1
|
Minciacchi VR, Bravo J, Karantanou C, Pereira RS, Zanetti C, Kumar R, Thomasberger N, Llavona P, Krack T, Bankov K, Meister M, Hartmann S, Maguer-Satta V, Lefort S, Putyrski M, Ernst A, Huntly BJP, Meduri E, Ruf W, Krause DS. Exploitation of the fibrinolytic system by B-cell acute lymphoblastic leukemia and its therapeutic targeting. Nat Commun 2024; 15:10059. [PMID: 39567540 PMCID: PMC11579293 DOI: 10.1038/s41467-024-54361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/06/2024] [Indexed: 11/22/2024] Open
Abstract
Fibrinolysis influences the mobilization of hematopoietic stem cells from their bone marrow microenvironment (BMM). Here we show that activation of plasmin, a key fibrinolytic agent, by annexin A2 (ANXA2) distinctly impacts progression of BCR-ABL1+ B-cell acute lymphoblastic leukemia (B-ALL) via modulation of the extracellular matrix (ECM) in the BMM. The dense ECM in a BMM with decreased plasmin activity entraps insulin-like growth factor (IGF) 1 and reduces mTORC2-dependent signaling and proliferation of B-ALL cells. Conversely, B-ALL conditions the BMM to induce hepatic generation of plasminogen, the plasmin precursor. Treatment with ε-aminocaproic acid (EACA), which inhibits plasmin activation, reduces tumor burden and prolongs survival, including in xenogeneic models via increased fibronectin in the BMM. Human data confirm that IGF1 and fibronectin staining in trephine biopsies are correlated. Our studies suggest that fibrinolysis-mediated ECM remodeling and subsequent growth factor release influence B-ALL progression and inhibition of this process by EACA may be beneficial as adjunct therapy.
Collapse
Affiliation(s)
- Valentina R Minciacchi
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Jimena Bravo
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Christina Karantanou
- Department of Vascular Dysfunction - Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Raquel S Pereira
- Institute for Experimental Pediatric Hematology and Oncology, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Division of mRNA Cancer Immunotherapy, Helmholtz Institute for Translational Oncology Mainz, Mainz, Germany
| | - Rahul Kumar
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | | | | | - Theresa Krack
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
| | - Katrin Bankov
- Department of Pediatrics (Hematology/Oncology), Charité-Universitätsmedizin, Berlin, Germany
| | | | - Sylvia Hartmann
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | | | - Sylvain Lefort
- CRCL, Inserm U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Mateusz Putyrski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine & Pharmacology TMP, Frankfurt am Main, Germany
| | - Andreas Ernst
- Pharmazentrum/ZAFES Frankfurt, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Daniela S Krause
- Institute of Transfusion Medicine - Transfusion Center, Johannes Gutenberg University Medical Center, 55131, Mainz, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Research Center for Immunotherapy (FZI), University Medical Center, University of Mainz, Mainz, Germany.
| |
Collapse
|
2
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Minciacchi VR, Karantanou C, Bravo J, Pereira RS, Zanetti C, Krack T, Kumar R, Bankov K, Hartmann S, Huntly BJP, Meduri E, Ruf W, Krause DS. Differential inflammatory conditioning of the bone marrow by acute myeloid leukemia and its impact on progression. Blood Adv 2024; 8:4983-4996. [PMID: 38996202 PMCID: PMC11465066 DOI: 10.1182/bloodadvances.2024012867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
ABSTRACT Inflammation promotes solid tumor progression, but how regulatory mechanisms of inflammation may affect leukemia is less well studied. Using annexin A5 (ANXA5), a calcium-binding protein known for apoptosis, which we discovered to be differentially expressed in the bone marrow microenvironment (BMM) of mice with acute myeloid (AML) vs chronic myeloid leukemia, as a model system, we unravel here a circuit in which AML-derived tumor necrosis factor α (TNF-α) dose-dependently reduces ANXA5 in the BMM. This creates an inflammatory BMM via elevated levels of prostaglandin E2 (PGE2). Via binding to its EP4 receptor, PGE2 increases β-catenin and hypoxia-inducible factor 1α signaling in AML cells, thereby accelerating PGE2-sensitive AML. Human trephine biopsies may show lower ANXA5 expression and higher PGE2 expression in AML than other hematologic malignancies. Furthermore, syngeneic and xenogeneic transplantation models suggest a survival benefit after treatment with the inhibitor of prostaglandin-endoperoxide synthase 2 (cyclooxygenase 2 [COX2]), celecoxib, plus cytarabine in those AML types highly sensitive to PGE2 compared with cytarabine alone. Taken together, TNF-α/ANXA5/NF-κB/COX2/PGE2-mediated inflammation influences AML course in a highly differential and circular manner, and patients with AML with "inflammatory AML" may benefit from antiphlogistic agents as adjunct therapy.
