1
|
Hu S, Xu J, Cui W, Jin H, Wang X, Maimaitiyiming Y. Post-Translational Modifications in Multiple Myeloma: Mechanisms of Drug Resistance and Therapeutic Opportunities. Biomolecules 2025; 15:702. [PMID: 40427595 PMCID: PMC12109037 DOI: 10.3390/biom15050702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/01/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
Multiple myeloma (MM) remains an incurable hematologic malignancy due to the inevitable development of drug resistance, particularly in relapsed or refractory cases. Post-translational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, and glycosylation, play pivotal roles in regulating protein function, stability, and interactions, thereby influencing MM pathogenesis and therapeutic resistance. This review comprehensively explores the mechanisms by which dysregulated PTMs contribute to drug resistance in MM, focusing on their impact on key signaling pathways, metabolic reprogramming, and the tumor microenvironment. We highlight how PTMs modulate drug uptake, alter drug targets, and regulate cell survival signals, ultimately promoting resistance to PIs, IMiDs, and other therapeutic agents. Furthermore, we discuss emerging therapeutic strategies targeting PTM-related pathways, which offer promising avenues for overcoming resistance to treatment. By integrating preclinical and clinical insights, this review underscores the potential of PTM-targeted therapies to enhance treatment efficacy and improve patient outcomes in MM.
Collapse
Affiliation(s)
- Shuoyang Hu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Jirun Xu
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Weiyan Cui
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Haoran Jin
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Xiaoyu Wang
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
| | - Yasen Maimaitiyiming
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830011, China; (S.H.); (J.X.); (W.C.); (H.J.); (X.W.)
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi 830011, China
| |
Collapse
|
2
|
Hall J, Corton M, Fries FN, Obst J, Grünauer-Kloevekorn C, Seitz B, Waizel MDV, Jávorszky E, Tory K, Maka E, Amini M, Suiwal S, Stachon T, Szentmáry N. Comprehensive Analysis of Congenital Aniridia and Differential Diagnoses: Genetic Insights and Clinical Manifestations. Ophthalmol Ther 2025; 14:835-856. [PMID: 40138169 PMCID: PMC12006658 DOI: 10.1007/s40123-025-01122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
INTRODUCTION Congenital aniridia (CA) is a severe and complex disorder involving the entire eye, primarily characterized by iris anomalies alongside other clinical features that pose significant risks to vision. This study seeks to offer a comprehensive overview of CA by detailing its clinical presentations, genetic underpinnings, associated phenotypes, and differential diagnoses. Additionally, it proposes a diagnostic framework to distinguish CA from other conditions that present with similar iris abnormalities. METHODS We conducted a comprehensive literature review to compile and analyze clinical and genetic data related to CA and its differential diagnoses. We included all studies describing the clinical characteristics, pathogenic variants, and associated syndromes of congenital aniridia. RESULTS CA presents a wide range of ocular symptoms. Pathogenic variants in the PAX6 gene are the primary genetic cause of CA, though variations in other genes, including FOXC1, PITX2, CYP1B1, FOXD3, PITX3, CPAMD8, ITPR1, TENM3, TRIM44, COL4A1, CRYAA, and PXDN may also be implicated. The differential diagnosis of CA requires careful consideration of conditions with overlapping symptoms, such as WAGR syndrome (which involves deletions affecting the PAX6 and WT1 genes on chromosome 11p13, and potentially BDNF on 11p14.1), Axenfeld-Rieger syndrome (FOXC1/PITX2), ring-chromosome 6 syndrome (which involves FOXC1 microdeletion), COL4A1-related anterior segment dysgenesis, Gillespie syndrome (ITPR1 gene) or Peters anomaly. Accurate diagnosis can be achieved by evaluating specific clinical features-including iris anomalies, aniridia-associated keratopathy, cataracts, glaucoma, foveal hypoplasia, nystagmus, and optic nerve head abnormalities-supplemented by genetic testing. CONCLUSIONS Understanding the diverse clinical presentations and genetic basis of diseases associated with iris abnormalities is essential for accurate diagnosis and effective management. Integrating genetic diagnostics into the evaluation process enables the development of tailored treatment strategies, which can significantly improve patient outcomes.
Collapse
Affiliation(s)
- Jonathan Hall
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany.
- Prof. Dr. Koss & Colleagues, Eye Center Nymphenburger Hoefe, Munich, Germany.
| | - Marta Corton
- Departamento de Genética, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
- Área de Genética & Genómica, Instituto de Investigación Sanitaria - Fundación Jiménez Díaz - Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Fabian Norbert Fries
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Jessica Obst
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Clara Grünauer-Kloevekorn
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Homburg, Saar, Germany
| | - Maria Della Volpe Waizel
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Eszter Jávorszky
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Kálmán Tory
- 1st Department of Pediatrics, Semmelweis University, Budapest, Hungary
| | - Erika Maka
- Department of Ophthalmology, Semmelweis University, Budapest, Hungary
| | - Maryam Amini
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Shweta Suiwal
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Tanja Stachon
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| | - Nóra Szentmáry
- Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Kirrberger Str. 100, 66424, Homburg, Saar, Germany
| |
Collapse
|
3
|
Han N, Yu N, Yu L. Aberrant expression of TRIM44, transcriptionally regulated by KLF9, contributes to the process of diabetic retinopathy. J Transl Med 2025; 23:433. [PMID: 40217303 PMCID: PMC11992793 DOI: 10.1186/s12967-025-06436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the common cause of diabetic vascular complications and it causes blindness. Until now, there are still some patients with DR who lack effective treatment. Tripartite motif containing 44 (TRIM44) has been shown to play a significant role in endothelial cells. However, the role of TRIM44 in DR remains unknown. METHODS Diabetes was induced in rats through the administration of an intraperitoneal injection of 65 mg/kg of streptozotocin (STZ). Rat retinal microvascular endothelial cells (RMECs) were subjected to stimulation under high glucose (HG) conditions. A thorough proteomic investigation and bioinformatic analysis were performed to identify the differentially expressed proteins (DEPs) in rat RMECs after blocking TRIM44. A dual luciferase reporter assay was employed to assess the luciferase activity of TRIM44. RESULTS TRIM44 was highly expressed in the retinal tissues of rats with diabetes and HG-induced RMECs. In vivo assays suggested that TRIM44 silencing improved the pathological alterations of DR rats as demonstrated by the downregulated expression of isolectin-B4 and VEGFA, along with a decrease in acellular capillaries within the retinal tissues. Knockdown of TRIM44 markedly reduced cell viability, proliferation, migration, invasion, and angiogenesis in HG-evoked RMECs. Mechanistically, TRIM44 was demonstrated to be activated transcriptionally by KLF transcription factor 9 (KLF9), a known facilitator of angiogenesis in DR. In HG-induced cells, the loss of TRIM44 resulted in the reverse of the endothelial cell function caused by KLF9 overexpression. After the comprehensive analysis, 64 upregulated and 38 downregulated DEPs were screened out for a series of functional enrichment analyses. CONCLUSIONS Collectively, this study demonstrates that TRIM44 knockdown suppressed diabetes-induced retinal vascular dysfunction in DR.
Collapse
Affiliation(s)
- Ning Han
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China
| | - Na Yu
- Department of Blood Transfusion, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Li Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, No. 218, Ziqiang Street, Changchun, Jilin, China.
| |
Collapse
|
4
|
Qi H, Wang J, Cao L. TRIM44 facilitates aggressive behaviors in multiple myeloma through promoting ZEB1 deubiquitination. Discov Oncol 2025; 16:248. [PMID: 40014271 PMCID: PMC11867989 DOI: 10.1007/s12672-025-01933-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND Tripartite motif-containing 44 (TRIM44) involves in various tumor development. This study investigated role of TRIM44 in multiple myeloma (MM). MATERIALS AND METHODS TRIM44 levels in bone marrow tissues and MM cell lines was detected by quantitative reverse transcription PCR (RT-qPCR). Cell viability, migration, and invasion of MM cells were evaluated under the interference of TRIM44 expression. The role of TRIM44 on regulating tumor growth in vivo was also investigated in subcutaneous tumor xenograft models. The protein interact between TRIM44 and Zinc Finger E-Box Binding Homeobox 1 (ZEB1) was also studied according IP followed by western blotting assay. RESULTS TRIM44 was all highly expressed in collected bone marrow tissues and MM cell lines. Cell viability, migration, and invasion of MM cells with low expression of TRIM44 was significantly inhibited. Over-expression of TRIM44 can down-regulate the ZEB1 ubiquitination to enhance the protein stability. CONCLUSIONS TRIM44 exerts as an oncogenic factor to induce the oncogenesis of MM by stabilizing ZEB1.
