1
|
Fan J, Li Z, Pei L, Hou Y. Post-transcriptional regulation of DEAD-box RNA helicases in hematopoietic malignancies. Genes Dis 2024; 11:101252. [PMID: 38993792 PMCID: PMC11237855 DOI: 10.1016/j.gendis.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 07/13/2024] Open
Abstract
Hematopoiesis represents a meticulously regulated and dynamic biological process. Genetic aberrations affecting blood cells, induced by various factors, frequently give rise to hematological tumors. These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events, including RNA alternative splicing, RNA localization, RNA degradation, and storage. Notably, post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis. The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors, intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing, RNA modification, and ribosome assembly. This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEAD-Box RNA helicases in malignant hematopoiesis. Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.
Collapse
Affiliation(s)
- Jiankun Fan
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Zhigang Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Li Pei
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yu Hou
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
2
|
Shi W, Tang J, Xiang J. Therapeutic strategies for aberrant splicing in cancer and genetic disorders. Clin Genet 2024; 105:345-354. [PMID: 38165092 DOI: 10.1111/cge.14478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Accurate pre-mRNA splicing is essential for proper protein translation; however, aberrant splicing is commonly observed in the context of cancer and genetic disorders. Notably, in genetic diseases, these splicing abnormalities often play a pivotal role. Substantial challenges persist in accurately identifying and classifying disease-induced aberrant splicing, as well as in development of targeted therapeutic strategies. In this review, we examine prevalent forms of aberrant splicing and explore potential therapeutic approaches aimed at addressing these splicing-related diseases. This summary contributes to a deeper understanding of the complexities about aberrant splicing and provide a foundation for the development of effective therapeutic interventions in the field of genetic disorders and cancer.
Collapse
Affiliation(s)
- Wenhua Shi
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
3
|
De Kesel J, Fijalkowski I, Taylor J, Ntziachristos P. Splicing dysregulation in human hematologic malignancies: beyond splicing mutations. Trends Immunol 2022; 43:674-686. [PMID: 35850914 DOI: 10.1016/j.it.2022.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Splicing is a fundamental process in pre-mRNA maturation. Whereas alternative splicing (AS) enriches the diversity of the proteome, its aberrant regulation can drive oncogenesis. So far, most attention has been given to spliceosome mutations (SMs) in the context of splicing dysregulation in hematologic diseases. However, in recent years, post-translational modifications (PTMs) and transcriptional alterations of splicing factors (SFs), just as epigenetic signatures, have all been shown to contribute to global splicing dysregulation as well. In addition, the contribution of aberrant splicing to the neoantigen repertoire of cancers has been recognized. With the pressing need for novel therapeutics to combat blood cancers, this article provides an overview of emerging mechanisms that contribute to aberrant splicing, as well as their clinical potential.
Collapse
Affiliation(s)
- Jonas De Kesel
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Igor Fijalkowski
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Justin Taylor
- Division of Hematology, Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Panagiotis Ntziachristos
- Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium; Center for Medical Genetics Ghent, Ghent University and Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
4
|
Chen M, Zhu R, Zhang F, Zhu L. Screening and Identification of Survival-Associated Splicing Factors in Lung Squamous Cell Carcinoma. Front Genet 2022; 12:803606. [PMID: 35126467 PMCID: PMC8811261 DOI: 10.3389/fgene.2021.803606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Lung squamous cell carcinoma (LUSC) is a disease with high morbidity and mortality. Many studies have shown that aberrant alternative splicing (AS) can lead to tumorigenesis, and splicing factors (SFs) serve as an important function during AS. In this research, we propose an analysis method based on synergy to screen key factors that regulate the initiation and progression of LUSC. We first screened alternative splicing events (ASEs) associated with survival in LUSC patients by bivariate Cox regression analysis. Then an association network consisting of OS-ASEs, SFs, and their targeting relationship was constructed to identify key SFs. Finally, 10 key SFs were selected in terms of degree centrality. The validation on TCGA and cross-platform GEO datasets showed that some SFs were significantly differentially expressed in cancer and paracancer tissues, and some of them were associated with prognosis, indicating that our method is valid and accurate. It is expected that our method would be applied to a wide range of research fields and provide new insights in the future.