Collapse
Affiliation(s)
- Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Raquel S. Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Theresa Krack
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Katrin Bankov
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Department of Pathology, Goethe University, Frankfurt am Main, Germany
| | - Brian J. P. Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| | - Daniela S. Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Institute of Transfusion Medicine - Transfusion Centre, Johannes Gutenberg University Medical Centre, Mainz, Germany
| |
Collapse
|
4
|
Wang X, Hou Y, Lyu Y, Zhou J, Zhang X, Hassani MA, Huang D, Zhao Z, Zhou D, Xie F, Zhang X, Yan J. LncRNA IRAIN overcomes imatinib resistance in chronic myeloid leukemia via NF-κB/CD44 pathway inhibition. iScience 2024; 27:109851. [PMID: 38784023 PMCID: PMC11112338 DOI: 10.1016/j.isci.2024.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The development of tyrosine kinase inhibitors (TKIs) has revolutionarily increased the overall survival of patients with chronic myeloid leukemia (CML). However, drug resistance remains a major obstacle. Here, we demonstrated that a BCR-ABL1-independent long non-coding RNA, IRAIN, is constitutively expressed at low levels in CML, resulting in imatinib resistance. IRAIN knockdown decreased the sensitivity of CD34+ CML blasts and cell lines to imatinib, whereas IRAIN overexpression significantly increased sensitivity. Mechanistically, IRAIN downregulates CD44, a membrane receptor favorably affecting TKI resistance, by binding to the nuclear factor kappa B subunit p65 to reduce the expression of p65 and phosphorylated p65. Therefore, the demethylating drug decitabine, which upregulates IRAIN, combined with imatinib, formed a dual therapy strategy which can be applied to CML with resistance to TKIs.
Collapse
Affiliation(s)
- Xijia Wang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Yutong Hou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Yizhu Lyu
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Jiayin Zhou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Xin Zhang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Mohammad Arian Hassani
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Dan Huang
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Zhijia Zhao
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Dong Zhou
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Fang Xie
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Jinsong Yan
- Department of Hematology, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Blood Stem Cell Transplantation Institute, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, the Second Hospital of Dalian Medical University, Dalian 116027, China
- Department of Pediatric, Pediatric Oncology and Hematology Center of the Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, China
| |
Collapse
|
5
|
Pereira RS, Kumar R, Cais A, Paulini L, Kahler A, Bravo J, Minciacchi VR, Krack T, Kowarz E, Zanetti C, Godavarthy PS, Hoeller F, Llavona P, Stark T, Tascher G, Nowak D, Meduri E, Huntly BJP, Münch C, Pampaloni F, Marschalek R, Krause DS. Distinct and targetable role of calcium-sensing receptor in leukaemia. Nat Commun 2023; 14:6242. [PMID: 37802982 PMCID: PMC10558580 DOI: 10.1038/s41467-023-41770-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 09/12/2023] [Indexed: 10/08/2023] Open
Abstract
Haematopoietic stem cells (HSC) reside in the bone marrow microenvironment (BMM), where they respond to extracellular calcium [eCa2+] via the G-protein coupled calcium-sensing receptor (CaSR). Here we show that a calcium gradient exists in this BMM, and that [eCa2+] and response to [eCa2+] differ between leukaemias. CaSR influences the location of MLL-AF9+ acute myeloid leukaemia (AML) cells within this niche and differentially impacts MLL-AF9+ AML versus BCR-ABL1+ leukaemias. Deficiency of CaSR reduces AML leukaemic stem cells (LSC) 6.5-fold. CaSR interacts with filamin A, a crosslinker of actin filaments, affects stemness-associated factors and modulates pERK, β-catenin and c-MYC signaling and intracellular levels of [Ca2+] in MLL-AF9+ AML cells. Combination treatment of cytarabine plus CaSR-inhibition in various models may be superior to cytarabine alone. Our studies suggest CaSR to be a differential and targetable factor in leukaemia progression influencing self-renewal of AML LSC via [eCa2+] cues from the BMM.
Collapse
Affiliation(s)
- Raquel S Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alessia Cais
- Pediatric Neurooncology, Hopp Children's Cancer Center Heidelberg (KiTZ) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lara Paulini
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Alisa Kahler
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Jimena Bravo
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Theresa Krack
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Costanza Zanetti
- University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Fabian Hoeller
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Pablo Llavona
- Institute of Molecular Biology gGmbH (IMB), Mainz, Germany
| | - Tabea Stark
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Georg Tascher
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Daniel Nowak
- Department of Hematology and Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eshwar Meduri
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Brian J P Huntly
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Christian Münch
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany
| | - Francesco Pampaloni
- Buchmann Institute for Molecular Life Sciences (BMLS, CEF-MC), Goethe University, Frankfurt am Main, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany.
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Frankfurt am Main, Germany.
- Institute of General Pharmacology and Toxicology, Goethe-University, Frankfurt am Main, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Frankfurt Cancer Institute, Frankfurt, Germany.
| |
Collapse
|
6
|
Yang G, Song Z, Wang R, Sun Y. Apoptotic effect of selenium mushroom extract from Qinba on multiple myeloma cells. Histol Histopathol 2023; 38:1069-1077. [PMID: 36562285 DOI: 10.14670/hh-18-571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Qinba selenium mushroom is a mushroom belonging to the Basidiomycetes family, which is believed to have anti- oxidant, anti-tumoral and anti-mutagenic activities. However, the efficacy of Qinba selenium mushroom against multiple myeloma has not been confirmed. The present study aimed to investigate the apoptotic effect of FA-2-b-β, the selenium mushroom extract from Qinba on multiple myeloma (MM) cells. The MM RPMI-8226 cells were treated with FA-2-b-β at different concentrations and time points. MM RPMI-8226 cell proliferation and apoptosis were detected by the Cell Counting Kit-8 (CCK-8) assay and Annexin V/propidium iodide (PI) assay, RT-QPCR and western blotting analyses were performed to determine the proteins and pathways involved. The results of the present study demonstrated that FA-2-b-β has high anti-proliferative activities and strong pro-apoptotic effects on MM RPMI-8226 cells, and its pharmacological effects on proliferation changes occurred in a dose- and time-dependent manner. In addition, we found that FA-2-b-β was able to induce cell apoptosis and promote cell cycle arrest at G0/G1 phase. In summary, the results illustrate the involvement of FA-2-b-β in mediating G0/G1 cell cycle arrest and apoptosis in MM RPMI-8226 cells, which suggested that FA-2-b-β might have therapeutic potential against multiple myeloma as an effective compound, and may provide useful information for the development of a novel therapeutic target in this area.