Collapse
Affiliation(s)
- Hui Qi
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Jing Wang
- Department of Rheumatology and Immunology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China
| | - Lixia Cao
- Department of Hematology, Affiliated Hospital of Inner Mongolia Medical University, 1 Tongdao North Road, Huimin District, Hohhot, 010050, China.
| |
Collapse
|
5
|
Zhang J, Yao M, Xia S, Zeng F, Liu Q. Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer. Cell Mol Biol Lett 2025; 30:2. [PMID: 39757165 DOI: 10.1186/s11658-024-00682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
Collapse
Affiliation(s)
- Jiayi Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
- School of Clinical Medicine, Southwest Medical University, Luzhou, 646000, China
| | - Mingxuan Yao
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Shiting Xia
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China
| | - Fancai Zeng
- Laboratory of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, 646000, China.
| | - Qiuyu Liu
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
6
|
Kim Y, Min S, Kim S, Lee S, Park YJ, Heo Y, Park S, Park T, Lee JH, Kang H, Ji JH, Cho H. PARP1-TRIM44-MRN loop dictates the response to PARP inhibitors. Nucleic Acids Res 2024; 52:11720-11737. [PMID: 39217466 PMCID: PMC11514498 DOI: 10.1093/nar/gkae756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/12/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
PARP inhibitors (PARPi) show selective efficacy in tumors with homologous recombination repair (HRR)-defects but the activation mechanism of HRR pathway in PARPi-treated cells remains enigmatic. To unveil it, we searched for the mediator bridging PARP1 to ATM pathways by screening 211 human ubiquitin-related proteins. We discovered TRIM44 as a crucial mediator that recruits the MRN complex to damaged chromatin, independent of PARP1 activity. TRIM44 binds PARP1 and regulates the ubiquitination-PARylation balance of PARP1, which facilitates timely recruitment of the MRN complex for DSB repair. Upon exposure to PARPi, TRIM44 shifts its binding from PARP1 to the MRN complex via its ZnF UBP domain. Knockdown of TRIM44 in cells significantly enhances the sensitivity to olaparib and overcomes the resistance to olaparib induced by 53BP1 deficiency. These observations emphasize the central role of TRIM44 in tethering PARP1 to the ATM-mediated repair pathway. Suppression of TRIM44 may enhance PARPi effectiveness and broaden their use even to HR-proficient tumors.
Collapse
Affiliation(s)
- Yonghyeon Kim
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Sunwoo Min
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Biochemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Soyeon Kim
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Seo Yun Lee
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Yeon-Ji Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Yungyeong Heo
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Soon Sang Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Tae Jun Park
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Ho Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Ho Chul Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | - Jae-Hoon Ji
- Department of Biochemistry and Structural Biology, The University of Texas Health San Antonio, TX 78229-3000, USA
| | - Hyeseong Cho
- Department of Biochemistry, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
7
|
Vu T, Wang Y, Fowler A, Simieou A, McCarty N. TRIM44, a Novel Prognostic Marker, Supports the Survival of Proteasome-Resistant Multiple Myeloma Cells. Cells 2024; 13:1431. [PMID: 39273003 PMCID: PMC11394402 DOI: 10.3390/cells13171431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
TRIM44, a tripartite motif (TRIM) family member, is pivotal in linking the ubiquitin-proteasome system (UPS) to autophagy in multiple myeloma (MM). However, its prognostic impact and therapeutic potential remain underexplored. Here, we report that TRIM44 overexpression is associated with poor prognosis in a Multiple Myeloma Research Foundation (MMRF) cohort of 858 patients, persisting across primary and recurrent MM cases. TRIM44 expression notably increases in advanced MM stages, indicating its potential role in disease progression. Single-cell RNA sequencing across MM stages showed significant TRIM44 upregulation in smoldering MM (SMM) and MM compared to normal bone marrow, especially in patients with t(4;14) cytogenetic abnormalities. This analysis further identified high TRIM44 expression as predictive of lower responsiveness to proteasome inhibitor (PI) treatments, underscoring its critical function in the unfolded protein response (UPR) in TRIM44-high MM cells. Our findings also demonstrate that TRIM44 facilitates SQSTM1 oligomerization under oxidative stress, essential for its phosphorylation and subsequent autophagic degradation. This process supports the survival of PI-resistant MM cells by activating the NRF2 pathway, which is crucial for oxidative stress response and, potentially, other chemotherapy-induced stressors. Additionally, TRIM44 counters the TRIM21-mediated suppression of the antioxidant response, enhancing MM cell survival under oxidative stress. Collectively, our discoveries highlight TRIM44's significant role in MM progression and resistance to therapy, suggesting its potential value as a therapeutic target.
Collapse
Affiliation(s)
- Trung Vu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77021, USA; (T.V.); (Y.W.)
| | - Yuqin Wang
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77021, USA; (T.V.); (Y.W.)
| | - Annaliese Fowler
- The Department of Biomedical Engineering, Texas A&M University, Houston, TX 77030, USA;
| | - Anton Simieou
- The Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Nami McCarty
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77021, USA; (T.V.); (Y.W.)
| |
Collapse
|
8
|
Wang Y, Lyu L, Vu T, McCarty N. TRIM44 enhances autophagy via SQSTM1 oligomerization in response to oxidative stress. Sci Rep 2024; 14:18974. [PMID: 39152142 PMCID: PMC11329658 DOI: 10.1038/s41598-024-67832-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/16/2024] [Indexed: 08/19/2024] Open
Abstract
The deubiquitinase tripartite motif containing 44 (TRIM44) plays a critical role in linking the proteotoxic stress response with autophagic degradation, which is significant in the context of cancer and neurological diseases. Although TRIM44 is recognized as a prognostic marker in various cancers, the complex molecular mechanisms through which it facilitates autophagic degradation, particularly under oxidative stress conditions, have not been fully explored. In this study, we demonstrate that TRIM44 significantly enhances autophagy in response to oxidative stress, reducing cytotoxicity in cancer cells treated with arsenic trioxide. Our research emphasizes the critical role of the posttranslational modification of sequestosome-1 (SQSTM1) and its importance in improving sequestration during autophagic degradation under oxidative stress. We found that TRIM44 notably promotes SQSTM1 oligomerization in both PB1 domain-dependent and oxidation-dependent manners. Furthermore, TRIM44 amplifies the interaction between protein kinase A and oligomerized SQSTM1, leading to enhanced phosphorylation of SQSTM1 at S349. This phosphorylation event activates NFE2L2, a key transcription factor in the oxidative stress response, highlighting the importance of TRIM44 in modulating SQSTM1-mediated autophagy. Our findings support that TRIM44 plays pivotal roles in regulating autophagic sensitivity to oxidative stress, with implications for cancer, aging, aging-associated diseases, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yuqin Wang
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Lin Lyu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Trung Vu
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA
| | - Nami McCarty
- Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Gunes EG, Gunes M, Yu J, Janakiram M. Targeting cancer stem cells in multiple myeloma. Trends Cancer 2024; 10:733-748. [PMID: 38971642 DOI: 10.1016/j.trecan.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 07/08/2024]
Abstract
Multiple myeloma (MM) is a hematological malignancy of bone marrow (BM) plasma cells with excessive clonal expansion and is associated with the overproduction of light-chain or monoclonal immunoglobulins (Igs). MM remains incurable, with high rates of relapses and refractory disease after first-line treatment. Cancer stem cells (CSCs) have been implicated in drug resistance in MM; however, the evidence for CSCs in MM is not adequate, partly due to a lack of uniformity in the definitions of multiple myeloma stem cells (MMSCs). We review advances in understanding MMSCs and their role in drug resistance to MM therapies. We also discuss novel therapeutic strategies to overcome MMSC-mediated relapses and drug resistance.
