1
|
Craft K, Amanor A, Barnett I, Donaldson C, Anegon I, Madduri S, Tang Q, Bility MT. Can Humanized Immune System Mouse and Rat Models Accelerate the Development of Cytomegalovirus-Based Vaccines Against Infectious Diseases and Cancers? Int J Mol Sci 2025; 26:3082. [PMID: 40243710 PMCID: PMC11988357 DOI: 10.3390/ijms26073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Over the past three decades, immunodeficient mouse models carrying human immune cells, with or without human lymphoid tissues, termed humanized immune system (HIS) rodent models, have been developed to recapitulate the human immune system and associated immune responses. HIS mouse models have successfully modeled many human-restricted viral infections, including those caused by human cytomegalovirus (HCMV) and human immunodeficiency virus (HIV). HIS mouse models have also been used to model human cancer immunobiology, which exhibits differences from murine cancers in traditional mouse models. Variants of HIS mouse models that carry human liver cells, lung tissue, skin tissue, or human patient-derived tumor xenografts and human hematopoietic stem cells-derived-human immune cells with or without lymphoid tissue xenografts have been developed to probe human immune responses to infections and human tumors. HCMV-based vaccines are human-restricted, which poses limitations for mechanistic and efficacy studies using traditional animal models. The HCMV-based vaccine approach is a promising vaccine strategy as it induces robust effector memory T cell responses that may be critical in preventing and rapidly controlling persistent viral infections and cancers. Here, we review novel HIS mouse models with robust human immune cell development and primary and secondary lymphoid tissues that could address many of the limitations of HIS mice in their use as animal models for HCMV-based vaccine research. We also reviewed novel HIS rat models, which could allow long-term (greater than one year) vaccinology studies and better recapitulate human pathophysiology. Translating laboratory research findings to clinical application is a significant bottleneck in vaccine development; HIS rodents and related variants that more accurately model human immunology and diseases could increase the translatability of research findings.
Collapse
Affiliation(s)
- Kaci Craft
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Athina Amanor
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ian Barnett
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Clarke Donaldson
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Ignacio Anegon
- Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France;
| | - Srinivas Madduri
- Bioengineering and Neuroregeneration Laboratory, Department of Surgery, University of Geneva, 1211 Geneva, Switzerland;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| | - Moses T. Bility
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA; (K.C.); (A.A.); (I.B.); (C.D.); (Q.T.)
| |
Collapse
|
2
|
Ehx G, Ritacco C, Baron F. Pathophysiology and preclinical relevance of experimental graft-versus-host disease in humanized mice. Biomark Res 2024; 12:139. [PMID: 39543777 PMCID: PMC11566168 DOI: 10.1186/s40364-024-00684-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
Collapse
Affiliation(s)
- Grégory Ehx
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium.
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO) Department, WEL Research Institute, Wavre, Belgium.
| | - Caroline Ritacco
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
| | - Frédéric Baron
- Laboratory of Hematology, GIGA Institute, University of Liege, Liege, Belgium
- Department of Medicine, Division of Hematology, CHU of Liege, University of Liege, Liege, Belgium
| |
Collapse
|
3
|
Chen A, Neuwirth I, Herndler-Brandstetter D. Modeling the Tumor Microenvironment and Cancer Immunotherapy in Next-Generation Humanized Mice. Cancers (Basel) 2023; 15:2989. [PMID: 37296949 PMCID: PMC10251926 DOI: 10.3390/cancers15112989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/28/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer immunotherapy has brought significant clinical benefits to numerous patients with malignant disease. However, only a fraction of patients experiences complete and durable responses to currently available immunotherapies. This highlights the need for more effective immunotherapies, combination treatments and predictive biomarkers. The molecular properties of a tumor, intratumor heterogeneity and the tumor immune microenvironment decisively shape tumor evolution, metastasis and therapy resistance and are therefore key targets for precision cancer medicine. Humanized mice that support the engraftment of patient-derived tumors and recapitulate the human tumor immune microenvironment of patients represent a promising preclinical model to address fundamental questions in precision immuno-oncology and cancer immunotherapy. In this review, we provide an overview of next-generation humanized mouse models suitable for the establishment and study of patient-derived tumors. Furthermore, we discuss the opportunities and challenges of modeling the tumor immune microenvironment and testing a variety of immunotherapeutic approaches using human immune system mouse models.