Collapse
Affiliation(s)
- Ge Yang
- Department of Hematology, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China
| | - Ze Song
- Imaging Teaching and Research Section, Medical College of HEXI University, Zhangye, Gansu, PR China
| | - Rongli Wang
- Department of Hematology, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China
| | - Yanqin Sun
- Clinical Lab, Zhangye People's Hospital Affiliared to HEXI University, Zhangye, Gansu, PR China.
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu, PR China
| |
Collapse
|
7
|
Hekmatshoar Y, Karadag Gurel A, Ozkan T, Rahbar Saadat Y, Koc A, Karabay AZ, Bozkurt S, Sunguroglu A. Phenotypic and functional characterization of subpopulation of Imatinib resistant chronic myeloid leukemia cell line. Adv Med Sci 2023; 68:238-248. [PMID: 37421850 DOI: 10.1016/j.advms.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/09/2023] [Accepted: 06/20/2023] [Indexed: 07/10/2023]
Abstract
PURPOSE Chronic myeloid leukemia (CML) is a hematological malignancy characterized by the presence of BCR-ABL protein. Imatinib (IMA) is considered as the first line therapy in management of CML which particularly targets the BCR-ABL tyrosine kinase protein. However, emergence of resistance to IMA hinders its clinical efficiency. Hence, identifying novel targets for therapeutic approaches in CML treatment is of great importance. Here, we characterize a new subpopulation of highly adherent IMA-resistant CML cells that express stemness and adhesion markers compared to naive counterparts. MATERIALS AND METHODS We performed several experimental assays including FISH, flow cytometry, and gene expression assays. Additionally, bioinformatics analysis was performed by normalized web-available microarray data (GSE120932) to revalidate and introduce probable biomarkers. Protein-protein interactions (PPI) network was analyzed by the STRING database employing Cytoscape v3.8.2. RESULTS Our findings demonstrated that constant exposure to 5 μM IMA led to development of the adherent phenotype (K562R-adh). FISH and BCR-ABL expression analysis indicated that K562R-adh cells were derived from the original cells (K562R). In order to determine the role of various genes involved in epithelial-mesenchymal transition (EMT) and stem cell characterization, up/down-regulation of various genes including cancer stem cell (CSC), adhesion and cell surface markers and integrins were observed which was similar to the findings of the GSE120932 dataset. CONCLUSION Treating CML patients with tyrosine kinase inhibitors (TKIs) as well as targeting adhesion molecules deemed to be effective approaches in prevention of IMA resistance emergence which in turn may provide promising effects in the clinical management of CML patients.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Drug Resistance, Neoplasm/genetics
- K562 Cells
- Apoptosis
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Phenotype
Collapse
Affiliation(s)
- Yalda Hekmatshoar
- Department of Medical Biology, School of Medicine, Altinbas University, Istanbul, Turkey; Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey.
| | - Aynur Karadag Gurel
- Department of Medical Biology, School of Medicine, Usak University, Usak, Turkey.
| | - Tulin Ozkan
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey
| | | | - Asli Koc
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Arzu Zeynep Karabay
- Faculty of Pharmacy, Department of Biochemistry, Ankara University, Ankara, Turkey
| | - Sureyya Bozkurt
- Department of Medical Biology, School of Medicine, Istinye University, Istanbul, Turkey
| | - Asuman Sunguroglu
- Department of Medical Biology, School of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Protein tyrosine kinase inhibitor resistance in malignant tumors: molecular mechanisms and future perspective. Signal Transduct Target Ther 2022; 7:329. [PMID: 36115852 PMCID: PMC9482625 DOI: 10.1038/s41392-022-01168-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/08/2022] [Accepted: 08/26/2022] [Indexed: 02/07/2023] Open
Abstract
AbstractProtein tyrosine kinases (PTKs) are a class of proteins with tyrosine kinase activity that phosphorylate tyrosine residues of critical molecules in signaling pathways. Their basal function is essential for maintaining normal cell growth and differentiation. However, aberrant activation of PTKs caused by various factors can deviate cell function from the expected trajectory to an abnormal growth state, leading to carcinogenesis. Inhibiting the aberrant PTK function could inhibit tumor growth. Therefore, tyrosine kinase inhibitors (TKIs), target-specific inhibitors of PTKs, have been used in treating malignant tumors and play a significant role in targeted therapy of cancer. Currently, drug resistance is the main reason for limiting TKIs efficacy of cancer. The increasing studies indicated that tumor microenvironment, cell death resistance, tumor metabolism, epigenetic modification and abnormal metabolism of TKIs were deeply involved in tumor development and TKI resistance, besides the abnormal activation of PTK-related signaling pathways involved in gene mutations. Accordingly, it is of great significance to study the underlying mechanisms of TKIs resistance and find solutions to reverse TKIs resistance for improving TKIs efficacy of cancer. Herein, we reviewed the drug resistance mechanisms of TKIs and the potential approaches to overcome TKI resistance, aiming to provide a theoretical basis for improving the efficacy of TKIs.
