1
|
Yi JS, Cuglievan B. Acute Leukemia in the Crosshairs: First-in-Class Menin Inhibitor Approval for Adults and Children. Pediatr Blood Cancer 2025; 72:e31657. [PMID: 40103277 DOI: 10.1002/pbc.31657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/22/2025] [Accepted: 03/03/2025] [Indexed: 03/20/2025]
Affiliation(s)
- Joanna S Yi
- Department of Pediatrics, Baylor College of Medicine/Texas Children's Hospital, Houston, Texas, USA
| | - Branko Cuglievan
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
Ikeda J, Shiba N, Kato S, Kunimoto H, Saito Y, Sagisaka M, Ito M, Goto H, Okuno Y, Nakamura W, Yoshitomi M, Takeuchi M, Ito S, Nakajima H, Kato M, Tsujimoto SI. Establishment of a high-risk pediatric AML-derived cell line YCU-AML2 with genetic and metabolic vulnerabilities. Int J Hematol 2025; 121:694-705. [PMID: 39891826 DOI: 10.1007/s12185-025-03929-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/03/2025]
Abstract
The prognosis of acute myeloid leukemia (AML) with KMT2A::MLLT3 rearrangement and MECOM overexpression and/or KRAS mutation is dismal, and the optimal treatment strategy remains unclear. However, to the best of our knowledge, a suitable model (such as a cell line or its xenograft model) for research on this subtype has not been established. We established a novel AML cell line, YCU-AML2, and its xenograft model harboring KMT2A::MLLT3 rearrangement, MECOM overexpression, and KRAS G12A mutation. YCU-AML2 xenograft mice models developed AML and mimicked the clinical phenotype of the original patient. YCU-AML2 expressed high sensitivity to MEK inhibitors, such as trametinib and selumetinib. Moreover, YCU-AML2 also exhibited high sensitivity to L-asparaginase with glutaminase activity, perhaps because of its reliance on oxidative phosphorylation via glutaminolysis as its main energy source. We believe that the YCU-AML2 cell line and its xenograft model can serve as models to explore the molecular pathogenesis of high-risk AML with KMT2A::MLLT3 rearrangement, MECOM overexpression, and/or KRAS mutation and develop new treatment strategies.
Collapse
Affiliation(s)
- Junji Ikeda
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
- Department of Stem Cell and Immune Regulation, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Norio Shiba
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Shota Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyoshi Kunimoto
- Department of Stem Cell and Immune Regulation, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Yusuke Saito
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Maiko Sagisaka
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mieko Ito
- Clinical Research Institute, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Hiroaki Goto
- Division of Hematology/Oncology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Yusuke Okuno
- Department of Virology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Wataru Nakamura
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masahiro Yoshitomi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masanobu Takeuchi
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Shuichi Ito
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Graduate School of Medicine, Yokohama City University, Yokohama, Japan
| | - Motohiro Kato
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shin-Ichi Tsujimoto
- Department of Pediatrics, Graduate School of Medicine, Yokohama City University, 3-9, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
3
|
Cirotski DS, Sawyer L, File W, Pegram L. Acute Myeloblastic Leukemia in a Child With Duchenne Muscular Dystrophy: A Novel Case and Brief Review of the Literature. J Pediatr Hematol Oncol 2025; 47:e131-e134. [PMID: 40101139 DOI: 10.1097/mph.0000000000003019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/27/2025] [Indexed: 03/20/2025]
Abstract
We present the first documented case of acute myeloid leukemia in a patient with Duchenne muscular dystrophy (DMD). The patient also had a second degree relative that was an obligate carrier of DMD, who died of acute myeloid leukemia as an infant, meeting the criteria of hereditary hematologic malignancy syndrome. We discuss the challenges of managing cancer in the setting of DMD. We briefly review the literature investigating the possible role of dystrophin in carcinogenesis. Lastly, we discuss the possible etiologies of this patient's malignancy being from carcinogenic properties of dystrophin, a cancer-predisposing germline mutation within the family lineage, or genetically unrelated events. This adds to the list of reports of various malignancies in patients with DMD.