Collapse
Affiliation(s)
- Min Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fangzhou Zhang
- School of Materials Science and Engineering, Institute of Materials, Shanghai University, Shanghai, China
- Shaoxing Institute of Technology, Shanghai University, Shanghai, China
- *Correspondence: Fangzhou Zhang , ; Liucun Zhu ,
| | - Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
- *Correspondence: Fangzhou Zhang , ; Liucun Zhu ,
| |
Collapse
|
5
|
Alharbi AB, Schmitz U, Bailey CG, Rasko JEJ. CTCF as a regulator of alternative splicing: new tricks for an old player. Nucleic Acids Res 2021; 49:7825-7838. [PMID: 34181707 PMCID: PMC8373115 DOI: 10.1093/nar/gkab520] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
Three decades of research have established the CCCTC-binding factor (CTCF) as a ubiquitously expressed chromatin organizing factor and master regulator of gene expression. A new role for CTCF as a regulator of alternative splicing (AS) has now emerged. CTCF has been directly and indirectly linked to the modulation of AS at the individual transcript and at the transcriptome-wide level. The emerging role of CTCF-mediated regulation of AS involves diverse mechanisms; including transcriptional elongation, DNA methylation, chromatin architecture, histone modifications, and regulation of splicing factor expression and assembly. CTCF thereby appears to not only co-ordinate gene expression regulation but contributes to the modulation of transcriptomic complexity. In this review, we highlight previous discoveries regarding the role of CTCF in AS. In addition, we summarize detailed mechanisms by which CTCF mediates AS regulation. We propose opportunities for further research designed to examine the possible fate of CTCF-mediated alternatively spliced genes and associated biological consequences. CTCF has been widely acknowledged as the 'master weaver of the genome'. Given its multiple connections, further characterization of CTCF's emerging role in splicing regulation might extend its functional repertoire towards a 'conductor of the splicing orchestra'.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cancer & Gene Regulation Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E J Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, NSW 2006, Australia
- Cell & Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| |
Collapse
|
6
|
Batsché E, Yi J, Mauger O, Kornobis E, Hopkins B, Hanmer-Lloyd C, Muchardt C. CD44 alternative splicing senses intragenic DNA methylation in tumors via direct and indirect mechanisms. Nucleic Acids Res 2021; 49:6213-6237. [PMID: 34086943 PMCID: PMC8216461 DOI: 10.1093/nar/gkab437] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023] Open
Abstract
DNA methylation (meDNA) is a modulator of alternative splicing, and splicing perturbations are involved in tumorigenesis nearly as frequently as DNA mutations. However, the impact of meDNA on tumorigenesis via splicing-mediated mechanisms has not been thoroughly explored. Here, we found that HCT116 colon carcinoma cells inactivated for the DNA methylases DNMT1/3b undergo a partial epithelial to mesenchymal transition associated with increased CD44 variant exon skipping. These skipping events are directly mediated by the loss of intragenic meDNA and the chromatin factors MBD1/2/3 and HP1γ and are also linked to phosphorylation changes in elongating RNA polymerase II. The role of meDNA in alternative splicing was confirmed by using the dCas9/DNMT3b tool. We further tested whether the meDNA level could have predictive value in the MCF10A model for breast cancer progression and in patients with acute lymphoblastic leukemia (B ALL). We found that a small number of differentially spliced genes, mostly involved in splicing and signal transduction, are correlated with the local modulation of meDNA. Our observations suggest that, although DNA methylation has multiple avenues to affect alternative splicing, its indirect effect may also be mediated through alternative splicing isoforms of these meDNA sensors.
Collapse
Affiliation(s)
- Eric Batsché
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Jia Yi
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Oriane Mauger
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Ecole Doctorale Complexite du Vivant (ED515), Sorbonne Université, Paris, France
| | - Etienne Kornobis
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| | - Benjamin Hopkins
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Charlotte Hanmer-Lloyd
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
- Keele University, Keele, Staffordshire ST5 5BG UK
| | - Christian Muchardt
- Epigenetics and RNA metabolism in human diseases. CNRS UMR8256 - Biological Adaptation and Ageing. Institut de Biologie Paris-Seine. Sciences Sorbonne Université. 7–9 Quai Saint Bernard, 75005 Paris, France
- Unité de Régulation Epigénétique, Institut Pasteur, Paris, France
- UMR3738, CNRS, Paris, France
| |
Collapse
|
7
|
Han P, Zhu J, Feng G, Wang Z, Ding Y. Characterization of alternative splicing events and prognostic signatures in breast cancer. BMC Cancer 2021; 21:587. [PMID: 34022836 PMCID: PMC8141138 DOI: 10.1186/s12885-021-08305-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/05/2021] [Indexed: 12/22/2022] Open
Abstract
Background Breast cancer (BRCA) is one of the most common cancers worldwide. Abnormal alternative splicing (AS) frequently observed in cancers. This study aims to demonstrate AS events and signatures that might serve as prognostic indicators for BRCA. Methods Original data for all seven types of splice events were obtained from TCGA SpliceSeq database. RNA-seq and clinical data of BRCA cohorts were downloaded from TCGA database. Survival-associated AS events in BRCA were analyzed by univariate COX proportional hazards regression model. Prognostic signatures were constructed for prognosis prediction in patients with BRCA based on survival-associated AS events. Pearson correlation analysis was performed to measure the correlation between the expression of splicing factors (SFs) and the percent spliced in (PSI) values of AS events. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted to demonstrate pathways in which survival-associated AS event is enriched. Results A total of 45,421 AS events in 21,232 genes were identified. Among them, 1121 AS events in 931 genes significantly correlated with survival for BRCA. The established AS prognostic signatures of seven types could accurately predict BRCA prognosis. The comprehensive AS signature could serve as independent prognostic factor for BRCA. A SF-AS regulatory network was therefore established based on the correlation between the expression levels of SFs and PSI values of AS events. Conclusions This study revealed survival-associated AS events and signatures that may help predict the survival outcomes of patients with BRCA. Additionally, the constructed SF-AS networks in BRCA can reveal the underlying regulatory mechanisms in BRCA. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08305-6.
Collapse
Affiliation(s)
- Pihua Han
- Breast Disease Center, Shaanxi Provincial Cancer Hospital, Xi'an City, 710000, Shaan Xi Province, China
| | - Jingjun Zhu
- Department of Breast Surgery, Baotou Tumor Hospital, Inner Mongolia Autonomous Region, Baotou, 014030, China
| | - Guang Feng
- The Third Department of Burns and Plastic Surgery and Center of Wound Repair, the Fourth Medical Center of PLA General Hospital, Beijing, 100048, China
| | - Zizhang Wang
- Department of Head and Neck Surgery, Shaanxi Provincial Cancer Hospital, Xi'an City, 710000, Shaan Xi Province, China
| | - Yanni Ding
- Breast Disease Center, Shaanxi Provincial Cancer Hospital, Xi'an City, 710000, Shaan Xi Province, China.