Collapse
Affiliation(s)
- Emine Gulsen Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Judy and Bernard Briskin Center for Multiple Myeloma Research, City of Hope, Los Angeles, CA 91010, USA; Toni Stephenson Lymphoma Center, City of Hope, Los Angeles, CA 91010, USA.
| | - Metin Gunes
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Department of Immuno-Oncology, Beckman Research Institute, Los Angeles, CA 91010, USA; Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, USA; Comprehensive Cancer Center, City of Hope, Los Angeles, CA 91010, USA
| | - Murali Janakiram
- Department of Hematology, Division of Myeloma, City of Hope National Medical Center, Los Angeles, CA 91010, USA
| |
Collapse
|
10
|
Chu X, Tian W, Ning J, Xiao G, Zhou Y, Wang Z, Zhai Z, Tanzhu G, Yang J, Zhou R. Cancer stem cells: advances in knowledge and implications for cancer therapy. Signal Transduct Target Ther 2024; 9:170. [PMID: 38965243 PMCID: PMC11224386 DOI: 10.1038/s41392-024-01851-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/27/2024] [Accepted: 04/28/2024] [Indexed: 07/06/2024] Open
Abstract
Cancer stem cells (CSCs), a small subset of cells in tumors that are characterized by self-renewal and continuous proliferation, lead to tumorigenesis, metastasis, and maintain tumor heterogeneity. Cancer continues to be a significant global disease burden. In the past, surgery, radiotherapy, and chemotherapy were the main cancer treatments. The technology of cancer treatments continues to develop and advance, and the emergence of targeted therapy, and immunotherapy provides more options for patients to a certain extent. However, the limitations of efficacy and treatment resistance are still inevitable. Our review begins with a brief introduction of the historical discoveries, original hypotheses, and pathways that regulate CSCs, such as WNT/β-Catenin, hedgehog, Notch, NF-κB, JAK/STAT, TGF-β, PI3K/AKT, PPAR pathway, and their crosstalk. We focus on the role of CSCs in various therapeutic outcomes and resistance, including how the treatments affect the content of CSCs and the alteration of related molecules, CSCs-mediated therapeutic resistance, and the clinical value of targeting CSCs in patients with refractory, progressed or advanced tumors. In summary, CSCs affect therapeutic efficacy, and the treatment method of targeting CSCs is still difficult to determine. Clarifying regulatory mechanisms and targeting biomarkers of CSCs is currently the mainstream idea.
Collapse
Affiliation(s)
- Xianjing Chu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Wentao Tian
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Jiaoyang Ning
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Gang Xiao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yunqi Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Ziqi Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Zhuofan Zhai
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Guilong Tanzhu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jie Yang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Rongrong Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Xiangya Lung Cancer Center, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, 410008, China.
| |
Collapse
|
11
|
Alhasan BA, Morozov AV, Guzhova IV, Margulis BA. The ubiquitin-proteasome system in the regulation of tumor dormancy and recurrence. Biochim Biophys Acta Rev Cancer 2024; 1879:189119. [PMID: 38761982 DOI: 10.1016/j.bbcan.2024.189119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
Tumor recurrence is a mechanism triggered in sparse populations of cancer cells that usually remain in a quiescent state after strict stress and/or therapeutic factors, which is affected by a variety of autocrine and microenvironmental cues. Despite thorough investigations, the biology of dormant and/or cancer stem cells is still not fully elucidated, as for the mechanisms of their reawakening, while only the major molecular patterns driving the relapse process have been identified to date. These molecular patterns profoundly interfere with the elements of cellular proteostasis systems that support the efficiency of the recurrence process. As a major proteostasis machinery, we review the role of the ubiquitin-proteasome system (UPS) in tumor cell dormancy and reawakening, devoting particular attention to the functions of its components, E3 ligases, deubiquitinating enzymes and proteasomes in cancer recurrence. We demonstrate how UPS components functionally or mechanistically interact with the pivotal proteins implicated in the recurrence program and reveal that modulators of the UPS hold promise to become an efficient adjuvant therapy for eradicating refractory tumor cells to impede tumor relapse.
Collapse
Affiliation(s)
- Bashar A Alhasan
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Alexey V Morozov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilov Street 32, 119991 Moscow, Russia.
| | - Irina V Guzhova
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| | - Boris A Margulis
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia.
| |
Collapse
|
12
|
Liu R, Zhao Y, Su S, Kwabil A, Njoku PC, Yu H, Li X. Unveiling cancer dormancy: Intrinsic mechanisms and extrinsic forces. Cancer Lett 2024; 591:216899. [PMID: 38649107 DOI: 10.1016/j.canlet.2024.216899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Tumor cells disseminate in various distant organs at early stages of cancer progression. These disseminated tumor cells (DTCs) can stay dormant/quiescent without causing patient symptoms for years or decades. These dormant tumor cells survive despite curative treatments by entering growth arrest, escaping immune surveillance, and/or developing drug resistance. However, these dormant cells can reactivate to proliferate, causing metastatic progression and/or relapse, posing a threat to patients' survival. It's unclear how cancer cells maintain dormancy and what triggers their reactivation. What are better approaches to prevent metastatic progression and relapse through harnessing cancer dormancy? To answer these remaining questions, we reviewed the studies of tumor dormancy and reactivation in various types of cancer using different model systems, including the brief history of dormancy studies, the intrinsic characteristics of dormant cells, and the external cues at the cellular and molecular levels. Furthermore, we discussed future directions in the field and the strategies for manipulating dormancy to prevent metastatic progression and recurrence.
Collapse
Affiliation(s)
- Ruihua Liu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China; Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Yawei Zhao
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Shang Su
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Augustine Kwabil
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Prisca Chinonso Njoku
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA
| | - Haiquan Yu
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, 010070, China.
| | - Xiaohong Li
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
13
|
Wang Y, Lyu L, Vu T, McCarty N. WITHDRAWN: TRIM44 promotes autophagy through SQSTM1 oligomerization in the response to oxidative stress induced by Arsenic Trioxide in cancer cells. RESEARCH SQUARE 2024:rs.3.rs-3951960. [PMID: 38464079 PMCID: PMC10925436 DOI: 10.21203/rs.3.rs-3951960/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
The authors have requested that this preprint be removed from Research Square.
Collapse
|
14
|
Zhao Y, Xing C, Deng Y, Ye C, Peng H. HIF-1α signaling: Essential roles in tumorigenesis and implications in targeted therapies. Genes Dis 2024; 11:234-251. [PMID: 37588219 PMCID: PMC10425810 DOI: 10.1016/j.gendis.2023.02.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/24/2022] [Accepted: 02/12/2023] [Indexed: 08/18/2023] Open
Abstract
The hypoxic microenvironment is an essential characteristic of most malignant tumors. Notably, hypoxia-inducible factor-1 alpha (HIF-1α) is a key regulatory factor of cellular adaptation to hypoxia, and many critical pathways are correlated with the biological activity of organisms via HIF-1α. In the intra-tumoral hypoxic environment, HIF-1α is highly expressed and contributes to the malignant progression of tumors, which in turn results in a poor prognosis in patients. Recently, it has been indicated that HIF-1α involves in various critical processes of life events and tumor development via regulating the expression of HIF-1α target genes, such as cell proliferation and apoptosis, angiogenesis, glucose metabolism, immune response, therapeutic resistance, etc. Apart from solid tumors, accumulating evidence has revealed that HIF-1α is also closely associated with the development and progression of hematological malignancies, such as leukemia, lymphoma, and multiple myeloma. Targeted inhibition of HIF-1α can facilitate an increased sensitivity of patients with malignancies to relevant therapeutic agents. In the review, we elaborated on the basic structure and biological functions of HIF-1α and summarized their current role in various malignancies. It is expected that they will have future potential for targeted therapy.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Cheng Xing
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yating Deng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Can Ye
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Hongling Peng
- Department of Hematology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Hunan Engineering Research Center of Cell Immunotherapy for Hematopoietic Malignancies, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
15
|
Gu J, Chen J, Xiang S, Zhou X, Li J. Intricate confrontation: Research progress and application potential of TRIM family proteins in tumor immune escape. J Adv Res 2023; 54:147-179. [PMID: 36736694 DOI: 10.1016/j.jare.2023.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tripartite motif (TRIM) family proteins have more than 80 members and are widely found in various eukaryotic cells. Most TRIM family proteins participate in the ubiquitin-proteasome degradation system as E3-ubiquitin ligases; therefore, they play pivotal regulatory roles in the occurrence and development of tumors, including tumor immune escape. Due to the diversity of functional domains of TRIM family proteins, they can extensively participate in multiple signaling pathways of tumor immune escape through different substrates. In current research and clinical contexts, immune escape has become an urgent problem. The extensive participation of TRIM family proteins in curing tumors or preventing postoperative recurrence and metastasis makes them promising targets. AIM OF REVIEW The aim of the review is to make up for the gap in the current research on TRIM family proteins and tumor immune escape and propose future development directions according to the current progress and problems. KEY SCIENTIFIC CONCEPTS OF REVIEW This up-to-date review summarizes the characteristics and biological functions of TRIM family proteins, discusses the mechanisms of TRIM family proteins involved in tumor immune escape, and highlights the specific mechanism from the level of structure-function-molecule-pathway-phenotype, including mechanisms at the level of protein domains and functions, at the level of molecules and signaling pathways, and at the level of cells and microenvironments. We also discuss the application potential of TRIM family proteins in tumor immunotherapy, such as possible treatment strategies for combination targeting TRIM family protein drugs and checkpoint inhibitors for improving cancer treatment.