Collapse
MESH Headings
- Humans
- Muscular Dystrophy, Duchenne/complications
- Muscular Dystrophy, Duchenne/genetics
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/complications
- Male
- Dystrophin/genetics
- Fatal Outcome
Collapse
Affiliation(s)
| | - Lindsey Sawyer
- Department of Medical Genetics, Children's Hospital of The King's Daughters
| | - Wilson File
- Department of Pediatric Hematology and Oncology, Children's Hospital of The King's Daughters, Norfolk, VA
| | - Linda Pegram
- Department of Pediatric Hematology and Oncology, Children's Hospital of The King's Daughters, Norfolk, VA
| |
Collapse
|
4
|
Buckley M, Yeung DT, White DL, Eadie LN. T-cell acute lymphoblastic leukaemia: subtype prevalence, clinical outcome, and emerging targeted treatments. Leukemia 2025:10.1038/s41375-025-02599-2. [PMID: 40247105 DOI: 10.1038/s41375-025-02599-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 03/19/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
T-cell Acute Lymphoblastic Leukaemia (T-ALL) is a high-risk hematological disease constituting ~20% of acute leukemias. To date, the only subtype recognized by the World Health Organization's International Consensus Classification is early T-cell precursor ALL. To improve clinical outcomes, several studies have investigated and defined T-ALL genomic subtypes within cohorts of varied ages and geographical locations. These studies have also utilized differing analysis methods including whole transcriptome, exome, or genome sequencing as well as immunophenotyping and cytogenetic testing. As a result, there are significant differences in reported subtypes as well as the frequency at which each occurs. The reported clinical outcomes for specific genomic alterations also depend on patient demographics and treatment protocols. This review synthesizes the data from four T-ALL genomic landscape studies establishing consensus and highlighting differences, details clinical outcomes for the most common genomic alterations observed in T-ALL patients, and proposes novel avenues for future investigation and treatment.
Collapse
Affiliation(s)
- Maxim Buckley
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - David T Yeung
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
- Hematology Department, Central Adelaide Local Health Network, Adelaide, SA, Australia
| | - Deborah L White
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Laura N Eadie
- Blood Cancer, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA, Australia.
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
5
|
Crump NT, Milne TA. Is Enhancer Function Driven by Protein-Protein Interactions? From Bacteria to Leukemia. Bioessays 2025:e70006. [PMID: 40195782 DOI: 10.1002/bies.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
The precise regulation of the transcription of genes is essential for normal development and for the maintenance of life. Aberrant gene expression changes drive many human diseases. Despite this, we still do not completely understand how precise gene regulation is controlled in living systems. Enhancers are key regulatory elements that enable cells to specifically activate genes in response to environmental cues, or in a stage or tissue-specific manner. Any model of enhancer activity needs to answer two main questions: (1) how enhancers are able to identify and act on specific genes and (2) how enhancers influence transcription. To address these points, we first outline some of the basic principles that can be established from simpler prokaryotic systems, then discuss recent work on aberrant enhancer activity in leukemia. We argue that highly specific protein-protein interactions are a key driver of enhancer-promoter proximity, allowing enhancer-bound factors to directly act on RNA polymerase and activate transcription.
Collapse
Affiliation(s)
- Nicholas T Crump
- Hugh and Josseline Langmuir Centre for Myeloma Research, Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Thomas A Milne
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Sreedharanunni S, Thakur V, Balakrishnan A, Sachdeva MUS, Kaur P, Raina S, Jamwal M, Singh C, Sharma P, Mallik N, Naseem S, Rastogi P, Jain A, Prakash G, Khadwal A, Malhotra P, Das R. Effective Utilization of a Customized Targeted Hybrid Capture RNA Sequencing in the Routine Molecular Categorization of Adolescent and Adult B-Lineage Acute Lymphoblastic Leukemia: A Real-World Experience. Mol Diagn Ther 2025:10.1007/s40291-025-00779-5. [PMID: 40186692 DOI: 10.1007/s40291-025-00779-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2025] [Indexed: 04/07/2025]
Abstract