| |
Collapse
|
8
|
Schmitz U, Monteuuis G, Petrova V, Shah JS, Rasko JE. Computational Methods for Intron Retention Identification and Quantification. SYSTEMS MEDICINE 2021. [DOI: 10.1016/b978-0-12-801238-3.11567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
9
|
Schmitz U, Shah JS, Dhungel BP, Monteuuis G, Luu PL, Petrova V, Metierre C, Nair SS, Bailey CG, Saunders VA, Turhan AG, White DL, Branford S, Clark SJ, Hughes TP, Wong JJL, Rasko JE. Widespread Aberrant Alternative Splicing despite Molecular Remission in Chronic Myeloid Leukaemia Patients. Cancers (Basel) 2020; 12:cancers12123738. [PMID: 33322625 PMCID: PMC7764299 DOI: 10.3390/cancers12123738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary This study provides new insights into the changing transcriptomic and epigenomic landscapes in chronic myeloid leukaemia (CML) patients who are receiving tyrosine kinase inhibitor (TKI) therapy (often life-long). Alternative splicing, vital for cellular homeostasis, is dysregulated in human cancers. Remarkably, we found abnormal splicing patterns despite molecular remission in peripheral blood cells of chronic-phase CML patients. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Abstract Vast transcriptomics and epigenomics changes are characteristic of human cancers, including leukaemia. At remission, we assume that these changes normalise so that omics-profiles resemble those of healthy individuals. However, an in-depth transcriptomic and epigenomic analysis of cancer remission has not been undertaken. A striking exemplar of targeted remission induction occurs in chronic myeloid leukaemia (CML) following tyrosine kinase inhibitor (TKI) therapy. Using RNA sequencing and whole-genome bisulfite sequencing, we profiled samples from chronic-phase CML patients at diagnosis and remission and compared these to healthy donors. Remarkably, our analyses revealed that abnormal splicing distinguishes remission samples from normal controls. This phenomenon is independent of the TKI drug used and in striking contrast to the normalisation of gene expression and DNA methylation patterns. Most remarkable are the high intron retention (IR) levels that even exceed those observed in the diagnosis samples. Increased IR affects cell cycle regulators at diagnosis and splicing regulators at remission. We show that aberrant splicing in CML is associated with reduced expression of specific splicing factors, histone modifications and reduced DNA methylation. Our results provide novel insights into the changing transcriptomic and epigenomic landscapes of CML patients during remission. The conceptually unanticipated observation of widespread aberrant alternative splicing after remission induction warrants further exploration. These results have broad implications for studying CML relapse and treating minimal residual disease.
Collapse
Affiliation(s)
- Ulf Schmitz
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (U.S.); (V.P.)
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (J.S.S.); (B.P.D.); (G.M.); (C.M.); (C.G.B.)
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Jaynish S. Shah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (J.S.S.); (B.P.D.); (G.M.); (C.M.); (C.G.B.)
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (J.S.S.); (B.P.D.); (G.M.); (C.M.); (C.G.B.)
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Geoffray Monteuuis
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (J.S.S.); (B.P.D.); (G.M.); (C.M.); (C.G.B.)
| | - Phuc-Loi Luu
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (P.-L.L.); (S.J.C.)
| | - Veronika Petrova
- Computational BioMedicine Laboratory Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (U.S.); (V.P.)
| | - Cynthia Metierre
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (J.S.S.); (B.P.D.); (G.M.); (C.M.); (C.G.B.)
| | - Shalima S. Nair
- Kinghorn Centre for Clinical Genomics Core Facility, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Charles G. Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (J.S.S.); (B.P.D.); (G.M.); (C.M.); (C.G.B.)
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Verity A. Saunders
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 50000, Australia; (V.A.S.); (D.L.W.)
| | - Ali G. Turhan
- APHP, Division of Hematology, Paris Sud University Hospitals and Inserm U935 INGESTEM Pluripotent Stem Cell Infrastructure 78 Rue du Général Leclerc, 94275 Le Kremlin Bicetre, France;
| | - Deborah L. White
- Cancer Program, Precision Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA 50000, Australia; (V.A.S.); (D.L.W.)
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; (S.B.); (T.P.H.)
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Susan Branford
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; (S.B.); (T.P.H.)
- School of Biological Sciences, Faculty of Sciences, University of Adelaide, Adelaide, SA 5000, Australia
- Department of Genetics and Molecular Pathology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
| | - Susan J. Clark
- Epigenetics Research Laboratory, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; (P.-L.L.); (S.J.C.)
- St Vincent’s Clinical School, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Timothy P. Hughes
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia; (S.B.); (T.P.H.)
- Australasian Leukaemia and Lymphoma Group, Richmond, VIC 3121, Australia
- School of Pharmacy and Medical Science, Division of Health Sciences, University of South Australia, Adelaide, SA 5000, Australia
- Department of Haematology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5001, Australia
| | - Justin J.-L. Wong
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
| | - John E.J. Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia; (J.S.S.); (B.P.D.); (G.M.); (C.M.); (C.G.B.)
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia;
- Cell and Molecular Therapies, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
- Correspondence: ; Tel.: +61-2-9565-6160
| |
Collapse
|
10
|
Xu L, Pan J, Ding Y, Pan H. Survival-Associated Alternative Splicing Events and Prognostic Signatures in Pancreatic Cancer. Front Genet 2020; 11:522383. [PMID: 33193606 PMCID: PMC7554623 DOI: 10.3389/fgene.2020.522383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 09/14/2020] [Indexed: 12/27/2022] Open
Abstract
Background Alternative splicing (AS) is reported to be related to the biological process of multiple malignancies. This study is conducted to identify survival-associated AS events and prognostic signatures that may serve as prognostic indicators for pancreatic cancer (PC). Methods Univariate Cox analysis was used to determine the survival-associated AS events in PC. Prognostic signatures were constructed by LASSO Cox analysis based on seven types of survival-associated AS events. The correlation between the expression of splicing factors (SFs) and the percent spliced in values of AS events was analyzed by Pearson correlation analysis. Risk scores were calculated to determine high- or low-risk patients with different types of AS events. Gene functional annotation analysis was performed to reveal pathways in which prognostic AS is enriched. Results A total of 45,313 AS events in 10,624 genes were observed, and there were 1,565 AS events in 1,223 genes significantly correlated with overall survival for PC. Kaplan–Meier analysis, receiver-operator characteristic curve, univariate and multivariate Cox analyses showed that AS prognostic signatures could effectively predict prognosis of patients with PC. Splicing factors–AS regulatory networks were established to demonstrate the interaction between AS events and SFs. Conclusion The survival-associated AS events and prognostic signatures identified in this study can serve as useful tool for predicting prognosis of patients with PC. Moreover, the SF–AS regulatory networks may provide clues for the mechanisms underlying AS in PC.