Collapse
Affiliation(s)
- Junjie Gu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingyi Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuaixi Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xikun Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| | - Jing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
16
|
Liu RX, Gu RH, Li ZP, Hao ZQ, Hu QX, Li ZY, Wang XG, Tang W, Wang XH, Zeng YK, Li ZW, Dong Q, Zhu XF, Chen D, Zhao KW, Zhang RH, Zha ZG, Zhang HT. Trim21 depletion alleviates bone loss in osteoporosis via activation of YAP1/β-catenin signaling. Bone Res 2023; 11:56. [PMID: 37884520 PMCID: PMC10603047 DOI: 10.1038/s41413-023-00296-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/26/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Despite the diverse roles of tripartite motif (Trim)-containing proteins in the regulation of autophagy, the innate immune response, and cell differentiation, their roles in skeletal diseases are largely unknown. We recently demonstrated that Trim21 plays a crucial role in regulating osteoblast (OB) differentiation in osteosarcoma. However, how Trim21 contributes to skeletal degenerative disorders, including osteoporosis, remains unknown. First, human and mouse bone specimens were evaluated, and the results showed that Trim21 expression was significantly elevated in bone tissues obtained from osteoporosis patients. Next, we found that global knockout of the Trim21 gene (KO, Trim21-/-) resulted in higher bone mass compared to that of the control littermates. We further demonstrated that loss of Trim21 promoted bone formation by enhancing the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and elevating the activity of OBs; moreover, Trim21 depletion suppressed osteoclast (OC) formation of RAW264.7 cells. In addition, the differentiation of OCs from bone marrow-derived macrophages (BMMs) isolated from Trim21-/- and Ctsk-cre; Trim21f/f mice was largely compromised compared to that of the littermate control mice. Mechanistically, YAP1/β-catenin signaling was identified and demonstrated to be required for the Trim21-mediated osteogenic differentiation of BMSCs. More importantly, the loss of Trim21 prevented ovariectomy (OVX)- and lipopolysaccharide (LPS)-induced bone loss in vivo by orchestrating the coupling of OBs and OCs through YAP1 signaling. Our current study demonstrated that Trim21 is crucial for regulating OB-mediated bone formation and OC-mediated bone resorption, thereby providing a basis for exploring Trim21 as a novel dual-targeting approach for treating osteoporosis and pathological bone loss.
Collapse
Affiliation(s)
- Ri-Xu Liu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
- Department of Orthopedic and Spine Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Rong-He Gu
- School of Basic Medical Sciences of Guangxi Medical University, the Fifth Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Zhi-Peng Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhi-Quan Hao
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qin-Xiao Hu
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Yan Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Gang Wang
- Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, 100191, Beijing, China
| | - Wang Tang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-He Wang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Yu-Kai Zeng
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Zhen-Wei Li
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Qiu Dong
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Xiao-Feng Zhu
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China
| | - Di Chen
- Research Center for Computer-aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518005, Shenzhen, China
| | - Ke-Wei Zhao
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, the Third Affiliated Hospital of Guangzhou University of Chinese Medicine, 510375, Guangzhou, China
| | - Rong-Hua Zhang
- Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization, College of Pharmacy, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Zhen-Gang Zha
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| | - Huan-Tian Zhang
- Department of Bone and Joint Surgery, the First Affiliated Hospital of Jinan University; Key Laboratory of Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
17
|
Soureas K, Papadimitriou MA, Panoutsopoulou K, Pilala KM, Scorilas A, Avgeris M. Cancer quiescence: non-coding RNAs in the spotlight. Trends Mol Med 2023; 29:843-858. [PMID: 37516569 DOI: 10.1016/j.molmed.2023.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023]
Abstract
Cancer quiescence reflects the ability of cancer cells to enter a reversible slow-cycling or mitotically dormant state and represents a powerful self-protecting mechanism preventing cancer cell 'damage' from hypoxic conditions, nutrient deprivation, immune surveillance, and (chemo)therapy. When stress conditions are restrained, and tumor microenvironment becomes beneficial, quiescent cancer cells re-enter cell cycle to facilitate tumor spread and cancer progression/metastasis. Recent studies have highlighted the dynamic role of regulatory non-coding RNAs (ncRNAs) in orchestrating cancer quiescence. The elucidation of regulatory ncRNA networks will shed light on the quiescence-proliferation equilibrium and, ultimately, pave the way for new treatment options. Herein, we have summarized the ever-growing role of ncRNAs upon cancer quiescence regulation and their impact on treatment resistance and modern cancer therapeutics.
Collapse
Affiliation(s)
- Konstantinos Soureas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Katerina-Marina Pilala
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Clinical Biochemistry - Molecular Diagnostics, Second Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, 'P. & A. Kyriakou' Children's Hospital, Athens, Greece.
| |
Collapse
|
18
|
Vu T, Fowler A, McCarty N. Comprehensive Analysis of the Prognostic Significance of the TRIM Family in the Context of TP53 Mutations in Cancers. Cancers (Basel) 2023; 15:3792. [PMID: 37568609 PMCID: PMC10417774 DOI: 10.3390/cancers15153792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The p53 protein is an important tumor suppressor, and TP53 mutations are frequently associated with poor prognosis in various cancers. Mutations in TP53 result in a loss of p53 function and enhanced expression of cell cycle genes, contributing to the development and progression of cancer. Meanwhile, several tripartite motif (TRIM) proteins are known to regulate cell growth and cell cycle transition. However, the prognostic values between TP53 and TRIM family genes in cancer are unknown. In this study, we analyzed the relationship between the TP53 mutations and TRIM family proteins and evaluated the prognostic significance of TRIM family proteins in cancer patients with P53 mutations. Our findings identified specific TRIM family members that are upregulated in TP53 mutant tumors and are associated with the activation of genes related to a cell-cycle progression in the context of TP53 mutations.
Collapse
Affiliation(s)
- Trung Vu
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, TX 77030, USA;
| | - Annaliese Fowler
- The Department of Biomedical Engineering at Texas A&M University, Houston, TX 77030, USA;
| | - Nami McCarty
- The Department of Biomedical Engineering at Texas A&M University, Houston, TX 77030, USA;
| |
Collapse
|
19
|
Qian H, Lu Z, Hao C, Zhao Y, Bo X, Hu Y, Zhang Y, Yao Y, Ma G, Chen L. TRIM44 aggravates cardiac fibrosis after myocardial infarction via TAK1 stabilization. Cell Signal 2023:110744. [PMID: 37271349 DOI: 10.1016/j.cellsig.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/03/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
Myocardial infarction (MI) is one of the most dangerous cardiovascular events. Cardiac fibrosis is a common pathological feature of remodeling after injury that is related to adverse clinical results with no effective treatment. Previous studies have confirmed that TRIM44, an E3 ligase, can promote the proliferation and migration of various tumor cells. However, the role of TRIM44 in cardiac fibrosis remains unknown. Models of TGF-β1 stimulation and MI-induced fibrosis were established to investigate the role and potential underlying mechanism of TRIM44 in cardiac fibrosis. The results showed that cardiac fibrosis was significantly inhibited after TRIM44 knockdown in a mouse model of MI, while it was enhanced when TRIM44 was overexpressed. Furthermore, in vitro studies showed that fibrosis markers were significantly reduced in cardiac fibroblasts (CFs) with TRIM44 knockdown, whereas TRIM44 overexpression promoted the expression of fibrosis markers. Mechanistically, TRIM44 maintains TAK1 stability by inhibiting the degradation of k48-linked polyubiquitination-mediated ubiquitination, thereby increasing phosphorylated TAK1 expression in the fibrotic environment and activating MAPKs to promote fibrosis. Pharmacological inhibition of TAK1 phosphorylation reversed the fibrogenic effects of TRIM44 overexpression. Combined, these results suggest that TRIM44 is a potential therapeutic target for cardiac fibrosis.
