Multiforme (GBM) having a five-year survival rate as low as 5 to 10%. This underscores the urgent need to improve diagnosis and treatment outcomes through innovative approaches in medical imaging and deep learning techniques. METHODS In this work, we propose a novel approach utilizing the two-headed UNetEfficientNets model for simultaneous segmentation and classification of brain tumors from Magnetic Resonance Imaging (MRI) images. The model combines the strengths of EfficientNets and a modified two-headed Unet model. We utilized a publicly available dataset consisting of 3064 brain MR images classified into three tumor classes: Meningioma, Glioma, and Pituitary. To enhance the training process, we performed 12 types of data augmentation on the training dataset. We evaluated the methodology using six deep learning models, ranging from UNetEfficientNet-B0 to UNetEfficientNet-B5, optimizing the segmentation and classification heads using binary cross entropy (BCE) loss with Dice and BCE with focal loss, respectively. Post-processing techniques such as connected component labeling (CCL) and ensemble models were applied to improve segmentation outcomes. RESULTS The proposed UNetEfficientNet-B4 model achieved outstanding results, with an accuracy of 99.4% after postprocessing. Additionally, it obtained high scores for DICE (94.03%), precision (98.67%), and recall (99.00%) after post-processing. The ensemble technique further improved segmentation performance, with a global DICE score of 95.70% and Jaccard index of 91.20%. CONCLUSION Our study demonstrates the high efficiency and accuracy of the proposed UNetEfficientNet-B4 model in the automatic and parallel detection and segmentation of brain tumors from MRI images. This approach holds promise for improving diagnosis and treatment planning for patients with brain tumors, potentially leading to better outcomes and prognosis.
Collapse
Affiliation(s)
- Hari Mohan Rai
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam-Si, 13120, Gyeonggi-Do, Republic of Korea.
| | - Joon Yoo
- School of Computing, Gachon University, 1342 Seongnam-daero, Sujeong-Gu, Seongnam-Si, 13120, Gyeonggi-Do, Republic of Korea
| | - Serhii Dashkevych
- Department of Computer Engineering, Vistula University, Stokłosy 3, 02-787, Warszawa, Poland
| |
Collapse
|
7
|
Khalighi S, Reddy K, Midya A, Pandav KB, Madabhushi A, Abedalthagafi M. Artificial intelligence in neuro-oncology: advances and challenges in brain tumor diagnosis, prognosis, and precision treatment. NPJ Precis Oncol 2024; 8:80. [PMID: 38553633 PMCID: PMC10980741 DOI: 10.1038/s41698-024-00575-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
This review delves into the most recent advancements in applying artificial intelligence (AI) within neuro-oncology, specifically emphasizing work on gliomas, a class of brain tumors that represent a significant global health issue. AI has brought transformative innovations to brain tumor management, utilizing imaging, histopathological, and genomic tools for efficient detection, categorization, outcome prediction, and treatment planning. Assessing its influence across all facets of malignant brain tumor management- diagnosis, prognosis, and therapy- AI models outperform human evaluations in terms of accuracy and specificity. Their ability to discern molecular aspects from imaging may reduce reliance on invasive diagnostics and may accelerate the time to molecular diagnoses. The review covers AI techniques, from classical machine learning to deep learning, highlighting current applications and challenges. Promising directions for future research include multimodal data integration, generative AI, large medical language models, precise tumor delineation and characterization, and addressing racial and gender disparities. Adaptive personalized treatment strategies are also emphasized for optimizing clinical outcomes. Ethical, legal, and social implications are discussed, advocating for transparency and fairness in AI integration for neuro-oncology and providing a holistic understanding of its transformative impact on patient care.
Collapse
Affiliation(s)
- Sirvan Khalighi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Kartik Reddy
- Department of Radiology, Emory University, Atlanta, GA, USA
| | - Abhishek Midya
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Krunal Balvantbhai Pandav
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Anant Madabhushi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Atlanta Veterans Administration Medical Center, Atlanta, GA, USA.
| | - Malak Abedalthagafi
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA.