Collapse
|
9
|
Karantanou C, Minciacchi VR, Karantanos T. Extracellular Vesicles in Myeloid Neoplasms. Int J Mol Sci 2022; 23:ijms23158827. [PMID: 35955960 PMCID: PMC9369333 DOI: 10.3390/ijms23158827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/26/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid neoplasms arise from malignant primitive cells, which exhibit growth advantage within the bone marrow microenvironment (BMM). The interaction between these malignant cells and BMM cells is critical for the progression of these diseases. Extracellular vesicles (EVs) are lipid bound vesicles secreted into the extracellular space and involved in intercellular communication. Recent studies have described RNA and protein alterations in EVs isolated from myeloid neoplasm patients compared to healthy controls. The altered expression of various micro-RNAs is the best-described feature of EVs of these patients. Some of these micro-RNAs induce growth-related pathways such as AKT/mTOR and promote the acquisition of stem cell-like features by malignant cells. Another well-described characteristic of EVs in myeloid neoplasms is their ability to suppress healthy hematopoiesis either via direct effect on healthy CD34+ cells or via alteration of the differentiation of BMM cells. These results support a role of EVs in the pathogenesis of myeloid neoplasms. mainly through mediating the interaction between malignant and BMM cells, and warrant further study to better understand their biology. In this review, we describe the reported alterations of EV composition in myeloid neoplasms and the recent discoveries supporting their involvement in the development and progression of these diseases.
Collapse
Affiliation(s)
- Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Valentina René Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Theodoros Karantanos
- Division of Hematologic Malignancies and Bone Marrow Transplantation, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21218, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, The Bunting-Blaustein Cancer Research Building, 1650 Orleans Street, Baltimore, MD 21218, USA
- Correspondence:
| |
Collapse
|
10
|
Kaehler M, Litterst M, Kolarova J, Böhm R, Bruckmueller H, Ammerpohl O, Cascorbi I, Nagel I. Genome‑wide expression and methylation analyses reveal aberrant cell adhesion signaling in tyrosine kinase inhibitor‑resistant CML cells. Oncol Rep 2022; 48:144. [PMID: 35730629 PMCID: PMC9245083 DOI: 10.3892/or.2022.8355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 11/15/2022] Open
Abstract
Although chronic myeloid leukemia (CML) can be effectively treated using BCR-ABL1 kinase inhibitors, resistance due to kinase alterations or to BCR-ABL1 independent mechanisms remain a therapeutic challenge. For the latter, the underlying mechanisms are widely discussed; for instance, gene expression changes, epigenetic factors and alternative signaling pathway activation. In the present study, in vitro-CML cell models of resistance against the tyrosine kinase inhibitors (TKIs) imatinib (0.5 and 2 µM) and nilotinib (0.1 µM) with biological replicates were generated to identify novel mechanisms of resistance. Subsequently, genome-wide mRNA expression and DNA methylation were analyzed. While mRNA expression patterns differed largely between biological replicates, there was an overlap of 71 genes differentially expressed between cells resistant against imatinib or nilotinib. Moreover, all TKI resistant cell lines demonstrated a slight hypermethylation compared with native cells. In a combined analysis of 151 genes differentially expressed in the biological replicates of imatinib resistance, cell adhesion signaling, in particular the cellular matrix protein fibronectin 1 (FN1), was significantly dysregulated. This gene was also downregulated in nilotinib resistance. Further analyses showed significant FN1-downregulation in imatinib resistance on mRNA (P<0.001) and protein level (P<0.001). SiRNA-mediated FN1-knockdown in native cells reduced cell adhesion (P=0.02), decreased imatinib susceptibility visible by higher Ki-67 expression (1.5-fold, P=0.04) and increased cell number (1.5-fold, P=0.03). Vice versa, recovery of FN1-expression in imatinib resistant cells was sufficient to partially restore the response to imatinib. Overall, these results suggested a role of cell adhesion signaling and fibronectin 1 in TKI resistant CML and a potential target for novel strategies in treatment of resistant CML.
Collapse
Affiliation(s)
- Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig‑Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Merit Litterst
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig‑Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Julia Kolarova
- Institute of Human Genetics, Ulm University and Ulm Medical Center, D-89081 Ulm, Germany
| | - Ruwen Böhm
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig‑Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig‑Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Ole Ammerpohl
- Institute of Human Genetics, Ulm University and Ulm Medical Center, D-89081 Ulm, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig‑Holstein, Campus Kiel, D-24105 Kiel, Germany
| | - Inga Nagel
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig‑Holstein, Campus Kiel, D-24105 Kiel, Germany
| |
Collapse
|
11
|
Properties of Leukemic Stem Cells in Regulating Drug Resistance in Acute and Chronic Myeloid Leukemias. Biomedicines 2022; 10:biomedicines10081841. [PMID: 36009388 PMCID: PMC9405586 DOI: 10.3390/biomedicines10081841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022] Open
Abstract
Notoriously known for their capacity to reconstitute hematological malignancies in vivo, leukemic stem cells (LSCs) represent key drivers of therapeutic resistance and disease relapse, posing as a major medical dilemma. Despite having low abundance in the bulk leukemic population, LSCs have developed unique molecular dependencies and intricate signaling networks to enable self-renewal, quiescence, and drug resistance. To illustrate the multi-dimensional landscape of LSC-mediated leukemogenesis, in this review, we present phenotypical characteristics of LSCs, address the LSC-associated leukemic stromal microenvironment, highlight molecular aberrations that occur in the transcriptome, epigenome, proteome, and metabolome of LSCs, and showcase promising novel therapeutic strategies that potentially target the molecular vulnerabilities of LSCs.