INTRODUCTION Recent World Health Organization (WHO) and International Consensus Classifications have introduced numerous molecular entities in B-lineage acute lymphoblastic leukemia (B-ALL), necessitating comprehensive genomic characterization by detecting gene fusions, expression, mutations, and exon deletions. While whole-genome plus transcriptome sequencing is the ideal strategy, it remains cost-prohibitive for routine use. This study reports a cost-effective and reasonably efficient alternate approach integrating a customized targeted hybrid capture RNA sequencing (RNAseq) into the routine workup. METHODOLOGY A total of 95 consecutive adolescent/adult B-ALL cases negative for common chimeric gene fusions (CGF) (BCR::ABL1, KMT2A::AFF1, TCF3::PBX1, and ETV6::RUNX1) were analyzed using a customized 69-gene targeted RNAseq panel. In total, three fusion detection pipelines, the Trinity Cancer Transcriptome Analysis Toolkit (CTAT) Mutations pipeline, and the Toblerone alignment tool were employed, and the results were compared with fluorescence in situ hybridization (FISH)/multiplex ligation-dependent probe amplification (MLPA) testing. RESULTS RNAseq identified fusions in 43% of cases (including BCR::ABL1-like: 15.8% and IGH::DUX4: 10.5%), demonstrating superior detection of cryptic intrachromosomal rearrangements. Somatic variants were detected in 30% of cases (including rat sarcoma (RAS) pathway and Janus kinase (JAK)-signal transducers and activators of transcription (STAT) variants in 18% and 5.3% respectively), and IKZF1 deletions were detected in 25% (77% concordance with MLPA). The integration of targeted RNAseq and comprehensive bioinformatic analysis with flow-cytometry-based ploidy analysis and FISH-based IGH rearrangements helped categorize 79% of common CGF-negative B-ALL. The BCR::ABL1/BCR::ABL1-like group showed a higher frequency of pathogenic IKZF1 deletions (50% versus 21.7%; p = 0.011), measurable residual disease (92% versus 51%; p = 0.009), and poorer overall survival (8.6 versus 22.8 months; p = 0.07). DISCUSSION AND CONCLUSIONS Effective utilization of RNAseq data by comprehensive bioinformatic analysis to test fusions, mutations, and deletions, supported by only minimal supplementary FISH testing, provides a practical, cost-effective solution for the molecular characterization of B-ALL in real-world scenarios until a single alternative and cost-effective test is available.
Collapse
Affiliation(s)
- Sreejesh Sreedharanunni
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| | - Venus Thakur
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Anand Balakrishnan
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Man Updesh Singh Sachdeva
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Prabhjot Kaur
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Sudhanshi Raina
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Manu Jamwal
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Charanpreet Singh
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Praveen Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Nabhajit Mallik
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Shano Naseem
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pulkit Rastogi
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arihant Jain
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Gaurav Prakash
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Alka Khadwal
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Pankaj Malhotra
- Department of Clinical Hematology and Medical Oncology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| |
Collapse
|
7
|
Ngo TQ, Goh AFN, Dorwal P, Leong E, Shortt J, Fedele PL, Gilbertson M, Fong CY, Shanmuganathan N, Kumar B, Yeh P. Next-generation sequencing RNA fusion panel for the diagnosis of haematological malignancies. Pathology 2025; 57:340-347. [PMID: 39672769 DOI: 10.1016/j.pathol.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 12/15/2024]
Abstract
Haematological malignancies are being increasingly defined by gene rearrangements, which have traditionally been detected by karyotype, fluorescent in situ hybridisation (FISH) or reverse-transcriptase polymerase chain reaction (RT-PCR). However, these traditional methods may miss cryptic gene rearrangements and are limited by the number of gene rearrangements screened at any one time. A next-generation sequencing (NGS) RNA fusion panel is an evolving technology that can identify multiple fusion transcripts in a single molecular assay, even without prior knowledge of breakpoints or fusion partners. We explored the utility of the Illumina TruSight RNA Fusion Panel for use in haematological malignancies by sequencing 30 peripheral blood or bone marrow aspirate samples. Secondary and tertiary analyses were performed using the Illumina DRAGEN RNA pipeline and PierianDx Clinical Genomics Workspace platform. Our RNA fusion panel was able to reliably detect known fusion transcripts, such as BCR::ABL1, ETV6::RUNX1 and KMT2A::AFF1, in acute lymphoblastic leukaemia (ALL), KMT2A::MLLT3, KMT2A::MLLT6, PML::RARA and CBFB::MYH11 in acute myeloid leukaemia (AML), and FIP1L1::PDGFRA in myeloid/lymphoid neoplasm with eosinophilia (MLN-Eo). In addition, it was able to detect rare KAT6A::CREBBP and CHIC2::ETV6 fusions, which could not be confirmed by traditional methods. The assay had a transcript limit of detection of approximately 5-10% of positive controls. These findings confirm the unique utility of the NGS-based RNA fusion panel as a diagnostic tool to identify gene rearrangements that drive haematological malignancies. It can identify novel and rare gene rearrangements to assist with diagnosis, prognostication and treatment decisions.