Collapse
Affiliation(s)
- Lichao Xu
- Department of Interventional Radiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jingxin Pan
- Department of Internal Medicine, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yanni Ding
- Department of Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, China
| | - Hongda Pan
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Cruz-Garcia L, O’Brien G, Sipos B, Mayes S, Tichý A, Sirák I, Davídková M, Marková M, Turner DJ, Badie C. In Vivo Validation of Alternative FDXR Transcripts in Human Blood in Response to Ionizing Radiation. Int J Mol Sci 2020; 21:ijms21217851. [PMID: 33113898 PMCID: PMC7660203 DOI: 10.3390/ijms21217851] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
Following cell stress such as ionising radiation (IR) exposure, multiple cellular pathways are activated. We recently demonstrated that ferredoxin reductase (FDXR) has a remarkable IR-induced transcriptional responsiveness in blood. Here, we provided a first comprehensive FDXR variant profile following DNA damage. First, specific quantitative real-time polymerase chain reaction (qPCR) primers were designed to establish dose-responses for eight curated FDXR variants, all up-regulated after IR in a dose-dependent manner. The potential role of gender on the expression of these variants was tested, and neither the variants response to IR nor the background level of expression was profoundly affected; moreover, in vitro induction of inflammation temporarily counteracted IR response early after exposure. Importantly, transcriptional up-regulation of these variants was further confirmed in vivo in blood of radiotherapy patients. Full-length nanopore sequencing was performed to identify other FDXR variants and revealed the high responsiveness of FDXR-201 and FDXR-208. Moreover, FDXR-218 and FDXR-219 showed no detectable endogenous expression, but a clear detection after IR. Overall, we characterised 14 FDXR transcript variants and identified for the first time their response to DNA damage in vivo. Future studies are required to unravel the function of these splicing variants, but they already represent a new class of radiation exposure biomarkers.
Collapse
Affiliation(s)
- Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
| | - Grainne O’Brien
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
| | - Botond Sipos
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Simon Mayes
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences in Hradec Králové, University of Defence in Brno, 500 01 Hradec Králové, Czech Republic;
- Biomedical Research Centre, Hradec Králové University Hospital, 500 01 Hradec Králové, Czech Republic
| | - Igor Sirák
- Department of Oncology and Radiotherapy and 4th Department of Internal Medicine—Hematology, University Hospital, 500 05 Hradec Králové, Czech Republic;
| | - Marie Davídková
- Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, 180 00 Prague 8, Czech Republic;
| | - Markéta Marková
- Institute of Hematology and Blood Transfusion, 128 00 Praha 2, Czech Republic;
| | - Daniel J. Turner
- Oxford Nanopore Technologies, Gosling Building, Edmund Halley Way, Oxford OX4 4DQ, UK; (B.S.); (S.M.); (D.J.T.)
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Radiation Effects Department, Centre for Radiation, Chemical & Environmental Hazards, Public Health England, Chilton, Oxfordshire OX11 0RQ, UK; (L.C.-G.); (G.O.)
- Correspondence: ; Tel.: +44-(0)1235-825-088; Fax: +44-(0)1235-833-891
| |
Collapse
|
12
|
Alharbi AB, Schmitz U, Marshall AD, Vanichkina D, Nagarajah R, Vellozzi M, Wong JJ, Bailey CG, Rasko JE. Ctcf haploinsufficiency mediates intron retention in a tissue-specific manner. RNA Biol 2020; 18:93-103. [PMID: 32816606 PMCID: PMC7834090 DOI: 10.1080/15476286.2020.1796052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTCF is a master regulator of gene transcription and chromatin organisation with occupancy at thousands of DNA target sites genome-wide. While CTCF is essential for cell survival, CTCF haploinsufficiency is associated with tumour development and hypermethylation. Increasing evidence demonstrates CTCF as a key player in several mechanisms regulating alternative splicing (AS), however, the genome-wide impact of Ctcf dosage on AS has not been investigated. We examined the effect of Ctcf haploinsufficiency on gene expression and AS in five tissues from Ctcf hemizygous (Ctcf+/-) mice. Reduced Ctcf levels caused distinct tissue-specific differences in gene expression and AS in all tissues. An increase in intron retention (IR) was observed in Ctcf+/- liver and kidney. In liver, this specifically impacted genes associated with cytoskeletal organisation, splicing and metabolism. Strikingly, most differentially retained introns were short, with a high GC content and enriched in Ctcf binding sites in their proximal upstream genomic region. This study provides new insights into the effects of CTCF haploinsufficiency on organ transcriptomes and the role of CTCF in AS regulation.