Collapse
|
12
|
McDonald PC, Dedhar S. New Perspectives on the Role of Integrin-Linked Kinase (ILK) Signaling in Cancer Metastasis. Cancers (Basel) 2022; 14:cancers14133209. [PMID: 35804980 PMCID: PMC9264971 DOI: 10.3390/cancers14133209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Today, the vast majority of deaths from cancer are due to cancer metastasis. Metastasis requires that cancer cells escape from the initial tumor, travel through blood vessels, and form new tumors in distant host tissues. Integrin-linked kinase (ILK) is overexpressed by many types of cancer cells and provides both structural and signaling functions that are important for successful metastasis. Here, we discuss recent findings that show how ILK is involved in promoting physical changes important for cell motility and invasion, and how ILK relays signals to other machinery components during metastasis, including interactions with components of the immune system and communication between cancer cells and normal cells, to affect the process of metastasis. We also discuss the contribution of ILK to therapeutic resistance and examine efforts to target ILK for the treatment of metastatic disease. Abstract Cancer metastasis is a major barrier to the long-term survival of cancer patients. In cancer cells, integrin engagement downstream of cell-extracellular matrix (ECM) interactions results in the recruitment of cytoskeletal and signaling molecules to form multi-protein complexes to promote processes critical for metastasis. One of the major functional components of these complexes is Integrin Linked Kinase (ILK). Here, we discuss recent advances in our understanding of the importance of ILK as a signaling effector in processes linked to tumor progression and metastasis. New mechanistic insights as to the role of ILK in cellular plasticity, epithelial mesenchymal transition (EMT), migration, and invasion, including the impact of ILK on the formation of invadopodia, filopodia-like protrusions (FLPs), and Neutrophil Extracellular Trap (NET)-induced motility are highlighted. Recent findings detailing the contribution of ILK to therapeutic resistance and the importance of ILK as a potentially therapeutically tractable vulnerability in both solid tumors and hematologic malignancies are discussed. Indeed, pharmacologic inhibition of ILK activity using specific small molecule inhibitors is effective in curtailing the contribution of ILK to these processes, potentially offering a novel therapeutic avenue for inhibiting critical steps in the metastatic cascade leading to reduced drug resistance and increased therapeutic efficacy.
Collapse
Affiliation(s)
- Paul C. McDonald
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
| | - Shoukat Dedhar
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada;
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Correspondence:
| |
Collapse
|
13
|
Kumar R, Pereira RS, Niemann J, Azimpour AI, Zanetti C, Karantanou C, Minka W, Minciacchi VR, Kowarz E, Meister M, Godavarthy PS, Maguer-Satta V, Lefort S, Wiercinska E, Bonig H, Marschalek R, Krause DS. The differential role of the lipid raft-associated protein flotillin 2 for progression of myeloid leukemia. Blood Adv 2022; 6:3611-3624. [PMID: 35298613 PMCID: PMC9631564 DOI: 10.1182/bloodadvances.2021005992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/08/2022] [Indexed: 11/20/2022] Open
Abstract
Lipid raft-associated proteins play a vital role in membrane-mediated processes. The lipid microdomain-associated protein flotillin 2 (FLOT2), which has a scaffolding function, is involved in polarization, as well as in actin cytoskeletal organization of primitive and mature hematopoietic cells and has been associated with different malignancies. However, its involvement in myeloid leukemias is not well studied. Using murine transplantation models, we show here that the absence of FLOT2 from leukemia-initiating cells (LICs) altered the disease course of BCR-ABL1+ chronic myeloid leukemia (CML), but not of MLL-AF9-driven acute myeloid leukemia (AML). While FLOT2 was required for expression of the adhesion molecule CD44 on both CML- and AML-LIC, a defect in the cytoskeleton, cell polarity, and impaired homing ability of LIC was only observed in FLOT2-deficient BCR-ABL1+ compared with MLL-AF9+ cells. Downstream of CD44, BCR-ABL1 kinase-independent discrepancies were observed regarding expression, localization, and activity of cell division control protein 42 homolog (CDC42) between wild-type (WT) and FLOT2-deficient human CML and AML cells. Inhibition of CDC42 by ML141 impaired the homing of CML LIC and, thereby, CML progression. This suggested that alteration of both CD44 and CDC42 may be causative of impaired CML progression in the absence of FLOT2. In summary, our data suggest a FLOT2-CD44-CDC42 axis, which differentially regulates CML vs AML progression, with deficiency of FLOT2 impairing the development of CML.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Raquel S. Pereira
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Julian Niemann
- Institute of Molecular Medicine, Ulm University, Ulm, Germany
| | - Alexander I. Azimpour
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Christina Karantanou
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Wahyu Minka
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Eric Kowarz
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Melanie Meister
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Parimala S. Godavarthy
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | | | - Sylvain Lefort
- CRCL, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Lyon, France
| | - Eliza Wiercinska
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
| | - Halvard Bonig
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
- Goethe University, Institute for Transfusion Medicine and Immunohematology, Frankfurt, Germany
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt am Main, Germany
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
- German Red Cross Blood Service Baden-Württemberg-Hessen, Institute Frankfurt, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Germany
- Frankfurt Cancer Institute, Frankfurt, Germany; and
- Institute for General Pharmacology and Toxicology, Institute for Biochemistry II, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
14
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
15
|
Abubaker D, Baassiri A, Ghannam M, Al Outa A, Ghais A, Rahal E, Nasr R, Shirinian M. Expression of chronic myeloid leukemia oncogenes BCR-ABL P210 and BCR-ABL T315I affect cellular and humoral innate immunity in Drosophila melanogaster. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000551. [PMID: 35622506 PMCID: PMC9008464 DOI: 10.17912/micropub.biology.000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/06/2022]
Abstract
Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm that results from a chromosomal translocation between chromosome 9 and chromosome 22. The resulting fusion gene ( BCR-ABL ) encodes a constitutively active BCR-ABL tyrosine kinase. Some mutations of this oncogene, especially the Threonine 315 to Isoleucine substitution of the ABL kinase is resistant to first and second-generation tyrosine kinase inhibitors (TKIs) conventionally used in CML therapy. We have previously validated a CML fruit fly model for drug screening using the adult fly compound eye. Here we expressed wild-type BCR-ABL P210 and mutated BCR-ABL T315I in Drosophila melanogaster hematopoietic system to understand the phenotypic consequences of this expression and its impact on innate immune pathways. Flies expressing both wild-type BCR-ABL P210 and mutant BCR-ABL T315I showed increased number of circulating hemocytes, disruption in sessile patterning of resident hemocytes, dysregulation in the humoral Toll, ImD, and JAK/STAT pathways at the mRNA level in both the 3 rd instar larva and adult stages. Of note, BCR-ABL T315I flies presented more severe phenotypes and a higher deviation in humoral dysregulation than BCR -ABL P210 flies pointing towards more complex oncogenic effect of this mutant which requires further investigation.