Collapse
Affiliation(s)
- Trung Quang Ngo
- Department of Haematology, Monash Health, Clayton, Vic, Australia; Department of Diagnostic Genomics, Monash Health, Clayton, Vic, Australia
| | - Anna Fong Na Goh
- Department of Diagnostic Genomics, Monash Health, Clayton, Vic, Australia
| | - Pranav Dorwal
- Department of Diagnostic Genomics, Monash Health, Clayton, Vic, Australia; School of Clinical Sciences, Monash University, Clayton, Vic, Australia
| | - Emmanuel Leong
- Department of Haematology, Monash Health, Clayton, Vic, Australia
| | - Jake Shortt
- Department of Haematology, Monash Health, Clayton, Vic, Australia; School of Clinical Sciences, Monash University, Clayton, Vic, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Vic, Australia
| | - Pasquale L Fedele
- Department of Haematology, Monash Health, Clayton, Vic, Australia; School of Clinical Sciences, Monash University, Clayton, Vic, Australia
| | - Michael Gilbertson
- Department of Haematology, Monash Health, Clayton, Vic, Australia; School of Clinical Sciences, Monash University, Clayton, Vic, Australia
| | - Chun Yew Fong
- Department of Haematology, Austin Health, Heidelberg, Vic, Australia
| | | | - Beena Kumar
- Department of Diagnostic Genomics, Monash Health, Clayton, Vic, Australia
| | - Paul Yeh
- Department of Haematology, Monash Health, Clayton, Vic, Australia; Department of Diagnostic Genomics, Monash Health, Clayton, Vic, Australia; School of Clinical Sciences, Monash University, Clayton, Vic, Australia.
| |
Collapse
|
8
|
Kim H, Akahane K, Tamai M, Kasai S, Kobayashi A, Goto M, Goi K, Inukai T. Unique Presentation of Autoinflammatory Disease-like Symptoms and Development of Leukemic Cell Lysis Pneumopathy in Childhood KMT2A::LASP1 -positive Acute Monocytic Leukemia. J Pediatr Hematol Oncol 2025; 47:135-139. [PMID: 39961013 DOI: 10.1097/mph.0000000000003006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/20/2025] [Indexed: 03/25/2025]
Abstract
In the literature, long-term autoinflammatory disease (AID)-like symptoms are extremely rare in childhood acute leukemia cases. Here, we report a 14-month-old girl with KMT2A::LASP1 -positive acute monocytic leukemia diagnosed after a 7-month course of AID-like symptoms. KMT2A::LASP1 fusion was retrospectively detected in her bone marrow at the initial presentation of AID-like symptoms, suggesting the involvement of leukemia cells in her AID-like symptoms. Immediately after starting chemotherapy, the patient sequentially developed leukemic cell lysis pneumopathy (LCLP), which was successfully overcome by the continuation of chemotherapy under intensive respiratory support, thus suggesting a possible association of her AID-like symptoms with the development of LCLP.
Collapse
Affiliation(s)
- Hyunho Kim
- Department of Pediatrics, School of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Nishimura A, Tamura A, Fujikawa T, Inoue S, Nakatani N, Nozu K, Yamamoto N. KMT2A-CBL fusion gene in the first reported case of T-cell acute lymphoblastic leukemia associated with Wiedemann-Steiner syndrome. Int J Hematol 2025:10.1007/s12185-025-03975-5. [PMID: 40153132 DOI: 10.1007/s12185-025-03975-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/30/2025]
Abstract
Wiedemann-Steiner syndrome (WSS) is a congenital malformation syndrome characterized by intellectual disability, developmental delay, and distinctive facial features, caused by germline mutations in the KMT2A gene. Despite the key role of KMT2A in hematopoiesis, leukemia has not been previously reported in WSS patients. This report presents the first documented case of acute lymphoblastic leukemia (ALL) in a WSS patient. A 16-year-old boy with developmental delay, distinct facial features, and genital abnormalities was diagnosed with WSS following the identification of a heterozygous frameshift mutation in KMT2A. At age 17, he developed T-cell ALL harboring the KMT2A-CBL fusion gene, of which only nine cases have been reported so far. cDNA sequence analysis of the KMT2A-CBL transcript at the site of the germline KMT2A pathogenic variant revealed a wild-type sequence, indicating that the KMT2A-CBL fusion occurred on the wild-type allele. While this observation suggests a potential cooperative role of the KMT2A-CBL chimeric gene and the germline KMT2A pathogenic mutation in leukemogenesis, the rarity of leukemia in WSS underscores the need for cautious interpretation. This case provides preliminary insights into a possible mechanism of leukemogenesis in WSS, but further studies are required to clarify the relationship between WSS and ALL.