Collapse
Affiliation(s)
| | | | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Medical University of Vienna and Comprehensive Cancer Center, 1090 Vienna, Austria; (A.C.); (I.N.)
| |
Collapse
|
4
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Steinkamp MP, Lagutina I, Brayer KJ, Schultz F, Burke D, Pankratz VS, Adams SF, Hudson LG, Ness SA, Wandinger-Ness A. Humanized Patient-derived Xenograft Models of Disseminated Ovarian Cancer Recapitulate Key Aspects of the Tumor Immune Environment within the Peritoneal Cavity. CANCER RESEARCH COMMUNICATIONS 2023; 3:309-324. [PMID: 36860657 PMCID: PMC9973420 DOI: 10.1158/2767-9764.crc-22-0300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/23/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The importance of the immune microenvironment in ovarian cancer progression, metastasis, and response to therapies has become increasingly clear, especially with the new emphasis on immunotherapies. To leverage the power of patient-derived xenograft (PDX) models within a humanized immune microenvironment, three ovarian cancer PDXs were grown in humanized NBSGW (huNBSGW) mice engrafted with human CD34+ cord blood-derived hematopoietic stem cells. Analysis of cytokine levels in the ascites fluid and identification of infiltrating immune cells in the tumors demonstrated that these humanized PDX (huPDX) established an immune tumor microenvironment similar to what has been reported for patients with ovarian cancer. The lack of human myeloid cell differentiation has been a major setback for humanized mouse models, but our analysis shows that PDX engraftment increases the human myeloid population in the peripheral blood. Analysis of cytokines within the ascites fluid of huPDX revealed high levels of human M-CSF, a key myeloid differentiation factor as well as other elevated cytokines that have previously been identified in ovarian cancer patient ascites fluid including those involved in immune cell differentiation and recruitment. Human tumor-associated macrophages and tumor-infiltrating lymphocytes were detected within the tumors of humanized mice, demonstrating immune cell recruitment to tumors. Comparison of the three huPDX revealed certain differences in cytokine signatures and in the extent of immune cell recruitment. Our studies show that huNBSGW PDX models reconstitute important aspects of the ovarian cancer immune tumor microenvironment, which may recommend these models for preclinical therapeutic trials. Significance huPDX models are ideal preclinical models for testing novel therapies. They reflect the genetic heterogeneity of the patient population, enhance human myeloid differentiation, and recruit immune cells to the tumor microenvironment.
Collapse
Affiliation(s)
- Mara P. Steinkamp
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Irina Lagutina
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Kathryn J. Brayer
- Analytical and Translational Genomics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Fred Schultz
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Danielle Burke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Vernon S. Pankratz
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Biostatistics Shared Resource, Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| | - Sarah F. Adams
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
- Department of Obstetrics and Gynecology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Laurie G. Hudson
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
- Department of Pharmaceutical Sciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Scott A. Ness
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
- Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Angela Wandinger-Ness
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico
- Comprehensive Cancer Center, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
6
|
Caël B, Galaine J, Bardey I, Marton C, Fredon M, Biichle S, Poussard M, Godet Y, Angelot-Delettre F, Barisien C, Bésiers C, Adotevi O, Pouthier F, Garnache-Ottou F, Bôle-Richard E. Umbilical Cord Blood as a Source of Less Differentiated T Cells to Produce CD123 CAR-T Cells. Cancers (Basel) 2022; 14:cancers14133168. [PMID: 35804941 PMCID: PMC9264759 DOI: 10.3390/cancers14133168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/19/2022] Open
Abstract
Simple Summary We used fresh or thawed Umbilical Cord Blood (UCB) to produce CAR-T cells directed against CD123, and we compared their functionality to Peripheral Blood (PB) CAR-T cells. T cells expressing CD123 CAR, derived from UCB, was exhibited through a high transduction rate, activation status, and cytotoxic potential in vitro as PB derived CAR-T cells. Moreover, we obtained T cells that had a less differentiated profile than the PB-derived T cells. UCB derived CAR-T can significantly control tumor progression in mice models. CAR-T obtained from thawed or fresh UCB gives the same results. Abstract Chimeric Antigen Receptor (CAR) therapy has led to great successes in patients with leukemia and lymphoma. Umbilical Cord Blood (UCB), stored in UCB banks, is an attractive source of T cells for CAR-T production. We used a third generation CD123 CAR-T (CD28/4-1BB), which was previously developed using an adult’s Peripheral Blood (PB), to test the ability of obtaining CD123 CAR-T from fresh or cryopreserved UCB. We obtained a cell product with a high and stable transduction efficacy, and a poorly differentiated phenotype of CAR-T cells, while retaining high cytotoxic functions in vitro and in vivo. Moreover, CAR-T produced from cryopreserved UCB are as functional as CAR-T produced from fresh UCB. Overall, these data pave the way for the clinical development of UCB-derived CAR-T. UCB CAR-T could be transferred in an autologous manner (after an UCB transplant) to reduce post-transplant relapses, or in an allogeneic setting, thanks to fewer HLA restrictions which ease the requirements for a match between the donor and recipient.
