1
|
Müskens KF, Wieringa N, van Bergen MG, Bense JE, te Pas BM, de Pagter AP, Lankester AC, Bierings MB, Neuberg DS, Haitjema S, Kremer LC, Huls GA, Nierkens S, Jansen JH, Lindemans CA, de Graaf AO, Belderbos ME. Increased Clonal Hematopoiesis in Long-term Survivors of Pediatric Hematopoietic Cell Transplantation. Blood Cancer Discov 2025; 6:110-118. [PMID: 39804695 PMCID: PMC11876950 DOI: 10.1158/2643-3230.bcd-24-0136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/22/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
SIGNIFICANCE As survival of HCT recipients continues to improve, late treatment effects gain importance. We demonstrate that pediatric HCT recipients show increased risk of CH compared with age-matched controls. Prospective studies are crucial to understand the clinical implications of posttransplant CH in this young population.
Collapse
Affiliation(s)
| | - Nienke Wieringa
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | | | - Joëll E. Bense
- Division of Stem cell Transplantation, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Brigit M. te Pas
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Anne P.J. de Pagter
- Division of Stem cell Transplantation, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Arjan C. Lankester
- Division of Stem cell Transplantation, Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, the Netherlands
| | - Marc B. Bierings
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Donna S. Neuberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Saskia Haitjema
- Central Diagnostic Laboratory, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Gerwin A. Huls
- Department of Hematology, University Medical Center Groningen, Groningen, the Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joop H. Jansen
- Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Aniek O. de Graaf
- Laboratory of Hematology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | |
Collapse
|
2
|
Tebbi CK, Sahakian E, Shah B, Yan J, Mediavilla-Varela M, Patel S. Aspergillus flavus with Mycovirus as an Etiologic Factor for Acute Leukemias in Susceptible Individuals: Evidence and Discussion. Biomedicines 2025; 13:488. [PMID: 40002901 PMCID: PMC11853382 DOI: 10.3390/biomedicines13020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Several etiologic factors for the development of acute leukemias have been suggested; however, none is applicable to all cases. We isolated a certain mycovirus-containing Aspergillus flavus (MCAF) from the home of a patient with acute lymphoblastic leukemia. Repeated electron microscopic evaluations proved the existence of mycovirus in this organism. According to chemical analysis, this organism does not produce any aflatoxin, possibly due to its infestation with mycoviruses. We reported that using the ELISA technique, forty pediatric patients with acute lymphoblastic leukemia (ALL) uniformly had antibodies to the products of MCAF. In contrast, three separate groups of controls, consisting of normal blood donors, individuals with solid tumors, and patients with sickle cell disease, were negative. In vitro exposure of mononuclear blood cells from patients with ALL, in full remission, to the products of MCAF induced redevelopment of cell surface phenotypes and genetic markers characteristic of ALL. The controls were negative. The incubation of normal and ALL cell lines with the products of MCAF resulted in significant cellular apoptosis, changes in the cell cycle, and the downregulation of transcription factors, including PAX-5 and Ikaros (75 and 55 kDa). Fungi are widespread in nature, and many contain mycoviruses. Normally, an individual inhales 1 to 10 fungal spores per minute, while farmers can inhale up to 75,000 spores per minute. It is known that farmers and foresters, who are more exposed to fungi, have a higher rate of acute leukemia. In contrast, asthmatics, most of whom are allergic to fungal agents, and individuals working in office settings have a lower rate. One of the theories for the development of acute leukemia suggests a genetic predisposition followed by exposure to an infectious agent. With the above findings, we propose that mycovirus-containing Aspergillus flavus may have an etiological role in leukemogenesis in immune-depressed and genetically susceptible individuals.
Collapse
Affiliation(s)
- Cameron K. Tebbi
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA;
| | - Eva Sahakian
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (B.S.); (M.M.-V.)
| | - Bijal Shah
- Moffitt Cancer Center, Tampa, FL 33612, USA; (E.S.); (B.S.); (M.M.-V.)
| | - Jiyu Yan
- Children’s Cancer Research Group Laboratory, Tampa, FL 33613, USA;
| | | | | |
Collapse
|
3
|
Spector LG, de Smith AJ. Backtracking childhood leukaemia to birth: A battle of addition. Br J Haematol 2024; 205:1670-1671. [PMID: 39238151 DOI: 10.1111/bjh.19747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Paediatric leukaemia has a long tail of driver mutations each of which must be 'backtracked' to samples taken at birth to identify the prenatal origin of a subtype. Presently, Bardini et al. describe the first successful backtracking of an NUTM1 rearrangement, which sheds light on the biology of this particular alteration. Continued backtracking of NUTM1 rearrangements, and all leukaemia-typical somatic alterations, is necessary to fully understand the prenatal origin of these diseases. Commentary on: Bardini et al. Prenatal origin of NUTM1 gene rearrangement in infant B-cell precursor acute lymphoblastic leukaemia. Br J Haematol 2024; 205:1883-1888.