Collapse
Affiliation(s)
- Adel B Alharbi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University , Makkah, Saudi Arabia
| | - Ulf Schmitz
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - Amy D Marshall
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Darya Vanichkina
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Sydney Informatics Hub, University of Sydney , Darlington, Australia
| | - Rajini Nagarajah
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Melissa Vellozzi
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Computational BioMedicine Laboratory Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Justin Jl Wong
- Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Epigenetics and RNA Biology Program Centenary Institute, The University of Sydney , Camperdown, Australia
| | - Charles G Bailey
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia
| | - John Ej Rasko
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney , Camperdown, Australia.,Faculty of Medicine and Health, The University of Sydney , Camperdown, Australia.,Cell & Molecular Therapies, Royal Prince Alfred Hospital , Camperdown, Australia
| |
Collapse
|
13
|
Rothzerg E, Ho XD, Xu J, Wood D, Märtson A, Maasalu K, Kõks S. Alternative splicing of leptin receptor overlapping transcript in osteosarcoma. Exp Biol Med (Maywood) 2020; 245:1437-1443. [PMID: 32787464 DOI: 10.1177/1535370220949139] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
IMPACT STATEMENT Osteosarcoma (OS, also known as osteogenic sarcoma) is the most common primary malignancy of bone in children and adolescents. The molecular mechanisms of OS are extremely complicated and its molecular mediators remain to be elucidated. We sequenced total RNA from 18 OS bone samples (paired normal-tumor biopsies). We found statistically significant (FDR <0.05) 26 differentially expressed transcript variants of LEPROT gene with different expressions in normal and tumor samples. These findings contribute to the understanding of molecular mechanisms of OS development and provide encouragement to pursue further research.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia
| | - Xuan D Ho
- Department of Oncology, College of Medicine and Pharmacy, Hue University, Hue 53000, Vietnam
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Aare Märtson
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, Tartu 50411, Estonia
| | - Katre Maasalu
- Department of Traumatology and Orthopaedics, University of Tartu, Tartu University Hospital, Tartu 50411, Estonia
| | - Sulev Kõks
- Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, WA 6009, Australia.,Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
14
|
Shao XY, Dong J, Zhang H, Wu YS, Zheng L. Prognostic Value and Potential Role of Alternative mRNA Splicing Events in Cervical Cancer. Front Genet 2020; 11:726. [PMID: 32793282 PMCID: PMC7394696 DOI: 10.3389/fgene.2020.00726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022] Open
Abstract
Background Increasing evidence suggests that aberrant alternative splicing (AS) events are associated with progression of cancer. This study evaluated the prognostic value and clarify the role of AS events in cervical cancer (CC). Methods Based on RNA-seq AS event data and clinical information of CC patients in The Cancer Genome Atlas (TCGA) database, we sought to identify prognosis-related AS events in this setting. We selected several survival-associated AS events to construct a prognostic predictor for CC through the least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression. Moreover, Kyoto Encyclopedia of Genes and Genomes and Gene Ontology analyses were performed on genes with prognosis-related AS events and constructed an AS-splicing factors (SFs) regulatory network. Results 2770 AS events were significantly correlated with overall survival (OS). The area under the curve (AUC) values of receiver-operator characteristic curve (ROC) for the final prognostic predictor were 0.926, 0.946 and 0.902 at 3, 5, and 10 years, respectively. These values indicated efficiency in prognostic risk stratification for patients with CC. The final prognostic predictor was an independent predictor of OS (HR: 1.24; 95% CI: 1.020–1.504; P < 0.05). The AS-SFs correlation network may reveal an underlying regulatory mechanism of AS events. Conclusion AS events are essential participants in the prognosis of CC and hold great potentials for the prognostic stratification and development of treatment strategy.
Collapse
Affiliation(s)
- Xiang-Yang Shao
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Dong
- Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
15
|
Lian H, Wang A, Shen Y, Wang Q, Zhou Z, Zhang R, Li K, Liu C, Jia H. Identification of novel alternative splicing isoform biomarkers and their association with overall survival in colorectal cancer. BMC Gastroenterol 2020; 20:171. [PMID: 32503434 PMCID: PMC7275609 DOI: 10.1186/s12876-020-01288-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 04/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Alternative splicing (AS) is an important mechanism of regulating eukaryotic gene expression. Understanding the most common AS events in colorectal cancer (CRC) will help developing diagnostic, prognostic or therapeutic tools in CRC. METHODS Publicly available RNA-seq data of 28 pairs of CRC and normal tissues and 18 pairs of metastatic and normal tissues were used to identify AS events using PSI and DEXSeq methods. RESULT The highly significant splicing events were used to search a database of The Cancer Genome Atlas (TCGA). We identified AS events in 9 genes in CRC (more inclusion of CLK1-E4, COL6A3-E6, CD44v8-10, alternative first exon regulation of ARHGEF9, CHEK1, HKDC1 and HNF4A) or metastasis (decrease of SERPINA1-E1a, CALD-E5b, E6). Except for CHEK1, all other 8 splicing events were confirmed by TCGA data with 382 CRC tumors and 51 normal controls. The combination of three splicing events was used to build a logistic regression model that can predict sample type (CRC or normal) with near perfect performance (AUC = 1). Two splicing events (COL6A3 and HKDC1) were found to be significantly associated with patient overall survival. The AS features of the 9 genes are highly consistent with previous reports and/or relevant to cancer biology. CONCLUSIONS The significant association of higher expression of the COL6A3 E5-E6 junction and HKDC1 E1-E2 with better overall survival was firstly reported. This study might be of significant value in the future biomarker, prognosis marker and therapeutics development of CRC.
Collapse
Affiliation(s)
- Haifeng Lian
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Aili Wang
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Yuanyuan Shen
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Qian Wang
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China
| | - Zhenru Zhou
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China
| | - Ranran Zhang
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Kun Li
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China
| | - Chengxia Liu
- Department of Gastroenterology, Binzhou Medical University Hospital (BMUH), No. 662 Huanghe 2nd Road, Binzhou City, Shandong Province, People's Republic of China.
| | - Hongtao Jia
- Tianjia Genomes Tech CO., LTD., Anhui Chaohu Economic Develop Zone, No. 6 Longquan Road, Hefei, 238014, People's Republic of China.