- The Cell and Molecular Biology Program, Winship Cancer Institute, Atlanta, GA, USA.
| |
Collapse
|
8
|
Zhang L, Wang R, Gao J, Tang Y, Xu X, Kan Y, Cao X, Wen Z, Liu Z, Cui S, Li Y. A novel MRI-based deep learning networks combined with attention mechanism for predicting CDKN2A/B homozygous deletion status in IDH-mutant astrocytoma. Eur Radiol 2024; 34:391-399. [PMID: 37553486 DOI: 10.1007/s00330-023-09944-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 08/10/2023]
Abstract
OBJECTIVES To develop a high-accuracy MRI-based deep learning method for predicting cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) homozygous deletion status in isocitrate dehydrogenase (IDH)-mutant astrocytoma. METHODS Multiparametric brain MRI data and corresponding genomic information of 234 subjects (111 positives for CDKN2A/B homozygous deletion and 123 negatives for CDKN2A/B homozygous deletion) were obtained from The Cancer Imaging Archive (TCIA) and The Cancer Genome Atlas (TCGA) respectively. Two independent multi-sequence networks (ResFN-Net and FN-Net) are built on the basis of ResNet and ConvNeXt network combined with attention mechanism to classify CDKN2A/B homozygous deletion status using MR images including contrast-enhanced T1-weighted imaging (CE-T1WI) and T2-weighted imaging (T2WI). The performance of the network is summarized by three-way cross-validation; ROC analysis is also performed. RESULTS The average cross-validation accuracy (ACC) of ResFN-Net is 0.813. The average cross-validation area under curve (AUC) of ResFN-Net is 0.8804. The average cross-validation ACC and AUC of FN-Net is 0.9236 and 0.9704, respectively. Comparing all sequence combinations of the two networks (ResFN-Net and FN-Net), the sequence combination of CE-T1WI and T2WI performed the best, and the ACC and AUC were 0.8244, 0.8975 and 0.8971, 0.9574, respectively. CONCLUSIONS The FN-Net deep learning networks based on ConvNeXt network achieved promising performance for predicting CDKN2A/B homozygous deletion status of IDH-mutant astrocytoma. CLINICAL RELEVANCE STATEMENT A novel deep learning network (FN-Net) based on preoperative MRI was developed to predict the CDKN2A/B homozygous deletion status. This network has the potential to be a practical tool for the noninvasive characterization of CDKN2A/B in glioma to support personalized classification and treatment planning. KEY POINTS • CDKN2A/B homozygous deletion status is an important marker for glioma grading and prognosis. • An MRI-based deep learning approach was developed to predict CDKN2A/B homozygous deletion status. • The predictive performance based on ConvNeXt network was better than that of ResNet network.
Collapse
Affiliation(s)
- Liqiang Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Rui Wang
- School of Computer Science and Engineering, Chongqing Normal University, Chongqing, 401331, China
| | - Jueni Gao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yi Tang
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
| | - Xinyi Xu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yubo Kan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Xu Cao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Zhipeng Wen
- Department of Radiology, School of Medicine, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, 610042, China
| | - Zhi Liu
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| | - Shaoguo Cui
- School of Computer Science and Engineering, Chongqing Normal University, Chongqing, 401331, China.