Collapse
Affiliation(s)
- Dana Abubaker
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amro Baassiri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Mirna Ghannam
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Amani Al Outa
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Ali Ghais
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
| | - Elias Rahal
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Lebanon
| | - Margret Shirinian
- Department of Experimental Pathology and Immunology, Faculty of Medicine, American University of Beirut, Lebanon
- Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
16
|
Balogun TA, Ige OM, Alausa AO, Onyeani CO, Tiamiyu ZA, Omoboyowa DA, Saibu OA, Abdullateef OT. Receptor tyrosine kinases as a therapeutic target by natural compounds in cancer treatment. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Receptor tyrosine kinases (RTKs) are single-pass transmembrane proteins that play significant roles in regulating cellular processes, including cell division and growth. Overexpression and mutations of RTKs have been found in clinical manifestations of different forms of cancer. Therefore, RTKs have received considerable interest as a therapeutic biomarker in the treatment of cancer cells.
Main body of the abstract
Comprehensive data on RTKs, pharmacological and biological properties of natural compounds were systematically searched up to 2021 using relevant keywords from various databases, such as Google Scholar, PubMed, Web of Science, and Scopus. The scientific search by various standard electronic resources and databases unveils the effectiveness of medicinal plants in the treatment of various cancers. In vitro and in vivo studies suggested that bioactive compounds such as flavonoids, phenols, alkaloids, and many others can be used pharmacologically as RTKs inhibitors (RTKI) either by competing with ATP at the ATP binding site of the tyrosine kinase domain or competing for the receptor extracellular domain. Additionally, studies conducted on animal models indicated that inhibition of RTKs catalytic activity by natural compounds is one of the most effective ways to block the activation of RTKs signaling cascades, thereby hampering the proliferation of cancer cells. Furthermore, various pharmacological experiments, transcriptomic, and proteomic data also reported that cancer cells treated with different plants extracts or isolated phytochemicals exhibited better anticancer properties with minimal side effects than synthetic drugs. Clinically, natural compounds have demonstrated significant anti-proliferative effect via induction of cell apoptosis in cancer cell lines.
Short conclusion
An in-depth knowledge of the mechanism of inhibition and structural characterization of RTKs is important to the design of novel and selective RTKIs. This review focuses on the molecular mechanisms and structures of natural compounds RTKI targeting vascular endothelial growth factor, epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor while also giving future directions to ameliorate the scientific burden of cancer.
Graphic abstract
Collapse
|
17
|
Leukemia Stem Cells as a Potential Target to Achieve Therapy-Free Remission in Chronic Myeloid Leukemia. Cancers (Basel) 2021; 13:cancers13225822. [PMID: 34830976 PMCID: PMC8616035 DOI: 10.3390/cancers13225822] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 12/26/2022] Open
Abstract
Leukemia stem cells (LSCs, also known as leukemia-initiating cells) not only drive leukemia initiation and progression, but also contribute to drug resistance and/or disease relapse. Therefore, eradication of every last LSC is critical for a patient's long-term cure. Chronic myeloid leukemia (CML) is a myeloproliferative disorder that arises from multipotent hematopoietic stem and progenitor cells. Tyrosine kinase inhibitors (TKIs) have dramatically improved long-term outcomes and quality of life for patients with CML in the chronic phase. Point mutations of the kinase domain of BCR-ABL1 lead to TKI resistance through a reduction in drug binding, and as a result, several new generations of TKIs have been introduced to the clinic. Some patients develop TKI resistance without known mutations, however, and the presence of LSCs is believed to be at least partially associated with resistance development and CML relapse. We previously proposed targeting quiescent LSCs as a therapeutic approach to CML, and a number of potential strategies for targeting insensitive LSCs have been presented over the last decade. The identification of specific markers distinguishing CML-LSCs from healthy HSCs, and the potential contributions of the bone marrow microenvironment to CML pathogenesis, have also been explored. Nonetheless, 25% of CML patients are still expected to switch TKIs at least once, and various TKI discontinuation studies have shown a wide range in the incidence of molecular relapse (from 30% to 60%). In this review, we revisit the current knowledge regarding the role(s) of LSCs in CML leukemogenesis and response to pharmacological treatment and explore how durable treatment-free remission may be achieved and maintained after discontinuing TKI treatment.