| |
Collapse
|
16
|
Ding Y, Feng G, Yang M. Prognostic role of alternative splicing events in head and neck squamous cell carcinoma. Cancer Cell Int 2020; 20:168. [PMID: 32467664 PMCID: PMC7227031 DOI: 10.1186/s12935-020-01249-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Aberrant alternative splicing (AS) is implicated in biological processes of cancer. This study aims to reveal prognostic AS events and signatures that may serve as prognostic predictors for head and neck squamous cell carcinoma (HNSCC). Methods Prognostic AS events in HNSCC were identified by univariate COX analysis. Prognostic signatures comprising prognostic AS events were constructed for prognosis prediction in patients with HNSCC. The correlation between the percent spliced in (PSI) values of AS events and the expression of splicing factors (SFs) was analyzed by Pearson correlation analysis. Gene functional annotation analysis was performed to reveal pathways in which prognostic AS is enriched. Results A total of 27,611 AS events in 15,873 genes were observed, and there were 3433 AS events in 2624 genes significantly associated with overall survival (OS) for HNSCC. Moreover, we found that AS prognostic signatures could accurately predict HNSCC prognosis. SF-AS regulatory networks were constructed according to the correlation between PSI values of AS events and the expression levels of SFs. Conclusions Our study identified prognostic AS events and signatures. Furthermore, it established SF-AS networks in HNSCC that were valuable in predicting the prognosis of patients with HNSCC and elucidating the regulatory mechanisms underlying AS in HNSCC.
Collapse
Affiliation(s)
- Yanni Ding
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| | - Guang Feng
- 2The Third Department of Burns and Plastic Surgery and Center of Wound Repair, The Fourth Medical Center of PLA General Hospital, Beijing, 100048 China
| | - Min Yang
- Department of Breast Surgery, Shaan Xi Provincial Tumor Hospital, Xi'an City, Shaan Xi Province 710000 China
| |
Collapse
|
17
|
RNA-Binding Proteins in Acute Leukemias. Int J Mol Sci 2020; 21:ijms21103409. [PMID: 32408494 PMCID: PMC7279408 DOI: 10.3390/ijms21103409] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 12/12/2022] Open
Abstract
Acute leukemias are genetic diseases caused by translocations or mutations, which dysregulate hematopoiesis towards malignant transformation. However, the molecular mode of action is highly versatile and ranges from direct transcriptional to post-transcriptional control, which includes RNA-binding proteins (RBPs) as crucial regulators of cell fate. RBPs coordinate RNA dynamics, including subcellular localization, translational efficiency and metabolism, by binding to their target messenger RNAs (mRNAs), thereby controlling the expression of the encoded proteins. In view of the growing interest in these regulators, this review summarizes recent research regarding the most influential RBPs relevant in acute leukemias in particular. The reported RBPs, either dysregulated or as components of fusion proteins, are described with respect to their functional domains, the pathways they affect, and clinical aspects associated with their dysregulation or altered functions.
Collapse
|
18
|
Penter L, Wu CJ. Personal tumor antigens in blood malignancies: genomics-directed identification and targeting. J Clin Invest 2020; 130:1595-1607. [PMID: 31985488 PMCID: PMC7108890 DOI: 10.1172/jci129209] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hematological malignancies have long been at the forefront of the development of novel immune-based treatment strategies. The earliest successful efforts originated from the extensive body of work in the field of allogeneic hematopoietic stem cell transplantation. These efforts laid the foundation for the recent exciting era of cancer immunotherapy, which includes immune checkpoint blockade, personal neoantigen vaccines, and adoptive T cell transfer. At the heart of the specificity of these novel strategies is the recognition of target antigens presented by malignant cells to T cells. Here, we review the advances in systematic identification of minor histocompatibility antigens and neoantigens arising from personal somatic alterations or recurrent driver mutations. These exciting efforts pave the path for the implementation of personalized combinatorial cancer therapy.
Collapse
Affiliation(s)
- Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité – Universitätsmedizin Berlin (CVK), Berlin, Germany
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Broad Institute, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Hurtado-Guerrero I, Hernáez B, Pinto-Medel MJ, Calonge E, Rodriguez-Bada JL, Urbaneja P, Alonso A, Mena-Vázquez N, Aliaga P, Issazadeh-Navikas S, Pavia J, Leyva L, Alcamí J, Alcamí A, Fernández Ó, Oliver-Martos B. Antiviral, Immunomodulatory and Antiproliferative Activities of Recombinant Soluble IFNAR2 without IFN-ß Mediation. J Clin Med 2020; 9:jcm9040959. [PMID: 32244308 PMCID: PMC7230527 DOI: 10.3390/jcm9040959] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/21/2022] Open
Abstract
Soluble receptors of cytokines are able to modify cytokine activities and therefore the immune system, and some have intrinsic biological activities without mediation from their cytokines. The soluble interferon beta (IFN-ß) receptor is generated through alternative splicing of IFNAR2 and has both agonist and antagonist properties for IFN-ß, but its role is unknown. We previously demonstrated that a recombinant human soluble IFN-ß receptor showed intrinsic therapeutic efficacy in a mouse model of multiple sclerosis. Here we evaluate the potential biological activities of recombinant sIFNAR2 without the mediation of IFN-ß in human cells. Recombinant sIFNAR2 down-regulated the production of IL-17 and IFN-ɣ and reduced the cell proliferation rate. Moreover, it showed a strong antiviral activity, fully protecting the cell monolayer after being infected by the virus. Specific inhibitors completely abrogated the antiviral activity of IFN-ß, but not that of the recombinant sIFNAR2, and there was no activation of the JAK-STAT signaling pathway. Consequently, r-sIFNAR2 exerts immunomodulatory, antiproliferative and antiviral activities without IFN-ß mediation, and could be a promising treatment against viral infections and immune-mediated diseases.