| | - Yongmei Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Zhang S, Yin L, Ma L, Sun H. Artificial Intelligence Applications in Glioma With 1p/19q Co-Deletion: A Systematic Review. J Magn Reson Imaging 2023; 58:1338-1352. [PMID: 37083159 DOI: 10.1002/jmri.28737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/02/2023] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
As an important genomic marker for oligodendrogliomas, early determination of 1p/19q co-deletion status is critical for guiding therapy and predicting prognosis in patients with glioma. The purpose of this study is to systematically review the literature concerning the magnetic resonance imaging (MRI) with artificial intelligence (AI) methods for predicting 1p/19q co-deletion status in glioma. PubMed, Scopus, Embase, and IEEE Xplore were searched in accordance with the Preferred Reporting Items for systematic reviews and meta-analyses guidelines. Methodological quality of studies was assessed according to the Quality Assessment of Diagnostic Accuracy Studies-2. Finally, 28 studies were included in the quantitative analysis. Diagnostic test accuracy reached an area under the ROC curve of 0.71-0.98 were reported in 24 studies. The remaining four studies with no available AUC provided an accuracy of 0.75-0. 89. The included studies varied widely in terms of imaging sequences, input features, and modeling methods. The current review highlighted that integrating MRI with AI technology is a potential tool for determination 1p/19q status pre-operatively and noninvasively, which can possibly help clinical decision-making. However, the reliability and feasibility of this approach still need to be further validated and improved in a real clinical setting. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: 2.
Collapse
Affiliation(s)
- Simin Zhang
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lijuan Yin
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China
| | - Huaiqiang Sun
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Liu Z, Hong X, Wang L, Ma Z, Guan F, Wang W, Qiu Y, Zhang X, Duan W, Wang M, Sun C, Zhao Y, Duan J, Sun Q, Liu L, Ding L, Ji Y, Yan D, Liu X, Cheng J, Zhang Z, Li ZC, Yan J. Radiomic features from multiparametric magnetic resonance imaging predict molecular subgroups of pediatric low-grade gliomas. BMC Cancer 2023; 23:848. [PMID: 37697238 PMCID: PMC10496393 DOI: 10.1186/s12885-023-11338-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND We aimed to develop machine learning models for prediction of molecular subgroups (low-risk group and intermediate/high-risk group) and molecular marker (KIAA1549-BRAF fusion) of pediatric low-grade gliomas (PLGGs) based on radiomic features extracted from multiparametric MRI. METHODS 61 patients with PLGGs were included in this retrospective study, which were divided into a training set and an internal validation set at a ratio of 2:1 based on the molecular subgroups or the molecular marker. The patients were classified into low-risk and intermediate/high-risk groups, BRAF fusion positive and negative groups, respectively. We extracted 5929 radiomic features from multiparametric MRI. Thereafter, we removed redundant features, trained random forest models on the training set for predicting the molecular subgroups or the molecular marker, and validated their performance on the internal validation set. The performance of the prediction model was verified by 3-fold cross-validation. RESULTS We constructed the classification model differentiating low-risk PLGGs from intermediate/high-risk PLGGs using 4 relevant features, with an AUC of 0.833 and an accuracy of 76.2% in the internal validation set. In the prediction model for predicting KIAA1549-BRAF fusion using 4 relevant features, an AUC of 0.818 and an accuracy of 81.0% were achieved in the internal validation set. CONCLUSIONS The current study demonstrates that MRI radiomics is able to predict molecular subgroups of PLGGs and KIAA1549-BRAF fusion with satisfying sensitivity. TRIAL REGISTRATION This study was retrospectively registered at clinicaltrials.gov (NCT04217018).
Collapse
Grants
- 2019YFC0117704 the National Key R&D Program of China
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 202102310136, 202102310138, 202102310113, 202102310083 the Science and Technology Program of Henan Province
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 82102149, U20A20171, 61901458, 61571432, 81702465, 8217111948, U1804172, U1904148 the National Natural Science Foundation of China
- 2021B0101420006 the Key-Area Research and Development Program of Guangdong Province
- YXKC2022061 the Excellent Youth Talent Cultivation Program of Innovation in Health Science and Technology of Henan Province
- SBGJ202002062 the Key Program of Medical Science and Technique Foundation of Henan Province
- the National Key R&D Program of China
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xuanke Hong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Linglong Wang
- Yanjing Medical College of Capital Medical University, Beijing, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Fangzhan Guan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xueping Zhang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Chen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Yuanshen Zhao
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingxian Duan
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lin Liu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Lei Ding
- China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Yuchen Ji
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China.