Collapse
Affiliation(s)
- Hao Qian
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhengri Lu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Chunshu Hao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuanyuan Zhao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiangwei Bo
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ya Hu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yuyu Yao
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Genshan Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Lijuan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China; Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing 211200, China.
| |
Collapse
|
20
|
Jiang XY, Guan FF, Ma JX, Dong W, Qi XL, Zhang X, Chen W, Gao S, Gao X, Pan S, Wang JZ, Ma YW, Zhang LF, Lu D. Cardiac-specific Trim44 knockout in rat attenuates isoproterenol-induced cardiac remodeling via inhibition of AKT/mTOR pathway. Dis Model Mech 2023; 16:276033. [PMID: 35855640 PMCID: PMC9441189 DOI: 10.1242/dmm.049444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
Abstract
When pathological hypertrophy progresses to heart failure (HF), the prognosis is often very poor. Therefore, it is crucial to find new and effective intervention targets. Here, myocardium-specific Trim44 knockout rats were generated using CRISPR-Cas9 technology. Cardiac phenotypic observations revealed that Trim44 knockout affected cardiac morphology at baseline. Rats with Trim44 deficiency exhibited resistance to cardiac pathological changes in response to stimulation via isoproterenol (ISO) treatment, including improvement of cardiac remodeling and dysfunction by morphological and functional observations, reduced myocardial fibrosis and reduced expression of molecular markers of cardiac stress. Furthermore, signal transduction validation associated with growth and hypertrophy development in vivo and in vitro demonstrated that Trim44 deficiency inhibited the activation of signaling pathways involved in myocardial hypertrophy, especially response to pathological stress. In conclusion, the present study indicates that Trim44 knockout attenuates ISO-induced pathological cardiac remodeling through blocking the AKT/mTOR/GSK3β/P70S6K signaling pathway. This is the first study to demonstrate the function and importance of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy and HF. Summary: This is the first study to demonstrate the function of Trim44 in the heart at baseline and under pathological stress. Trim44 could be a novel therapeutic target for prevention of cardiac hypertrophy.
Collapse
Affiliation(s)
- Xiao-Yu Jiang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Fei-Fei Guan
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Jia-Xin Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wei Dong
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xiao-Long Qi
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xu Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Wei Chen
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Shan Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Xiang Gao
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Shuo Pan
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Ji-Zheng Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, China
| | - Yuan-Wu Ma
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Lian-Feng Zhang
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| | - Dan Lu
- Key Laboratory of Human Disease Comparative Medicine, National Health Commission of China (NHC), Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China.,Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China.,National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Peking Union Medicine College, Beijing 100021, China
| |
Collapse
|
21
|
Wang J, Xiang Y, Fan M, Fang S, Hua Q. The Ubiquitin-Proteasome System in Tumor Metabolism. Cancers (Basel) 2023; 15:cancers15082385. [PMID: 37190313 DOI: 10.3390/cancers15082385] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/17/2023] Open
Abstract
Metabolic reprogramming, which is considered a hallmark of cancer, can maintain the homeostasis of the tumor environment and promote the proliferation, survival, and metastasis of cancer cells. For instance, increased glucose uptake and high glucose consumption, known as the "Warburg effect," play an essential part in tumor metabolic reprogramming. In addition, fatty acids are harnessed to satisfy the increased requirement for the phospholipid components of biological membranes and energy. Moreover, the anabolism/catabolism of amino acids, such as glutamine, cystine, and serine, provides nitrogen donors for biosynthesis processes, development of the tumor inflammatory environment, and signal transduction. The ubiquitin-proteasome system (UPS) has been widely reported to be involved in various cellular biological activities. A potential role of UPS in the metabolic regulation of tumor cells has also been reported, but the specific regulatory mechanism has not been elucidated. Here, we review the role of ubiquitination and deubiquitination modification on major metabolic enzymes and important signaling pathways in tumor metabolism to inspire new strategies for the clinical treatment of cancer.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuandi Xiang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Mengqi Fan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shizhen Fang
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qingquan Hua
- Department of Otolaryngology-Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
22
|
Ye H, Wang RY, Yu XZ, Wu YK, Yang BW, Ao MY, Xi MR, Hou MM. Exosomal circNFIX promotes angiogenesis in ovarian cancer via miR-518a-3p/TRIM44 axis. Kaohsiung J Med Sci 2023; 39:26-39. [PMID: 36448712 DOI: 10.1002/kjm2.12615] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 12/05/2022] Open
Abstract
Ovarian cancer (OC) is a gynecological cancer with high mortality. OC-derived exosomal circRNAs can regulate angiogenesis. This study aims to explore the role and mechanism of exosomal circRNA nuclear factor I X (CircNFIX) derived from OC cells in angiogenesis. Quantitative real-time polymerase chain reaction was employed to evaluate the levels of circNFIX, miR-518a-3p, and tripartite motif protein 44 (TRIM44) in OC and adjacent tissues. Exosomes from the ovarian surface epithelial cell (HOSEpiC) and OC cells (SKOV3 or OVCAR3) were isolated by differential centrifugation. Exosomes were cocultured with the human umbilical vein endothelial cells (HUVECs). The angiogenesis capacity was analyzed by Tube formation assay. 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) and Transwell assays were used to determine the cell viability and migration ability. The dual-luciferase report, RNA immunoprecipitation (RIP), and RNA pull-down assays were applied to validate the gene's interaction. CircNFIX and TRIM44 expression were higher and miR-518a-3p was lower in OC tissues than in the adjacent tissues. Upregulated circNFIX and TRIM44 were significantly correlated with the tumor size and International Federation of Gynecology and Obstetrics (FIGO) stage of OC patients. HUVECs treated OC-derived exosomes had higher proliferation, migration, and angiogenesis capacities than the control group. While OC-derived exosomal circNFIX silencing restrained HUVECs' proliferation, migration, and angiogenesis, compared with the OC-derived exosomes group. OC-derived exosomal circNFIX positively regulated TRIM44 expression by targeting miR-518a-3p in HUVECs. OC-derived exosomal circNFIX promoted angiogenesis by regulating the Janus-activated kinase/signal transducer and activator of transcription 1 (JAK/STAT1) pathway via miR-518a-3p/TRIM44 axis in HUVECs.
Collapse
Affiliation(s)
- Hui Ye
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Rui-Yu Wang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Xiu-Zhang Yu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Yu-Ke Wu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Bo-Wen Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Meng-Yin Ao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Ming-Rong Xi
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| | - Min-Min Hou
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Zhang X, Wu X, Sun Y, Chu Y, Liu F, Chen C. TRIM44 regulates tumor immunity in gastric cancer through LOXL2-dependent extracellular matrix remodeling. Cell Oncol (Dordr) 2022; 46:423-435. [PMID: 36512309 DOI: 10.1007/s13402-022-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/12/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Gastric cancer is a gastrointestinal malignancy with high mortality and poor prognosis, and the molecular mechanism of gastric tumorigenesis remains unclear. TRIM44 has been reported to be involved in tumor development. However, the role of TRIM44 in tumor immunity is largely unknown. METHODS We analyzed TRIM44 expression in clinical gastric cancer tissues and normal tissues by using western blot, quantitative real-time PCR and bioinformatics analyses. We further investigated the involvement of TRIM44 in tumor immunity in vivo and found that it was dependent on extracellular matrix remodeling. We detected the interaction between TRIM44 and LOXL2 by using immunofluorescence staining and coimmunoprecipitation assays. We observed that TRIM44 mediates the stability of LOXL2 by ubiquitination assays. RESULTS TRIM44 expression is high and is correlated with T-cell infiltration in gastric cancer. TRIM44 inhibits gastric tumorigenicity by regulating T-cell-mediated antitumor immunity and modulating the protein level of LOXL2. Mechanistically, TRIM44 directly binds to LOXL2 and affects the stability of LOXL2 to change extracellular matrix remodeling and influence tumor immunity. CONCLUSION These findings demonstrate that TRIM44 regulates the stability of LOXL2 to remodel the tumor extracellular matrix to modulate tumor immunity in gastric cancer and that the TRIM44/LOXL2 complex is a promising biomarker for gastric cancer prognosis and might be a novel immunotherapy target.