Collapse
Affiliation(s)
- Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, USC Norris Comprehensive Cancer Center, Los Angeles, California, USA
| |
Collapse
|
4
|
Farrokhi A, Atre T, Rever J, Fidanza M, Duey W, Salitra S, Myung J, Guo M, Jo S, Uzozie A, Baharvand F, Rolf N, Auer F, Hauer J, Grupp SA, Eydoux P, Lange PF, Seif AE, Maxwell CA, Reid GSD. The Eμ-Ret mouse is a novel model of hyperdiploid B-cell acute lymphoblastic leukemia. Leukemia 2024; 38:969-980. [PMID: 38519798 PMCID: PMC11073968 DOI: 10.1038/s41375-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 03/25/2024]
Abstract
The presence of supernumerary chromosomes is the only abnormality shared by all patients diagnosed with high-hyperdiploid B cell acute lymphoblastic leukemia (HD-ALL). Despite being the most frequently diagnosed pediatric leukemia, the lack of clonal molecular lesions and complete absence of appropriate experimental models have impeded the elucidation of HD-ALL leukemogenesis. Here, we report that for 23 leukemia samples isolated from moribund Eμ-Ret mice, all were characterized by non-random chromosomal gains, involving combinations of trisomy 9, 12, 14, 15, and 17. With a median gain of three chromosomes, leukemia emerged after a prolonged latency from a preleukemic B cell precursor cell population displaying more diverse aneuploidy. Transition from preleukemia to overt disease in Eμ-Ret mice is associated with acquisition of heterogeneous genomic abnormalities affecting the expression of genes implicated in pediatric B-ALL. The development of abnormal centrosomes in parallel with aneuploidy renders both preleukemic and leukemic cells sensitive to inhibitors of centrosome clustering, enabling targeted in vivo depletion of leukemia-propagating cells. This study reveals the Eμ-Ret mouse to be a novel tool for investigating HD-ALL leukemogenesis, including supervision and selection of preleukemic aneuploid clones by the immune system and identification of vulnerabilities that could be targeted to prevent relapse.
Collapse
Affiliation(s)
- Ali Farrokhi
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Tanmaya Atre
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Jenna Rever
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Mario Fidanza
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Wendy Duey
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Samuel Salitra
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Junia Myung
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Meiyun Guo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Sumin Jo
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Anuli Uzozie
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Fatemeh Baharvand
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Nina Rolf
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Franziska Auer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Hauer
- Department of Pediatrics, Children's Cancer Research Center, Kinderklinik München Schwabing, School of Medicine, Technical University of Munich, Munich, Germany
| | - Stephan A Grupp
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Patrice Eydoux
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Philipp F Lange
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Alix E Seif
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Maxwell
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S D Reid
- Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital Research Institute, Vancouver, BC, Canada.
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Arakawa A, Tao K, Kohno T, Ogawa C. Cross-individual cancer transmission to children during the gestational and perinatal periods. Cancer Sci 2024; 115:1039-1047. [PMID: 38369705 PMCID: PMC11006992 DOI: 10.1111/cas.16102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/13/2024] [Accepted: 01/25/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer transmission may rarely occur between individuals. Besides through allogenic transplantation, cancer transmission via the hemochorial placenta, which is permissive for cell traffic, has been described in a few reports. Three etiologies of transplacental cancer transmission include (1) maternofetal transmission of maternal cancer cells, (2) transmission of gestational choriocarcinoma to the fetus, and (3) transfer of preleukemic cells from one monozygotic twin to the other. Additionally, we recently reported two pediatric cases of lung tumors in which the lung-only distribution of tumors and genomic profiling of both the child's and mother's tumor samples suggested the airway/transbronchial transmission of maternal cervical cancer cells to the child by aspiration at birth. The immune system coordinates the hemostatic balance between effector and regulatory immunity, especially during fetal development. The immunoregulatory properties are shared in both physiological pregnancy-related and pathological cancer-related conditions. Mechanistically, the survival and colonization of transmitted cancer cells within a child are likely attributed to a combination of the child's immune tolerance and the cancer's immune escape. In this review, we summarize the current understanding of gestational/perinatal cancer transmission and discuss the possible mechanism-based immunotherapy for this rare form of pediatric cancer.