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Shenzhen United Imaging Research Institute of Innovative Medical Equipment, Shenzhen, 518045, China.
| | - Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Jian she Dong Road 1, Zhengzhou, 450052, Henan province, China.
| |
Collapse
|
11
|
Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol 2023; 91:110-123. [PMID: 36907387 DOI: 10.1016/j.semcancer.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Glioma represents a dominant primary intracranial malignancy in the central nervous system. Artificial intelligence that mainly includes machine learning, and deep learning computational approaches, presents a unique opportunity to enhance clinical management of glioma through improving tumor segmentation, diagnosis, differentiation, grading, treatment, prediction of clinical outcomes (prognosis, and recurrence), molecular features, clinical classification, characterization of the tumor microenvironment, and drug discovery. A growing body of recent studies apply artificial intelligence-based models to disparate data sources of glioma, covering imaging modalities, digital pathology, high-throughput multi-omics data (especially emerging single-cell RNA sequencing and spatial transcriptome), etc. While these early findings are promising, future studies are required to normalize artificial intelligence-based models to improve the generalizability and interpretability of the results. Despite prominent issues, targeted clinical application of artificial intelligence approaches in glioma will facilitate the development of precision medicine of this field. If these challenges can be overcome, artificial intelligence has the potential to profoundly change the way patients with or at risk of glioma are provided with more rational care.
Collapse
Affiliation(s)
- Jiefeng Luo
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Mika Pan
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Ke Mo
- Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Donghua Zou
- Department of Neurology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China; Clinical Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi, China.
| |
Collapse
|
12
|
Swin Transformer Improves the IDH Mutation Status Prediction of Gliomas Free of MRI-Based Tumor Segmentation. J Clin Med 2022; 11:jcm11154625. [PMID: 35956236 PMCID: PMC9369996 DOI: 10.3390/jcm11154625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Deep learning (DL) could predict isocitrate dehydrogenase (IDH) mutation status from MRIs. Yet, previous work focused on CNNs with refined tumor segmentation. To bridge the gap, this study aimed to evaluate the feasibility of developing a Transformer-based network to predict the IDH mutation status free of refined tumor segmentation. Methods: A total of 493 glioma patients were recruited from two independent institutions for model development (TCIA; N = 259) and external test (AHXZ; N = 234). IDH mutation status was predicted directly from T2 images with a Swin Transformer and conventional ResNet. Furthermore, to investigate the necessity of refined tumor segmentation, seven strategies for the model input image were explored: (i) whole tumor slice; (ii-iii) tumor mask and/or not edema; (iv-vii) tumor bounding box of 0.8, 1.0, 1.2, 1.5 times. Performance comparison was made among the networks of different architectures along with different image input strategies, using area under the curve (AUC) and accuracy (ACC). Finally, to further boost the performance, a hybrid model was built by incorporating the images with clinical features. Results: With the seven proposed input strategies, seven Swin Transformer models and seven ResNet models were built, respectively. Based on the seven Swin Transformer models, an averaged AUC of 0.965 (internal test) and 0.842 (external test) were achieved, outperforming 0.922 and 0.805 resulting from the seven ResNet models, respectively. When a bounding box of 1.0 times was used, Swin Transformer (AUC = 0.868, ACC = 80.7%), achieved the best results against the one that used tumor segmentation (Tumor + Edema, AUC = 0.862, ACC = 78.5%). The hybrid model that integrated age and location features into images yielded improved performance (AUC = 0.878, Accuracy = 82.0%) over the model that used images only. Conclusions: Swin Transformer outperforms the CNN-based ResNet in IDH prediction. Using bounding box input images benefits the DL networks in IDH prediction and makes the IDH prediction free of refined glioma segmentation feasible.
Collapse
|