Collapse
Affiliation(s)
- Akihiro Nishimura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Akihiro Tamura
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho Chuo-ku, Kobe, Hyogo, 650-0017, Japan.
| | - Tomoko Fujikawa
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Shotaro Inoue
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Naoko Nakatani
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| | - Nobuyuki Yamamoto
- Department of Pediatrics, Kobe University Graduate School of Medicine, 7-5-1 Kusunokicho Chuo-ku, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
10
|
Vanhooren J, Deneweth L, Pagliaro L, Ren Z, Giaimo M, Zamponi R, Roti G, Depreter B, Hofmans M, De Moerloose B, Lammens T. Nidogen-1, a Player in KMT2A-Rearranged Pediatric Acute Myeloid Leukemia. Int J Mol Sci 2025; 26:3011. [PMID: 40243655 PMCID: PMC11988693 DOI: 10.3390/ijms26073011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/17/2025] [Accepted: 03/22/2025] [Indexed: 04/18/2025] Open
Abstract
Despite advances in outcome, one third of children with acute myeloid leukemia (AML) relapse, and less than half will achieve long-term survival. Relapse in AML has been shown to be driven in part by leukemic stem cells (LSCs), highlighting the unmet medical need to better characterize and target this therapy-resistant cell population. Micro-array profiling of pediatric AML subpopulations (LSCs and leukemic myeloblasts) and their healthy counterparts revealed nidogen-1 (NID1) as expressed in both leukemic subpopulations while absent in the hematopoietic stem cell. Using the TARGET dataset including pediatric AML patients (n = 1025), NID1 expression showed a correlation with worse event-free survival and KMT2A rearrangements. Drug response profiling of a NID1 knockdown model demonstrated differential sensitivity to HSP90 inhibition. RNA sequencing and gene set enrichment analysis between NID1high and NID1low phenotypes showed involvement of NID1 in mitochondrial metabolic pathways known to be enriched in LSCs. Altogether, this study highlights NID1 as a novel oncogene associated with worse EFS and metabolic LSC phenotype in AML. NID1 could serve as a biomarker and aid in further mapping LSCs to establish therapeutic strategies tackling the high relapse rates in pediatric AML.
Collapse
Affiliation(s)
- Jolien Vanhooren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Larissa Deneweth
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Luca Pagliaro
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Zhiyao Ren
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Mariateresa Giaimo
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Rafaella Zamponi
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Giovanni Roti
- Translational Hematology and Chemogenomics (THEC), University of Parma, 43121 Parma, Italy
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
- Hematology and BMT Unit, Azienda Ospedaliero-Universitaria di Parma, 43121 Parma, Italy
| | - Barbara Depreter
- Department of Laboratory Medicine, AZ Delta General Hospital, 8800 Roeselare, Belgium
- Department of Haematology, Vrije Universiteit Brussel (VUB), 1000 Brussels, Belgium
| | - Mattias Hofmans
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000 Ghent, Belgium
- Department of Laboratory Medicine, Ghent University Hospital, 9000 Ghent, Belgium
| | - Barbara De Moerloose
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| | - Tim Lammens
- Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (J.V.)
- Department of Pediatric Hematology-Oncology and Stem Cell Transplantation, Ghent University Hospital, 9000 Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), 9000 Ghent, Belgium
| |
Collapse
|
11
|
Benz T, Larghero P, Meyer C, Müller M, Brüggmann D, Hentrich AE, Louwen F, Erkner E, Fitzel R, Schneidawind C, Marschalek R. Protocol for CRISPR-Cas9-mediated induction of KMT2A rearrangements in cell line and umbilical cord blood hematopoietic stem and progenitor cells. STAR Protoc 2025; 6:103481. [PMID: 39700011 PMCID: PMC11721537 DOI: 10.1016/j.xpro.2024.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/01/2024] [Accepted: 11/04/2024] [Indexed: 12/21/2024] Open
Abstract
KMT2A rearrangements are associated with a poor clinical outcome in infant, pediatric, and adult acute lymphoblastic and myeloid leukemia. Here, we present a protocol to reconstruct chromosomal translocations with different partner genes of KMT2A in vitro. We describe steps for patient-specific single guide RNA (sgRNA) design, optimized sgRNA in vitro transcription, detailed purification of hematopoietic stem and progenitor cells (HSPCs) from umbilical cord blood (UCB), and CRISPR-Cas9 editing of the test cell line K562 as well as UCB HSPCs. The provided methodology is donor independent.