Collapse
|
18
|
Resistance to Tyrosine Kinase Inhibitors in Chronic Myeloid Leukemia-From Molecular Mechanisms to Clinical Relevance. Cancers (Basel) 2021; 13:cancers13194820. [PMID: 34638304 PMCID: PMC8508378 DOI: 10.3390/cancers13194820] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Chronic myeloid leukemia (CML) is a myeloproliferative neoplasia associated with a molecular alteration, the fusion gene BCR-ABL1, that encodes the tyrosine kinase oncoprotein BCR-ABL1. This led to the development of tyrosine kinase inhibitors (TKI), with Imatinib being the first TKI approved. Although the vast majority of CML patients respond to Imatinib, resistance to this targeted therapy contributes to therapeutic failure and relapse. Here we review the molecular mechanisms and other factors (e.g., patient adherence) involved in TKI resistance, the methodologies to access these mechanisms, and the possible therapeutic approaches to circumvent TKI resistance in CML. Abstract Resistance to targeted therapies is a complex and multifactorial process that culminates in the selection of a cancer clone with the ability to evade treatment. Chronic myeloid leukemia (CML) was the first malignancy recognized to be associated with a genetic alteration, the t(9;22)(q34;q11). This translocation originates the BCR-ABL1 fusion gene, encoding the cytoplasmic chimeric BCR-ABL1 protein that displays an abnormally high tyrosine kinase activity. Although the vast majority of patients with CML respond to Imatinib, a tyrosine kinase inhibitor (TKI), resistance might occur either de novo or during treatment. In CML, the TKI resistance mechanisms are usually subdivided into BCR-ABL1-dependent and independent mechanisms. Furthermore, patients’ compliance/adherence to therapy is critical to CML management. Techniques with enhanced sensitivity like NGS and dPCR, the use of artificial intelligence (AI) techniques, and the development of mathematical modeling and computational prediction methods could reveal the underlying mechanisms of drug resistance and facilitate the design of more effective treatment strategies for improving drug efficacy in CML patients. Here we review the molecular mechanisms and other factors involved in resistance to TKIs in CML and the new methodologies to access these mechanisms, and the therapeutic approaches to circumvent TKI resistance.
Collapse
|
19
|
Wong NK, Luo S, Chow EYD, Meng F, Adesanya A, Sun J, Ma HMH, Jin W, Li WC, Yip SP, Huang CL. The Tyrosine Kinase-Driven Networks of Novel Long Non-coding RNAs and Their Molecular Targets in Myeloproliferative Neoplasms. Front Cell Dev Biol 2021; 9:643043. [PMID: 34414175 PMCID: PMC8369571 DOI: 10.3389/fcell.2021.643043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 07/09/2021] [Indexed: 01/16/2023] Open
Abstract
Recent research has focused on the mechanisms by which long non-coding RNAs (lncRNAs) modulate diverse cellular processes such as tumorigenesis. However, the functional characteristics of these non-coding elements in the genome are poorly understood at present. In this study, we have explored several mechanisms that involve the novel lncRNA and microRNA (miRNA) axis participating in modulation of drug response and the tumor microenvironment of myeloproliferative neoplasms (MPNs). We identified novel lncRNAs via mRNA sequencing that was applied to leukemic cell lines derived from BCR-ABL1-positive and JAK2-mutant MPNs under treatment with therapeutic tyrosine kinase inhibitors (TKI). The expression and sequence of novel LNC000093 were further validated in both leukemic cells and normal primary and pluripotent cells isolated from human blood, including samples from patients with chronic myelogenous leukemia (CML). Downregulation of LNC000093 was validated in TKI-resistant CML while a converse expression pattern was observed in blood cells isolated from TKI-sensitive CML cases. In addition to BCR-ABL1-positive CML cells, the driver mutation JAK2-V617F-regulated lncRNA BANCR axis was further identified in BCR-ABL1-negative MPNs. Further genome-wide validation using MPN patient specimens identified 23 unique copy number variants including the 7 differentially expressed lncRNAs from our database. The newly identified LNC000093 served as a competitive endogenous RNA for miR-675-5p and reversed the imatinib resistance in CML cells through regulating RUNX1 expression. The extrinsic function of LNC000093 in exosomal H19/miR-675-induced modulation for the microenvironment was also determined with significant effect on VEGF expression.
Collapse
Affiliation(s)
- Nonthaphat Kent Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Shumeng Luo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Eudora Y D Chow
- Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Fei Meng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Adenike Adesanya
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jiahong Sun
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Herman M H Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Pathology, United Christian Hospital, Kwun Tong, Hong Kong
| | - Wenfei Jin
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Wan-Chun Li
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
20
|
Mughal TI, Psaila B, DeAngelo DJ, Saglio G, Van Etten RA, Radich JP. Interrogating the molecular genetics of chronic myeloproliferative malignancies for personalized management in 2021. Haematologica 2021; 106:1787-1793. [PMID: 33657787 PMCID: PMC8252942 DOI: 10.3324/haematol.2020.267252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tariq I Mughal
- Tufts University Medical Center, Boston, MA, USA; University of Buckingham Medical School, Buckingham.
| | - Bethan Psaila
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford
| | | | | | | | | |
Collapse
|
21
|
Abstract
While the need for complete eradication of leukemic stem cells (LSCs) in chronic myeloid leukemia may be controversial, it is agreed that remaining LSCs are the cause of relapse and disease progression. Current efforts are focused on the understanding of the persistence of immunophenotypically defined LSCs, which feature abnormalities in signaling pathways relating to autophagy, metabolism, epigenetics, and others and are influenced by leukemia cell-extrinsic factors such as the immune and bone marrow microenvironments. In sum, these elements modulate response and resistance to therapies and the clinical condition of treatment-free remission (TFR), the newly established goal in CML treatment, once the patient has achieved a durable molecular remission after treatment with tyrosine kinase inhibitors. Novel combination therapies based on these identified vulnerabilities of LSCs, aimed at the induction or maintenance of TFR, are being developed, while other research is directed at the elucidation of factors mediating progression to blast crisis.