Collapse
Affiliation(s)
- Xin Zhang
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China
| | - Xiusheng Wu
- Department of General Surgery, Linyi People's Hospital, 105 Plaza Street, Linyi County, China
| | - Ying Sun
- Department of Blood quality Control, Yantai central blood station, 10 Haiyun Road, Yantai, China
| | - Yali Chu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China
| | - Fengjun Liu
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China
| | - Cheng Chen
- Department of General Surgery, Qilu Hospital of Shandong University, 107 West Wenhua Road, 250012, JiNan, China.
| |
Collapse
|
24
|
Wang Z, Zhang XF, Wang MP, Yan S, Dai ZX, Qian QH, Zhao J, Ma XL, Li B, Liu J. Mining Potential Drug Targets for Osteoporosis Based on CeRNA Network. Orthop Surg 2022; 15:1333-1347. [PMID: 36513616 PMCID: PMC10157711 DOI: 10.1111/os.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To identify key pathological hub genes, micro RNAs (miRNAs), and circular RNAs (circRNAs) of osteoporosis (OP) and construct their ceRNA network in an effort to explore the potential biomarkers and drug targets for OP therapy. METHODS GSE7158, GSE201543, and GSE161361 microarray datasets were downloaded from Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified by comparing OP patients with healthy controls and hub genes were screened by machine learning algorithms. Target miRNAs and circRNAs were predicted by FunRich and circbank, then ceRNA network were constructed by Cytoscape. Pathways affecting OP were identified by functional enrichment analysis. The hub genes were verified by receiver operating characteristic (ROC) curve and real time quantitative PCR (RT-qPCR). Potential drug molecules related to OP were predicted by DSigDB database and molecular docking was analyzed by autodock vina software. RESULTS A total of 179 DEGs were identified. By combining three machine learning algorithms, BAG2, MME, SLC14A1, and TRIM44 were identified as hub genes. Three OP-associated target miRNAs and 362 target circRNAs were predicted to establish ceRNA network. The ROC curves showed that these four hub genes had good diagnostic performance and their differential expression was statistically significant in OP animal model. Benzo[a]pyrene was predicted which could successfully bind to protein receptors related to the hub genes and it was served as the potential drug molecules. CONCLUSION An mRNA-miRNA-circRNA network is reported, which provides new ideas for exploring the pathogenesis of OP. Benzo[a]pyrene, as potential drug molecules for OP, may provide guidance for the clinical treatment.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China.,Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiao-Fei Zhang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Mao-Peng Wang
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China.,Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Shuo Yan
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China.,Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zheng-Xu Dai
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China.,Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Qing-Hang Qian
- Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jie Zhao
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China
| | - Xin-Long Ma
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Institute of Orthopaedics, Tianjin Hospital, Tianjin, China.,Department of Orthopaedics, Tianjin Hospital, Tianjin, China
| | - Bing Li
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China
| | - Jun Liu
- Department of Joint Surgery, Tianjin Hospital, Tianjin, China.,Graduate School of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
25
|
Łuczkowska K, Kulig P, Baumert B, Machaliński B. The Evidence That 25(OH)D3 and VK2 MK-7 Vitamins Influence the Proliferative Potential and Gene Expression Profiles of Multiple Myeloma Cells and the Development of Resistance to Bortezomib. Nutrients 2022; 14:5190. [PMID: 36501221 PMCID: PMC9736786 DOI: 10.3390/nu14235190] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) remains an incurable hematological malignancy. Bortezomib (BTZ) is a proteasome inhibitor widely used in MM therapy whose potent activity is often hampered by the development of resistance. The immune system is vital in the pathophysiology of BTZ resistance. Vitamins D (VD) and K (VK) modulate the immune system; therefore, they are potentially beneficial in MM. The aim of the study was to evaluate the effect of BTZ therapy and VD and VK supplementation on the proliferation potential and gene expression profiles of MM cells in terms of the development of BTZ resistance. The U266 MM cell line was incubated three times with BTZ, VD and VK at different timepoints. Then, proliferation assays, RNA sequencing and bioinformatics analysis were performed. We showed BTZ resistance to be mediated by processes related to ATP metabolism and oxidative phosphorylation. The upregulation of genes from the SNORDs family suggests the involvement of epigenetic mechanisms. Supplementation with VD and VK reduced the proliferation of MM cells in both the non-BTZ-resistant and BTZ-resistant phenotypes. VD and VK, by restoring proper metabolism, may have overcome resistance to BTZ in vitro. This observation forms the basis for further clinical trials evaluating VD and VK as potential adjuvant therapies for MM patients.
Collapse
Affiliation(s)
- Karolina Łuczkowska
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Piotr Kulig
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Bartłomiej Baumert
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| | - Bogusław Machaliński
- Department of General Pathology, Pomeranian Medical University, 70-111 Szczecin, Poland
- Department of Hematology and Transplantology, Pomeranian Medical University, 71-252 Szczecin, Poland
| |
Collapse
|
26
|
Wang Y, Liu X, Huang W, Liang J, Chen Y. The intricate interplay between HIFs, ROS, and the ubiquitin system in the tumor hypoxic microenvironment. Pharmacol Ther 2022; 240:108303. [PMID: 36328089 DOI: 10.1016/j.pharmthera.2022.108303] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/16/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Alterations in protein ubiquitination and hypoxia-inducible factor (HIF) signaling both contribute to tumorigenesis and tumor progression. Ubiquitination is a dynamic process that is coordinately regulated by E3 ligases and deubiquitinases (DUBs), which have emerged as attractive therapeutic targets. HIF expression and transcriptional activity are usually increased in tumors, leading to poor clinical outcomes. Reactive oxygen species (ROS) are upregulated in tumors and have multiple effects on HIF signaling and the ubiquitin system. A growing body of evidence has shown that multiple E3 ligases and UBDs function synergistically to control the expression and activity of HIF, thereby allowing cancer cells to cope with the hypoxic microenvironment. Conversely, several E3 ligases and DUBs are regulated by hypoxia and/or HIF signaling. Hypoxia also induces ROS production, which in turn modulates the stability or activity of HIF, E3 ligases, and DUBs. Understanding the complex networks between E3 ligase, DUBs, ROS, and HIF will provide insights into the fundamental mechanism of the cellular response to hypoxia and help identify novel molecular targets for cancer treatment. We review the current knowledge on the comprehensive relationship between E3 ligase, DUBs, ROS, and HIF signaling, with a particular focus on the use of E3 ligase or DUB inhibitors in cancer.
Collapse
Affiliation(s)
- Yijie Wang
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China
| | - Xiong Liu
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Weixiao Huang
- School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China
| | - Junjie Liang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, China.
| | - Yan Chen
- Institute of Biomedical Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Center for Cell Structure and Function, College of Life Sciences, Shandong Normal University, Jinan, Shandong 250014, China; School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
27
|
Dadzie TG, Green AC. The role of the bone microenvironment in regulating myeloma residual disease and treatment. Front Oncol 2022; 12:999939. [PMID: 36072809 PMCID: PMC9441696 DOI: 10.3389/fonc.2022.999939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022] Open
Abstract
Multiple myeloma is an incurable haematological cancer. The increase in targeted therapies has improved the number of myeloma patients achieving a complete response and improved progression-free survival following therapy. However, a low level of disease or minimal residual disease (MRD) still persists which contributes to the inevitable relapse in myeloma patients. MRD has been attributed to the presence of dormant myeloma cells and their subsequent reactivation, which is controlled by the microenvironment and specialised niches within the bone marrow. This contributes to the evasion of the immune system and chemotherapy, eventually leading to relapse. The growth of myeloma tumours are heavily dependent on environmental stimuli from the bone marrow microenvironment, and this plays a key role in myeloma progression. The bone microenvironment also plays a critical role in myeloma bone disease and the development of skeletal-related events. This review focuses on the bone marrow microenvironment in relation to myeloma pathogenesis and cancer dormancy. Moreover, it reviews the current therapies targeting the bone microenvironment to treat myeloma and myeloma bone disease. Lastly, it identifies novel therapeutic targets for myeloma treatment and the associated bone disease.