Collapse
Affiliation(s)
- Isaac Hurtado-Guerrero
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Múltiple REEM (RD16/0015/0010), 28049 Madrid, Spain
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Bruno Hernáez
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain; (B.H.); (A.A.)
| | - María J. Pinto-Medel
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Múltiple REEM (RD16/0015/0010), 28049 Madrid, Spain
| | - Esther Calonge
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda 28220 Madrid, Spain; (E.C.); (J.A.)
| | - José L. Rodriguez-Bada
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Múltiple REEM (RD16/0015/0010), 28049 Madrid, Spain
| | - Patricia Urbaneja
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Múltiple REEM (RD16/0015/0010), 28049 Madrid, Spain
| | - Ana Alonso
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Múltiple REEM (RD16/0015/0010), 28049 Madrid, Spain
| | - Natalia Mena-Vázquez
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC de Reumatología, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
| | - Pablo Aliaga
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
| | - Shohreh Issazadeh-Navikas
- Neuroinflammation Unit, Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, Copenhagen Biocentre, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - José Pavia
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- Departamento de Farmacología y Pediatría, Facultad de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Laura Leyva
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Múltiple REEM (RD16/0015/0010), 28049 Madrid, Spain
| | - José Alcamí
- AIDS Immunopathology Unit, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda 28220 Madrid, Spain; (E.C.); (J.A.)
- HIV Unit, Infectious Disease Service, Hospital Universitari de Bellvitge, 08907 Barcelona, Spain
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain; (B.H.); (A.A.)
| | - Óscar Fernández
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- Departamento de Farmacología y Pediatría, Facultad de Medicina. Universidad de Málaga, 29010 Málaga, Spain
| | - Begoña Oliver-Martos
- Instituto de Investigación Biomédica de Málaga-IBIMA, 29009 Málaga, Spain; (I.H.-G.); (M.J.P.-M.); (J.L.R.-B.); (P.U.); (A.A.); (N.M.-V.); (P.A.); (J.P.); (L.L.); (Ó.F.)
- UGC Neurociencias. Hospital Regional Universitario de Málaga, 29010 Málaga, Spain
- Red Temática de Investigación Cooperativa: Red Española de Esclerosis Múltiple REEM (RD16/0015/0010), 28049 Madrid, Spain
- Correspondence: ; Tel.: +34-951-290-223
| |
Collapse
|
20
|
Mora Gallardo C, Sánchez de Diego A, Gutiérrez Hernández J, Talavera-Gutiérrez A, Fischer T, Martínez-A C, van Wely KHM. Dido3-dependent SFPQ recruitment maintains efficiency in mammalian alternative splicing. Nucleic Acids Res 2019; 47:5381-5394. [PMID: 30931476 PMCID: PMC6547428 DOI: 10.1093/nar/gkz235] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 03/19/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Alternative splicing is facilitated by accessory proteins that guide spliceosome subunits to the primary transcript. Many of these splicing factors recognize the RNA polymerase II tail, but SFPQ is a notable exception even though essential for mammalian RNA processing. This study reveals a novel role for Dido3, one of three Dido gene products, in alternative splicing. Binding of the Dido3 amino terminus to histones and to the polymerase jaw domain was previously reported, and here we show interaction between its carboxy terminus and SFPQ. We generated a mutant that eliminates Dido3 but preserves other Dido gene products, mimicking reduced Dido3 levels in myeloid neoplasms. Dido mutation suppressed SFPQ binding to RNA and increased skipping for a large group of exons. Exons bearing recognition sequences for alternative splicing factors were nonetheless included more efficiently. Reduced SFPQ recruitment may thus account for increased skipping of SFPQ-dependent exons, but could also generate a splicing factor surplus that becomes available to competing splice sites. Taken together, our data indicate that Dido3 is an adaptor that controls SFPQ utilization in RNA splicing. Distributing splicing factor recruitment over parallel pathways provides mammals with a simple mechanism to regulate exon usage while maintaining RNA splicing efficiency.
Collapse
Affiliation(s)
- Carmen Mora Gallardo
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Ainhoa Sánchez de Diego
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Julio Gutiérrez Hernández
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Amaia Talavera-Gutiérrez
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Thierry Fischer
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Carlos Martínez-A
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| | - Karel H M van Wely
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB)/CSIC, Darwin 3, Campus UAM Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
21
|
Whole Genome Analysis and Prognostic Model Construction Based on Alternative Splicing Events in Endometrial Cancer. BIOMED RESEARCH INTERNATIONAL 2019; 2019:2686875. [PMID: 31355251 PMCID: PMC6634061 DOI: 10.1155/2019/2686875] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022]
Abstract
Objectives A growing body of evidence has shown that aberrant alternative splicing (AS) is closely related to the occurrence and development of cancer. However, prior studies mainly have concentrated on a few genes that exhibit aberrant AS. This study aimed to determine AS events through whole genome analysis and construct a prognostic model of endometrial cancer (EC). Methods We downloaded gene expression RNAseq data from UCSC Xena, and seven types of AS events from TCGA SpliceSeq. Univariate Cox regression was employed to analyze the prognostic-related alternative splicing events (PASEs) and splicing factors; multivariate Cox regression was conducted to analyze the effect of risk score (All) and clinicopathological parameters on EC prognosis. An underlying interaction network of PASEs of EC was constructed by Cytoscape Reactome FI, GO, and KEGG pathway enrichment was performed by DAVID. ROC curves and Kaplan-Meir analysis were used to assess the diagnostic value of prognostic model. The correlation between PASEs and splicing factors was analyzed by GraphPad Prism; then a network was constructed using Cytoscape. Results In total, 28,281 AS events in EC were identified, which consisted of 1166 PASEs. RNPS1, NEK2, and CTNNB1 were the hub genes in the network of the top 600 PASEs. The area under the curve (AUC) of risk score (All) reached 0.819. Risk score (All) together with FIGO stage, cancer status, and primary therapy outcome success was risk factors of the prognosis of EC patients. Splicing factors YBX1, HNRNPDL, and HNRNPA1 were significantly related to the overall survival (OS). The splicing network indicated that the expression of splicing factors was significantly correlated with percent-splice-in (PSI) value of PASEs. Conclusion We constructed a model for predicting the prognosis of EC patients based on PASEs using whole genome analysis of AS events and thereby provided a reliable theoretical basis for EC clinical prognosis evaluation.