Collapse
Affiliation(s)
- Blandine Caël
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Jeanne Galaine
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Isabelle Bardey
- Activité d’Ingénierie Cellulaire et Tissulaire, Etablissement Français du Sang Bourgogne/Franche-Comté, F-25000 Besançon, France; (I.B.); (F.P.)
| | - Chrystel Marton
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Allogenic Stem Cell Transplantation Unit, Department of Hematology, CHU Lille, F-59000 Lille, France
| | - Maxime Fredon
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Sabeha Biichle
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Margaux Poussard
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Yann Godet
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Fanny Angelot-Delettre
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- EFS Bourgogne/Franche-Comté, F-25000 Besançon, France;
| | - Christophe Barisien
- Département Collecte et Production de PSL, Etablissement Français du Sang Bourgogne Franche-Comté, F-25000 Besançon, France;
| | | | - Olivier Adotevi
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Service Oncologie Médicale, CHU Besançon, F-25000 Besançon, France
| | - Fabienne Pouthier
- Activité d’Ingénierie Cellulaire et Tissulaire, Etablissement Français du Sang Bourgogne/Franche-Comté, F-25000 Besançon, France; (I.B.); (F.P.)
| | - Francine Garnache-Ottou
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
| | - Elodie Bôle-Richard
- RIGHT Interactions Greffon-Hôte-Tumeur/Ingénierie Cellulaire et Génique, EFS BFC, INSERM, Univ. Bourgogne Franche-Comté, F-25000 Besançon, France; (B.C.); (J.G.); (C.M.); (M.F.); (S.B.); (M.P.); (Y.G.); (F.A.-D.); (O.A.); (F.G.-O.)
- Correspondence:
| |
Collapse
|
7
|
The Hematology of Tomorrow Is Here-Preclinical Models Are Not: Cell Therapy for Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14030580. [PMID: 35158848 PMCID: PMC8833715 DOI: 10.3390/cancers14030580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cell therapy is revolutionizing the prospect of deadly hematological malignancies such as high-risk acute myeloid leukemia. Stem cell therapy of allogeneic source from compatible human leukocyte antigen donor has exceptional success promoting durable remissions, but the rate of relapse is currently still high and there is transplant-related mortality. This review presents the current knowledge on the clinical use of mesenchymal stromal cells to improve outcomes in hematopoietic stem cell transplants. As an alternative or adjuvant approach to prevent relapse, we summarize the status of the promising forms of cellular immunotherapy aimed at targeting not only the bulk but also the cells of origin of leukemia. Finally, we discuss the available in vivo models for disease modelling and treatment efficacy prediction in these contexts. Abstract The purpose of this review is to present the current knowledge on the clinical use of several forms of cell therapy in hematological malignancies and the preclinical models available for their study. In the context of allogeneic hematopoietic stem cell transplants, mesenchymal stromal cells are pursued to help stem cell engraftment and expansion, and control graft versus host disease. We further summarize the status of promising forms of cellular immunotherapy including CAR T cell and CAR NK cell therapy aimed at eradicating the cells of origin of leukemia, i.e., leukemia stem cells. Updates on other forms of cellular immunotherapy, such as NK cells, CIK cells and CAR CIK cells, show encouraging results in AML. The considerations in available in vivo models for disease modelling and treatment efficacy prediction are discussed, with a particular focus on their strengths and weaknesses for the study of healthy and diseased hematopoietic stem cell reconstitution, graft versus host disease and immunotherapy. Despite current limitations, cell therapy is a rapidly evolving field that holds the promise of improved cure rates, soon. As a result, we may be witnessing the birth of the hematology of tomorrow. To further support its development, improved preclinical models including humanized microenvironments in mice are urgently needed.
Collapse
|
8
|
Zbinden A, Canté-Barrett K, Pike-Overzet K, Staal FJT. Stem Cell-Based Disease Models for Inborn Errors of Immunity. Cells 2021; 11:cells11010108. [PMID: 35011669 PMCID: PMC8750661 DOI: 10.3390/cells11010108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/24/2022] Open
Abstract
The intrinsic capacity of human hematopoietic stem cells (hHSCs) to reconstitute myeloid and lymphoid lineages combined with their self-renewal capacity hold enormous promises for gene therapy as a viable treatment option for a number of immune-mediated diseases, most prominently for inborn errors of immunity (IEI). The current development of such therapies relies on disease models, both in vitro and in vivo, which allow the study of human pathophysiology in great detail. Here, we discuss the current challenges with regards to developmental origin, heterogeneity and the subsequent implications for disease modeling. We review models based on induced pluripotent stem cell technology and those relaying on use of adult hHSCs. We critically review the advantages and limitations of current models for IEI both in vitro and in vivo. We conclude that existing and future stem cell-based models are necessary tools for developing next generation therapies for IEI.
Collapse
|