Collapse
|
28
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Lyu L, Chen Z, McCarty N. TRIM44 links the UPS to SQSTM1/p62-dependent aggrephagy and removing misfolded proteins. Autophagy 2021; 18:783-798. [PMID: 34382902 PMCID: PMC9037492 DOI: 10.1080/15548627.2021.1956105] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Until recently, the ubiquitin-proteasome system (UPS) and macroautophagy/autophagy were considered to be two independent systems that target proteins for degradation by proteasomes or via lysosomes, respectively. Here, we report that TRIM44 (tripartite motif containing 44) is a novel link that connects the UPS system with the autophagy degradation pathway. Suppressing the UPS degradation pathway leads to TRIM44 upregulation, which further promotes aggregated protein clearance through the binding of K48 ubiquitin chains on proteins. TRIM44 expression activates autophagy via promoting SQSTM1/p62 oligomerization, which rapidly increases the rate of aggregate protein removal. Overall, our data reveal that TRIM44 is a newly identified link between the UPS system and the autophagy pathway. Delineating the cross-talk between these two degradation pathways may reveal new mechanisms of targeting aggregate-prone diseases, such as cancer and neurodegenerative disease. Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; ATG5: autophagy related 5; BB: B-box domain; BECN1: beclin1; BM: bone marrow; CC: coiled-coil domain; CFTR: cystic fibrosis transmembrane conductance regulator; CON: control; CQ: chloroquine; DOX: doxycycline; DSP: dithiobis(succinimidly propionate); ER: endoplasmic reticulum; FI: fluorescence intensity; FL: full length; HIF1A/HIF-1#x3B1;: hypoxia inducible factor 1 subunit alpha; HSC: hematopoietic stem cells; HTT: huntingtin; KD: knockdown; KD-CON: knockdown construct control; MM: multiple myeloma; MTOR: mechanistic target of rapamycin kinase; NP-40: nonidet P-40; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; OE: overexpression; OE-CON: overexpression construct control; PARP: poly (ADP-ribose) polymerase; SDS: sodium dodecyl sulfate; SQSTM1/p62: sequestosome 1; Tet-on: tetracycline; TRIM44: tripartite motif containing 44; UPS: ubiquitin-proteasome system; ZF: zinc-finger
Collapse
Affiliation(s)
- Lin Lyu
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, USA
| | - Zheng Chen
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, USA
| | - Nami McCarty
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
30
|
Lyu L, Lin TC, McCarty N. TRIM44 mediated p62 deubiquitination enhances DNA damage repair by increasing nuclear FLNA and 53BP1 expression. Oncogene 2021; 40:5116-5130. [PMID: 34211088 PMCID: PMC9744239 DOI: 10.1038/s41388-021-01890-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/20/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
Cancer cells show increases in protein degradation pathways, including autophagy, during progression to meet the increased protein degradation demand and support cell survival. On the other hand, reduced autophagy activity during aging is associated with a reduced DNA damage response and increased genomic instability. Therefore, it is a puzzling how DNA repair can be increased in cancer cells that are resistant to chemotherapies or during progression when autophagy activity is intact or increased. We discovered that tripartite motif containing 44 (TRIM44) is a pivotal element regulating the DNA damage response in cancer cells with intact autophagy. TRIM44 deubiquitinates p62, an autophagy substrate, which leads to its oligomerization. This prevents p62 localization to the nucleus upon irradiation. Increased cytoplasmic retention of p62 by TRIM44 prevents the degradation of FLNA and 53BP1, which increases DNA damage repair. Together, our data support TRIM44 a potential therapeutic target for therapy-resistant tumor cells with intact autophagy.
Collapse
Affiliation(s)
- Lin Lyu
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Tsung-Chin Lin
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Nami McCarty
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), the University of Texas-Health Science Center at Houston, Houston, Texas, 77030, USA.,Correspondence: Nami McCarty, Ph.D., University of Texas-Health Science Center at Houston, 1825 Pressler St., IMM-630A, Houston, TX 77030, USA, , Tel: 713-500-2495, Fax: 713-500-2424
| |
Collapse
|
31
|
Chen L, Yi C, Li W, Tseng Y, Zhang J, Liu J. Inhibition of SPATS2 Suppresses Proliferation and Invasion of Hepatocellular Carcinoma Cells through TRIM44-STAT3 Signaling Pathway. J Cancer 2021; 12:89-98. [PMID: 33391405 PMCID: PMC7738826 DOI: 10.7150/jca.47526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 10/06/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global health burden and its treatment options are limited. Spermatogenesis associated serine rich 2(SPATS2), a recent defined oncogene, was found to be a prognostic biomarker in HCC. However, the explicit mechanism underlying SPATS2 was urged to be elucidated. In vitro, knockdown of SPATS2 hampered the proliferation, invasion and migration of HCC cells. Moreover, phosphorylation of signal transducer and activator of transcription 3 (STAT3) and its downstream oncogenes were dramatically suppressed by SPATS2 knockdown. In addition, tripartite motif containing 44 (TRIM44) was found to be positively associated with SPATS2 in TCGA and declined after SPATS2 knockdown in HCC cells. Overexpression of TRIM44 rescued the effect of SPATS2 silencing on p-STAT3 and its downstream oncogenes. In vivo, SPATS2 silencing was confirmed to impede HCC tumor development in nude mice. In our own cohort containing 112 HCC patients, high SPATS2 protein level is indicative of an unfavorable clinicopathological feature and poor prognosis and could serve as an independent risk factor. Collectively, the present study is the first to propose the mechanism of significance of SPATS2-TRIM44-p-STAT3 in HCC and provide a new theoretical basis for targeted therapy.
Collapse
Affiliation(s)
- Lirong Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Chenhe Yi
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Wenshuai Li
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Yujen Tseng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China
| |
Collapse
|
32
|
Luo M, Li JF, Yang Q, Zhang K, Wang ZW, Zheng S, Zhou JJ. Stem cell quiescence and its clinical relevance. World J Stem Cells 2020; 12:1307-1326. [PMID: 33312400 PMCID: PMC7705463 DOI: 10.4252/wjsc.v12.i11.1307] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Quiescent state has been observed in stem cells (SCs), including in adult SCs and in cancer SCs (CSCs). Quiescent status of SCs contributes to SC self-renewal and conduces to averting SC death from harsh external stimuli. In this review, we provide an overview of intrinsic mechanisms and extrinsic factors that regulate adult SC quiescence. The intrinsic mechanisms discussed here include the cell cycle, mitogenic signaling, Notch signaling, epigenetic modification, and metabolism and transcriptional regulation, while the extrinsic factors summarized here include microenvironment cells, extracellular factors, and immune response and inflammation in microenvironment. Quiescent state of CSCs has been known to contribute immensely to therapeutic resistance in multiple cancers. The characteristics and the regulation mechanisms of quiescent CSCs are discussed in detail. Importantly, we also outline the recent advances and controversies in therapeutic strategies targeting CSC quiescence.
Collapse
Affiliation(s)
- Meng Luo
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jin-Fan Li
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Qi Yang
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Kun Zhang
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Zhan-Wei Wang
- Department of Breast Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313003, Zhejiang Province, China
| | - Shu Zheng
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| | - Jiao-Jiao Zhou
- Department of Breast Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang Province, China
| |
Collapse
|
33
|
Sun T, Liu Z, Yang Q. The role of ubiquitination and deubiquitination in cancer metabolism. Mol Cancer 2020; 19:146. [PMID: 33004065 PMCID: PMC7529510 DOI: 10.1186/s12943-020-01262-x] [Citation(s) in RCA: 290] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/23/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming, including enhanced biosynthesis of macromolecules, altered energy metabolism, and maintenance of redox homeostasis, is considered a hallmark of cancer, sustaining cancer cell growth. Multiple signaling pathways, transcription factors and metabolic enzymes participate in the modulation of cancer metabolism and thus, metabolic reprogramming is a highly complex process. Recent studies have observed that ubiquitination and deubiquitination are involved in the regulation of metabolic reprogramming in cancer cells. As one of the most important type of post-translational modifications, ubiquitination is a multistep enzymatic process, involved in diverse cellular biological activities. Dysregulation of ubiquitination and deubiquitination contributes to various disease, including cancer. Here, we discuss the role of ubiquitination and deubiquitination in the regulation of cancer metabolism, which is aimed at highlighting the importance of this post-translational modification in metabolic reprogramming and supporting the development of new therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Tianshui Sun
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China
| | - Zhuonan Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
34
|
Cui D, Wang K, Liu Y, Gao J, Cui J. MicroRNA-623 Inhibits Epithelial-Mesenchymal Transition to Attenuate Glioma Proliferation by Targeting TRIM44. Onco Targets Ther 2020; 13:9291-9303. [PMID: 33061418 PMCID: PMC7518774 DOI: 10.2147/ott.s250497] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Glioma has the highest incidence among the different tumor types within the nervous system, accounting for about 40% of them. Malignant glioma has a high invasion and metastasis rate, which leads to the poor prognosis of patients. By targeting specific genes, microRNAs serve as key regulators in the epithelial–mesenchymal transformation (EMT) process, which could provide new insights into the treatment of glioblastomas (GBM). The detailed molecular role that miR-623 plays in GBM still remains unclear. Materials and Methods The level of miR-623 in GBM cells was evaluated by RT-PCR. The function of miR-623 overexpression on GBM cell proliferation, migration, and invasion was assessed by MTS, Transwell analysis, and colony formation assay. In addition, a mouse subcutaneous xenograft model was used to study in vivo effects. The binding between miR-623 and TRIM44 was verified by a dual-luciferase reporter assay and the regulatory function of miR-623 on EMT markers was evaluated using Western blot. Results The expression of miR-623 was repressed in the GBM cancer cell lines. MiR-623 overexpression or TRIM44 knockdown attenuated the proliferation, migration, and invasion of GBM cell lines. TRIM44 could facilitate the reverse suppression of EMT and miR-623 in GBM progression. MiR-623 was found to inhibit TRIM44 expression by directly binding to its 3ʹUTR. In addition, systemic delivery of miR-623 mimic reduced tumor growth and inhibited TRIM44 protein expression in tumor-bearing nude mice. Furthermore, our findings indicated that miR-623 overexpression or TRIM44 down-regulation impeded the proliferation and migratory ability of LN229 and U251MG glioma cells, and miR-623 attenuates TRIM44-induced EMT by directly targeting the 3ʹUTR of TRIM44, which could serve as preliminary research to identify potential therapeutic targets for future treatment of GBM. Conclusion Overall, microRNA-623 inhibits epithelial–mesenchymal transition to attenuate glioma proliferation by targeting TRIM44.