Collapse
|
22
|
Abstract
During erythropoiesis, hematopoietic stem and progenitor cells transition to erythroblasts en route to terminal differentiation into enucleated red blood cells. Transcriptome-wide changes underlie distinct morphological and functional characteristics at each cell division during this process. Many studies of gene expression have historically been carried out in erythroblasts, and the biogenesis of β-globin mRNA—the most highly expressed transcript in erythroblasts—was the focus of many seminal studies on the mechanisms of pre-mRNA splicing. We now understand that pre-mRNA splicing plays an important role in shaping the transcriptome of developing erythroblasts. Recent advances have provided insight into the role of alternative splicing and intron retention as important regulatory mechanisms of erythropoiesis. However, dysregulation of splicing during erythropoiesis is also a cause of several hematological diseases, including β-thalassemia and myelodysplastic syndromes. With a growing understanding of the role that splicing plays in these diseases, we are well poised to develop gene-editing treatments. In this review, we focus on changes in the developing erythroblast transcriptome caused by alternative splicing, the molecular basis of splicing-related blood diseases, and therapeutic advances in disease treatment using CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
23
|
Liu X, Klein PS. Glycogen synthase kinase-3 and alternative splicing. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1501. [PMID: 30118183 DOI: 10.1002/wrna.1501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly conserved negative regulator of receptor tyrosine kinase, cytokine, and Wnt signaling pathways. Stimulation of these pathways inhibits GSK-3 to modulate diverse downstream effectors that include transcription factors, nutrient sensors, glycogen synthesis, mitochondrial function, circadian rhythm, and cell fate. GSK-3 also regulates alternative splicing in response to T-cell receptor activation, and recent phosphoproteomic studies have revealed that multiple splicing factors and regulators of RNA biosynthesis are phosphorylated in a GSK-3-dependent manner. Furthermore, inhibition of GSK-3 alters the splicing of hundreds of mRNAs, indicating a broad role for GSK-3 in the regulation of RNA processing. GSK-3-regulated phosphoproteins include SF3B1, SRSF2, PSF, RBM8A, nucleophosmin 1 (NPM1), and PHF6, many of which are mutated in leukemia and myelodysplasia. As GSK-3 is inhibited by pathways that are pathologically activated in leukemia and loss of Gsk3 in hematopoietic cells causes a severe myelodysplastic neoplasm in mice, these findings strongly implicate GSK-3 as a critical regulator of mRNA processing in normal and malignant hematopoiesis. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Xiaolei Liu
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter S Klein
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
24
|
N6-Methyladenosine Role in Acute Myeloid Leukaemia. Int J Mol Sci 2018; 19:ijms19082345. [PMID: 30096915 PMCID: PMC6121471 DOI: 10.3390/ijms19082345] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/15/2022] Open
Abstract
We are currently assisting in the explosion of epitranscriptomics, which studies the functional role of chemical modifications into RNA molecules. Among more than 100 RNA modifications, the N6-methyladenosine (m6A), in particular, has attracted the interest of researchers all around the world. m6A is the most abundant internal chemical modification in mRNA, and it can control any aspect of mRNA post-transcriptional regulation. m6A is installed by “writers”, removed by “erasers”, and recognized by “readers”; thus, it can be compared to the reversible and dynamic epigenetic modifications in histones and DNA. Given its fundamental role in determining the way mRNAs are expressed, it comes as no surprise that alterations to m6A modifications have a deep impact in cell differentiation, normal development and human diseases. Here, we review the proteins involved in m6A modification in mammals, m6A role in gene expression and its contribution to cancer development. In particular, we will focus on acute myeloid leukaemia (AML), which provides an initial indication of how alteration in m6A modification can disrupt normal cellular differentiation and lead to cancer.
Collapse
|
25
|
Lin P, He RQ, Ma FC, Liang L, He Y, Yang H, Dang YW, Chen G. Systematic Analysis of Survival-Associated Alternative Splicing Signatures in Gastrointestinal Pan-Adenocarcinomas. EBioMedicine 2018; 34:46-60. [PMID: 30131306 PMCID: PMC6116578 DOI: 10.1016/j.ebiom.2018.07.040] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Gastrointestinal pan-adenocarcinomas, which mainly include adenocarcinomas of the esophagus, stomach, colon, and rectum, place a heavy burden on society owing to their poor prognoses. Since aberrant alternative splicing (AS) are starting to be considered as efficacious signatures for tumor prognosis predicting and therapeutic targets, systematic analysis of AS events is urgent. METHODS Prognosis-related AS events were selected by using univariate COX regression analysis. Gene functional enrichment analysis revealed the pathways enriched by prognosis-related AS. Then, prognostic signatures based on AS events were developed for prognosis prediction. Potential mechanism to regulate splicing events by splicing factors was analyzed via Pearson correlation and regulatory networks were constructed. FINDINGS A total of 967, 918, 674, and 406 AS events were identified as prognosis-related AS events in esophagus, stomach, colon, and rectum adenocarcinomas, respectively. Survival-associated AS events were distinguishing in the four subtypes of adenocarcinoma. Furthermore, computational algorithm results indicated that perturbation of ribosome and ubiquitin-mediated proteolysis pathways were the potential molecular mechanisms corresponding to inferior prognoses. Most notably, several prognostic signatures based on AS events displayed moderate performance in prognosis predicting. The area under curve values of the time-dependent receiver operating characteristic were 0.961, 0.871, 0.870, and 0.890 in esophagus, stomach, colon, and rectum adenocarcinomas. Survival-associated splicing factors were submitted to construct the AS regulatory network, which could be an underlying mechanism of AS events. INTERPRETATION AS may could be ideal indiactors in the prognosis of gastrointestinal pan-adenocarcinomas. Exploring interesting splicing regulatory networks is conducive to solve the puzzles of AS.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|