Collapse
Affiliation(s)
- Ayumu Arakawa
- Department of Pediatric OncologyNational Cancer Center HospitalTokyoJapan
| | - Kayoko Tao
- Department of Pediatric OncologyNational Cancer Center HospitalTokyoJapan
| | - Takashi Kohno
- Division of Genome BiologyNational Cancer Center Research InstituteTokyoJapan
| | - Chitose Ogawa
- Department of Pediatric OncologyNational Cancer Center HospitalTokyoJapan
| |
Collapse
|
6
|
de Smith AJ, Wiemels JL, Mead AJ, Roberts I, Roy A, Spector LG. Backtracking to the future: unraveling the origins of childhood leukemia. Leukemia 2024; 38:416-419. [PMID: 38123697 PMCID: PMC11092887 DOI: 10.1038/s41375-023-02111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Adam J de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA.
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA.
| | - Joseph L Wiemels
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Adam J Mead
- Haematopoietic Stem Cell Biology Laboratory, MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Irene Roberts
- Department of Paediatrics and MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Anindita Roy
- Department of Paediatrics and MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- Department of Haematology, Great Ormond Street Hospital for Children, London, UK
| | - Logan G Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, MN, USA.
| |
Collapse
|
7
|
de Carvalho VM, Chung-Filho AA, Braga FHP, Chagas-Neto P, Soares-Lima SC, Pombo-de-Oliveira MS. Interaction between birth characteristics and CRHR1, MC2R, NR3C1, GLCCI1 variants in the childhood lymphoblastic leukemia risk. Front Oncol 2024; 13:1274131. [PMID: 38348123 PMCID: PMC10859751 DOI: 10.3389/fonc.2023.1274131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/31/2023] [Indexed: 02/15/2024] Open
Abstract
Background The incidence rate of childhood acute lymphoblastic leukemia (ALL) differs worldwide, and the interplay between hemostasis actors and the maladaptive responses to environmental exposures has been explored. It has been proposed that endogenous cortisol, induced by different triggers, would eliminate pre-leukemic clones originated in utero. Herein, we tested if the interaction between CRHR1rs242941 C>A, MC2Rrs1893219 A>G, NR3C1rs41423247 G>C, and GLCCI1rs37972 C>T (players in glucocorticoid secretion) and birth characteristics would be associated with ALL risk. Methods Children aged <10 years were enrolled within the EMiLI project (period: 2012 to 2020). The study had three steps: (1) observational analysis of birth characteristics (n = 533 cases and 1,603 controls); (2) genotyping to identify single-nucleotide variants (n = 756 cases and 431 controls); and (3) case-only to test gene-environment interactions (n = 402 cases). Genetic syndromes were exclusion criteria. The controls were healthy children. The distribution of the variables was assessed through Pearson's chi-square test. Logistic regression (LR) tests were run fitted and adjusted for selected covariate models to estimate the association risk. Formal interaction analysis was also performed. Genotyping was tested by qPCR with TaqMan probes (NR3C1) or by high-resolution melting (MC2R and GLCCI1). Hardy-Weinberg equilibrium (HWE) was accessed by the chi-square test. The genotype-risk association was tested in co-dominant, dominant, and recessive models. The gene-environment interaction odds ratio (iOR) was assessed in case-only. Results Low birthweight, C-section, and low maternal schooling were associated with increased risk for ALL, adjOR 2.11, 95% CI, 1.02-4.33; adjOR 1.59, 95% CI, 1.16-2.17; and adjOR 3.78, 95% CI, 2.47-5.83, respectively, in a multiple logistic regression model. MC2R rs1893219 A>G was negatively associated with ALL (AG: OR = 0.68; 95% CI = 0.50-0.94 and GG: OR = 0.60; 95% CI = 0.42-0.85), while for GLCCI1 rs37972 C>T, TT was positively associated with ALL (OR = 1.91; 95% CI = 1.21-3.00). The combination of genotypes for MC2R (AA) and GLCCI1 (TT) increased ALL risk (OR = 2.61; 95% CI = 1.16-5.87). In a multiplicative interaction, MC2R rs1893219 A>G was associated with children whose mothers had less than 9 years of schooling (iOR = 1.99; 95% CI = 1.11-1.55). Conclusion Our study has demonstrated a significant association between MC2R rs1893219 A>G (reduced risk) and GLCCI1 rs37972 C>T variants (increased risk) and childhood ALL susceptibility. Based on this evidence, genes controlling the HPA axis activity may play a role in leukemogenesis, and further investigation is needed to substantiate our findings.