Collapse
Affiliation(s)
- Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Daniela S Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
- Frankfurt Cancer Institute, Frankfurt, Germany
- Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany
| |
Collapse
|
22
|
Minciacchi VR, Kumar R, Krause DS. Chronic Myeloid Leukemia: A Model Disease of the Past, Present and Future. Cells 2021; 10:cells10010117. [PMID: 33435150 PMCID: PMC7827482 DOI: 10.3390/cells10010117] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 12/31/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic myeloid leukemia (CML) has been a "model disease" with a long history. Beginning with the first discovery of leukemia and the description of the Philadelphia Chromosome and ending with the current goal of achieving treatment-free remission after targeted therapies, we describe here the journey of CML, focusing on molecular pathways relating to signaling, metabolism and the bone marrow microenvironment. We highlight current strategies for combination therapies aimed at eradicating the CML stem cell; hopefully the final destination of this long voyage.
Collapse
MESH Headings
- Epigenesis, Genetic
- History, 20th Century
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/history
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Models, Biological
- Molecular Targeted Therapy
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Tumor Microenvironment/genetics
Collapse
Affiliation(s)
- Valentina R. Minciacchi
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Rahul Kumar
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
| | - Daniela S. Krause
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt am Main, Germany; (V.R.M.); (R.K.)
- German Cancer Research Center (DKFZ), D-69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
- Frankfurt Cancer Institute, 60596 Frankfurt, Germany
- Faculty of Medicine, Medical Clinic II, Johann Wolfgang Goethe University, 60596 Frankfurt, Germany
- Correspondence: ; Tel.: +49-69-63395-500; Fax: +49-69-63395-519
| |
Collapse
|
23
|
Manley PW, Barys L, Cowan-Jacob SW. The specificity of asciminib, a potential treatment for chronic myeloid leukemia, as a myristate-pocket binding ABL inhibitor and analysis of its interactions with mutant forms of BCR-ABL1 kinase. Leuk Res 2020; 98:106458. [DOI: 10.1016/j.leukres.2020.106458] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/26/2022]
|
24
|
Sun Y, Cheng M, Dong L, Yang K, Ma Z, Yu S, Yan P, Bai K, Zhu X, Zhang Q. Agaricus blazei extract (FA-2-b-β) induces apoptosis in chronic myeloid leukemia cells. Oncol Lett 2020; 20:270. [PMID: 32989404 PMCID: PMC7517625 DOI: 10.3892/ol.2020.12133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/29/2020] [Indexed: 12/13/2022] Open
Abstract
Agaricus blazei Murill (AbM) is a mushroom belonging to the Basidiomycetes family, which is believed to have antitumor and antioxidative activities. Proteoglycans and ergosterol are considered the key compounds of AbM for antitumor properties and so are used in complementary and alternative medicine as an anticancer drug. AbM is used to avoid serious side effects that would inevitably affect patients. Currently, the efficacy of AbM against chronic myeloid leukemia (CML) has not been established. The present study aimed to investigate the antitumor activities of the acidic RNA protein complex, FA-2-b-β, extracted from wild edible AbM. The CML K562 cells or primary CML bone marrow (BM) cells were treated with FA-2-b-β at different concentrations and time points. CML cell line proliferation and apoptosis were determined using the CCK-8 assay or Annexin V/propidium iodide (PI) labeling, RT-qPCR and western blotting was performed to determine the involvement of the Wnt/β-catenin-associated apoptotic pathway. The results of the present study demonstrated that FA-2-b-β has a high anti-proliferative potency and strong pro-apoptotic effects. Thus, daily intake of mushrooms containing FA-2-b-β may be an adequate source as an alternative medicine in the management of CML, and may provide useful information for the development of a novel therapeutic target in this area.
Collapse
Affiliation(s)
- Yanqing Sun
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China.,Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Mingxia Cheng
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China.,Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Li Dong
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Kehu Yang
- Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,Institute of Clinical Research and Evidence Based Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Zhiyuan Ma
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shangrui Yu
- Department of Gastroenterology, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Peijing Yan
- Institute of Clinical Research and Evidence Based Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Kuntian Bai
- Department of Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China
| | - Xiaolong Zhu
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| | - Qike Zhang
- Department of Hematology, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
25
|
Zanetti C, Krause DS. "Caught in the net": the extracellular matrix of the bone marrow in normal hematopoiesis and leukemia. Exp Hematol 2020; 89:13-25. [PMID: 32755619 DOI: 10.1016/j.exphem.2020.07.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
The influence of the bone marrow microenvironment on normal hematopoiesis, but also leukemia, has largely been accepted. However, the focus has been predominantly on the role of various cell types or cytokines maintaining hematopoietic stem cells or protecting leukemia stem cells from different therapies. A frequently overlooked component of the bone marrow microenvironment is the extracellular matrix, which not only provides a mechanical scaffold, but also serves as a source of growth factors. We discuss here how extracellular matrix proteins directly or indirectly modulate hematopoietic stem cell physiology and influence leukemia progression. It is hoped that existing and future studies on this topic may propel forward the possibility of augmenting normal hematopoiesis and improving therapies for leukemia, for instance, by targeting of the extracellular matrix in the bone marrow.
Collapse
Affiliation(s)
- Costanza Zanetti
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany
| | - Daniela S Krause
- German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany; Frankfurt Cancer Institute, Frankfurt, Germany; Faculty of Medicine, Johann Wolfgang Goethe University, Frankfurt, Germany.
| |
Collapse
|