Collapse
Affiliation(s)
- Dawei Cui
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China
| | - Kaijie Wang
- Department of Surgery, Tangshan Gongren Hospital, Tangshan, Hebei, 063000, People's Republic of China
| | - Yan Liu
- Department of Surgery, Tangshan Gongren Hospital, Tangshan, Hebei, 063000, People's Republic of China
| | - Junling Gao
- School of Basic Medical Science, North China University of Science and Technology, Tangshan, Hebei 063200, People's Republic of China
| | - Jianzhong Cui
- Department of Surgery, Hebei Medical University, Shijiazhuang, Hebei 050017, People's Republic of China.,Department of Surgery, Tangshan Gongren Hospital, Tangshan, Hebei, 063000, People's Republic of China
| |
Collapse
|
35
|
Huang M, Yang L, Peng X, Wei S, Fan Q, Yang S, Li X, Li B, Jin H, Wu B, Liu J, Li H. Autonomous glucose metabolic reprogramming of tumour cells under hypoxia: opportunities for targeted therapy. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:185. [PMID: 32928258 PMCID: PMC7491117 DOI: 10.1186/s13046-020-01698-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
Molecular oxygen (O2) is a universal electron acceptor that is eventually synthesized into ATP in the mitochondrial respiratory chain of all metazoans. Therefore, hypoxia biology has become an organizational principle of cell evolution, metabolism and pathology. Hypoxia-inducible factor (HIF) mediates tumour cells to produce a series of glucose metabolism adaptations including the regulation of glucose catabolism, glycogen metabolism and the biological oxidation of glucose to hypoxia. Since HIF can regulate the energy metabolism of cancer cells and promote the survival of cancer cells, targeting HIF or HIF mediated metabolic enzymes may become one of the potential treatment methods for cancer. In this review, we summarize the established and recently discovered autonomous molecular mechanisms that can induce cell reprogramming of hypoxic glucose metabolism in tumors and explore opportunities for targeted therapy.
Collapse
Affiliation(s)
- Mingyao Huang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Liang Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Qing Fan
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Shuo Yang
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Xinyu Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bowen Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hongyuan Jin
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Bo Wu
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Jingang Liu
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China
| | - Hangyu Li
- Department of General Surgery, the Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China.
| |
Collapse
|
36
|
Wei CY, Wang L, Zhu MX, Deng XY, Wang DH, Zhang SM, Ying JH, Yuan X, Wang Q, Xuan TF, He AQ, Qi FZ, Gu JY. TRIM44 activates the AKT/mTOR signal pathway to induce melanoma progression by stabilizing TLR4. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:137. [PMID: 30922374 PMCID: PMC6437891 DOI: 10.1186/s13046-019-1138-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
Background There is growing evidence that tripartite motif-containing protein 44 (TRIM44) plays crucial role in tumor development. However, the underlying mechanism of this deubiquitinating enzyme remains unclear. Methods Large clinical samples were used to detect TRIM44 expression and its associations with clinicopathological features and prognosis. Gain- and loss-of-function experiments in cell lines and mouse xenograft models were performed to elucidate the function and underlying mechanisms of TRIM44 induced tumor progression. Co-immunoprecipitation (Co-IP) assays and mass spectrometric analyses were applied to verify the interacting proteins of TRIM44. Results We found that TRIM44 was commonly amplified in melanoma tissues compared with paratumoral tissues. TRIM44 expression also positively correlated with more aggressive clinicopathological features, such as Breslow depth (p = 0.025), distant metastasis (p = 0.012), and TNM stage (p = 0.002). Importantly, we found that TRIM44 was an independent indicator of prognosis for melanoma patients. Functionally, overexpression of TRIM44 facilitated cell invasion, migration, apoptosis resistance and proliferation in vitro, and promoted lung metastasis and tumorigenic ability in vivo. Importantly, high level of TRIM44 induced melanoma cell epithelial-mesenchymal transition (EMT), which is one of the most important mechanisms for the promotion of tumor metastasis. Mechanistically, high levels of TRIM44 increased the levels of p-AKT (T308) and p-mTOR (S2448), and a specific AKT inhibitor inhibited TRIM44-induced tumor progression. Co-IP assays and mass spectrometric analyses indicated that TRIM44 overexpression induces cell EMT through activating AKT/mTOR pathway via directly binding and stabilizing TOLL-like receptor 4 (TLR4), and TLR4 interference impeded TRIM44 induced tumor progression. Moreover, we demonstrated that TRIM44 is the target of miR-26b-5p, which is significantly downregulated in melanoma tissues and may be responsible for the overexpression of TRIM44. Conclusions TRIM44, regulated by miR-26b-5p, promotes melanoma progression by stabilizing TLR4, which then activates the AKT/mTOR pathway. TRIM44 shows promise as a prognostic predictor and a therapeutic target for melanoma patients. Electronic supplementary material The online version of this article (10.1186/s13046-019-1138-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chuan-Yuan Wei
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.,Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lu Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Meng-Xuan Zhu
- Liver Cancer Institute, Zhongshan Hospital, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xin-Yi Deng
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Dao-He Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Si-Min Zhang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jiang-Hui Ying
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xin Yuan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Qiang Wang
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Tian-Fan Xuan
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - An-Qi He
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Fa-Zhi Qi
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jian-Ying Gu
- Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
37
|
High TRIM44 expression as a valuable biomarker for diagnosis and prognosis in cervical cancer. Biosci Rep 2019; 39:BSR20181639. [PMID: 30792262 PMCID: PMC6400662 DOI: 10.1042/bsr20181639] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 02/02/2019] [Accepted: 02/20/2019] [Indexed: 12/13/2022] Open
Abstract
Tripartite motif containing 44 (TRIM44) has been reported to be up-regulated in multiple aggressive malignant tumors. However, its expression status and clinical significance in cervical cancer remain unknown. The purpose of this study was to investigate the clinical significance of TRIM44 expression and the prognosis in patients with cervical cancer (CC). Fresh frozen tissues from 5 samples of CC and 4 normal cervical tissues were analyzed for TRIM44 expression using RT- PCR and Western blot analysis. 122 paraffin-embedded surgical specimens from patients with CC were collected for an immunohistochemistry. TRIM44 expression was found to be significantly up-regulated in cervical cancer specimens compared with adjacent normal tissues (P<0.001). Statistical analysis showed that TRIM44 expression was significantly correlated with the International Federation of Gynecology and Obstetrics (FIGO) stage, histological grade and lymph node metastasis, but not with age, histological type, and tumor size. Kaplan–Meier survival analysis suggested that high TRIM44 expression was associated with poor prognosis. Patients highly expressing TRIM44 have significantly shorter overall survival (OS) (P=0.006) and disease-free survival (DFS) (P=0.002). Furthermore, multivariate Cox analysis showed TRIM44 was an independent risk factor for poor prognosis. Our study demonstrated that TRIM44 expression contributes to the progression of cervical cancer, and could be used as a marker of clinical diagnosis and prognosis of patients with cervical cancer.
Collapse
|
38
|
McCarty N. Battling quiescence for tumor eradication: too good to be true? Oncotarget 2018; 9:37276-37277. [PMID: 30647863 PMCID: PMC6324667 DOI: 10.18632/oncotarget.26452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/03/2018] [Indexed: 12/01/2022] Open
Affiliation(s)
- Nami McCarty
- Nami McCarty: Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), University of Texas-Health Science Center at Houston, Houston, TX, USA
| |
Collapse
|