Collapse
Affiliation(s)
- Vitoria Müller de Carvalho
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Alython Araujo Chung-Filho
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Flávio Henrique Paraguassu Braga
- National Placental and Umbilical Cord Blood Bank, Instituto Nacional de Câncer (INCA), Ministério da Saúde (MS), Rio de Janeiro, Brazil
| | - Paulo Chagas-Neto
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Sheila Coelho Soares-Lima
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Maria S. Pombo-de-Oliveira
- Research Center, Molecular Carcinogenesis Program, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| |
Collapse
|
8
|
de Smith AJ, Spector LG. In Utero Origins of Acute Leukemia in Children. Biomedicines 2024; 12:236. [PMID: 38275407 PMCID: PMC10813074 DOI: 10.3390/biomedicines12010236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Acute leukemias, mainly consisting of acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML), comprise a major diagnostic group among hematologic cancers. Due to the early age at onset of ALL, particularly, it has long been suspected that acute leukemias of childhood may have an in utero origin. This supposition has motivated many investigations seeking direct proof of prenatal leukemogenesis, in particular, twin and "backtracking studies". The suspected in utero origin has also focused on gestation as a critical window of risk, resulting in a rich literature on prenatal risk factors for pediatric acute leukemias. In this narrative review, we recount the circumstantial and direct evidence for an in utero origin of childhood acute leukemias.
Collapse
Affiliation(s)
- Adam J. de Smith
- Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Logan G. Spector
- Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Khera S, Kurup A, Agarwal S, Tripathi P. Synchronous presentation of ETV6::RUNX1 fusion positive concordant B-acute lymphoblastic leukaemia in identical twin toddlers. BMJ Case Rep 2023; 16:e257139. [PMID: 37967932 PMCID: PMC10660162 DOI: 10.1136/bcr-2023-257139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
Concordant leukaemia in identical twins is rare. The likelihood of concordance of leukaemia in twins is near 100% in infancy, around 10% from 1 to 6 years of age, and rare at a later age with variable latency. Reporting of new cases of concordant leukaemia in twins is encouraged to contribute to data pool of this infrequent but exceptional condition; especially when the theories with respect to evolution, natural history and molecular evidence explaining concordant leukaemia in identical twins are still evolving.We discuss identical pair of monochorionic twin toddlers who were detected to have pallor and blood investigations revealed pancytopenia. Further work up including bone marrow studies revealed synchronous diagnosis of B-acute lymphoblastic leukaemia (B-ALL) with ETV6::RUNX1 fusion. Synchronous presentation of concordant leukaemia in identical twins is extremely rare. Index twins are the only second set of twins and first one beyond infantile age with synchronous presentation of B-ALL.
Collapse
Affiliation(s)
- Sanjeev Khera
- Pediatrics, Army Hospital Research and Referral, New Delhi, Delhi, India
| | - Arjun Kurup
- Pediatrics, Military Hospital Patiala, Patiala, Punjab, India
| | - Samir Agarwal
- Pathology, Army Hospital Research & Referral, New Delhi, Delhi, India
| | - Preeti Tripathi
- Pathology, Army Hospital Research & Referral, New Delhi, Delhi, India
| |
Collapse
|
10
|
Derks LLM, van Boxtel R. Stem cell mutations, associated cancer risk, and consequences for regenerative medicine. Cell Stem Cell 2023; 30:1421-1433. [PMID: 37832550 PMCID: PMC10624213 DOI: 10.1016/j.stem.2023.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
Mutation accumulation in stem cells has been associated with cancer risk. However, the presence of numerous mutant clones in healthy tissues has raised the question of what limits cancer initiation. Here, we review recent developments in characterizing mutation accumulation in healthy tissues and compare mutation rates in stem cells during development and adult life with corresponding cancer risk. A certain level of mutagenesis within the stem cell pool might be beneficial to limit the size of malignant clones through competition. This knowledge impacts our understanding of carcinogenesis with potential consequences for the use of stem cells in regenerative medicine.
Collapse
Affiliation(s)
- Lucca L M Derks
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands
| | - Ruben van Boxtel
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, the Netherlands; Oncode Institute, Jaarbeursplein 6, 3521 AL Utrecht, the Netherlands.
| |
Collapse
|
11
|
Mansur MB, deSouza NM, Natrajan R, Abegglen LM, Schiffman JD, Greaves M. Evolutionary determinants of curability in cancer. Nat Ecol Evol 2023; 7:1761-1770. [PMID: 37620552 DOI: 10.1038/s41559-023-02159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 07/05/2023] [Indexed: 08/26/2023]
Abstract
The emergence of drug-resistant cells, most of which have a mutated TP53 gene, prevents curative treatment in most advanced and common metastatic cancers of adults. Yet, a few, rarer malignancies, all of which are TP53 wild type, have high cure rates. In this Perspective, we discuss how common features of curable cancers offer insights into the evolutionary and developmental determinants of drug resistance. Acquired loss of TP53 protein function is the most common genetic change in cancer. This probably reflects positive selection in the context of strong ecosystem pressures including microenvironmental hypoxia. Loss of TP53's functions results in multiple fitness benefits and enhanced evolvability of cancer cells. TP53-null cells survive apoptosis, and tolerate potent oncogenic signalling, DNA damage and genetic instability. In addition, critically, they provide an expanded pool of self-renewing, or stem, cells, the primary units of evolutionary selection in cancer, making subsequent adaptation to therapeutic challenge by drug resistance highly probable. The exceptional malignancies that are curable, including the common genetic subtype of childhood acute lymphoblastic leukaemia and testicular seminoma, differ from the common adult cancers in originating prenatally from embryonic or fetal cells that are developmentally primed for TP53-dependent apoptosis. Plus, they have other genetic and phenotypic features that enable dissemination without exposure to selective pressures for TP53 loss, retaining their intrinsic drug hypersensitivity.
Collapse
Affiliation(s)
| | - Nandita M deSouza
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- Department of Imaging, The Royal Marsden National Health Service (NHS) Foundation Trust, London, UK
| | - Rachael Natrajan
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer, The Institute of Cancer Research, London, UK
| | - Lisa M Abegglen
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Joshua D Schiffman
- Department of Pediatrics and Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
- Peel Therapeutics, Inc., Salt Lake City, UT, USA
| | - Mel Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
12
|
Peppas I, Ford AM, Furness CL, Greaves MF. Gut microbiome immaturity and childhood acute lymphoblastic leukaemia. Nat Rev Cancer 2023; 23:565-576. [PMID: 37280427 PMCID: PMC10243253 DOI: 10.1038/s41568-023-00584-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/08/2023]
Abstract
Acute lymphoblastic leukaemia (ALL) is the most common cancer of childhood. Here, we map emerging evidence suggesting that children with ALL at the time of diagnosis may have a delayed maturation of the gut microbiome compared with healthy children. This finding may be associated with early-life epidemiological factors previously identified as risk indicators for childhood ALL, including caesarean section birth, diminished breast feeding and paucity of social contacts. The consistently observed deficiency in short-chain fatty-acid-producing bacterial taxa in children with ALL has the potential to promote dysregulated immune responses and to, ultimately, increase the risk of transformation of preleukaemic clones in response to common infectious triggers. These data endorse the concept that a microbiome deficit in early life may contribute to the development of the major subtypes of childhood ALL and encourage the notion of risk-reducing microbiome-targeted intervention in the future.
Collapse
Affiliation(s)
- Ioannis Peppas
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Anthony M Ford
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Caroline L Furness
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Paediatric Oncology, The Royal Marsden Hospital Sutton, Surrey, UK
| | - Mel F Greaves
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| |
Collapse
|
13
|
Garcia-Gimenez A, Richardson SE. The role of microenvironment in the initiation and evolution of B-cell precursor acute lymphoblastic leukemia. Front Oncol 2023; 13:1150612. [PMID: 36959797 PMCID: PMC10029760 DOI: 10.3389/fonc.2023.1150612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Richardson
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Cambridge, United Kingdom
- *Correspondence: Simon E. Richardson,
| |
Collapse
|