Collapse
Affiliation(s)
- Tamara Benz
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany.
| | - Patrizia Larghero
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Claus Meyer
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Marcel Müller
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Dörthe Brüggmann
- Department of Obstetrics and Perinatology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Anna-Elisabeth Hentrich
- Department of Obstetrics and Perinatology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Frank Louwen
- Department of Obstetrics and Perinatology, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Estelle Erkner
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Rahel Fitzel
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Corina Schneidawind
- Department of Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, 72076 Tübingen, Germany; Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zürich, Switzerland
| | - Rolf Marschalek
- Institute Pharmaceutical Biology/DCAL, Goethe-University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Mendoza-Castrejon J, Yang W, Denby E, Wang H, Casey EB, Muthukumar R, Patel RM, Yoon J, Li Y, White JM, Chen R, Batista LFZ, Magee JA. Fetal context conveys heritable protection against MLL-rearranged leukemia that depends on MLL3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642680. [PMID: 40161712 PMCID: PMC11952435 DOI: 10.1101/2025.03.11.642680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
MLL rearrangements ( MLL r) are the most common cause of congenital and infant leukemias. MLL r arise prior to birth and require few cooperating mutations for transformation, yet congenital leukemias are 10-fold less common than infant leukemias and >100-fold less common than childhood leukemias overall. This raises the question of whether mechanisms exist to suppress leukemic transformation during fetal life, thereby protecting the developing fetus from malignancy during a period of rapid hematopoietic progenitor expansion. Here, we use mouse models to show that fetal MLL::ENL exposure creates a heritable, leukemia-resistant state. MLL::ENL imposes a negative selective pressure on fetal hematopoietic progenitors. It leads to postnatal loss of self-renewal gene expression and enhanced myeloid differentiation that precludes transformation. These changes do not occur when MLL::ENL is induced shortly after birth, and transformation proceeds efficiently in this context. The fetal barrier to transformation is enforced by the histone methyltransferase MLL3. It can be overcome by cooperating mutations, such as Nras G12D , or through somatic or germline inactivation of MLL3. Heritable fetal protection against leukemic transformation may explain the low incidence of congenital leukemias in humans despite prenatal MLL rearrangement.
Collapse
|
13
|
Liu J, Zhao XS, Chang YJ, Qin YZ, Jiang Q, Jiang H, Zhang XH, Xu LP, Wang Y, Lv M, Liu KY, Huang XJ, Zhao XY. Monitoring the KMT2A gene post-chemotherapy independently predicts the relapse and survival risk after allogeneic haematopoietic stem cell transplantation. Br J Haematol 2025. [PMID: 40081934 DOI: 10.1111/bjh.20036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025]
Abstract
This study evaluated the kinetics of KMT2A-r during chemotherapy and its impact on allogeneic haematopoietic stem cell transplantation (allo-HSCT) outcomes. KMT2A-r was assessed post-induction (MRD1), after the first (MRD2) and second (MRD3) consolidations and pre-transplant (MRD4) in 52 patients with acute myeloid leukaemia (AML). KMT2A-r significantly decreased from diagnosis to MRD2 (p < 0.001 for diagnosis vs. MRD1; p = 0.019 for MRD1 vs. MRD2). The incidence of KMT2A-r negativity (57.5%) peaked at MRD2. KMT2A-r status at each time point significantly affected post-transplant outcomes. Cluster analysis identified four KMT2A-r kinetic profiles: persistently negative (-/-), turned negative at transplant (+/-), turned positive at transplant (-/+) and persistently positive (+/+). The (-/-) group had the best outcomes, with a cumulative incidence of relapse (CIR) of 13.0%, overall survival (OS) of 82.0% and leukaemia-free survival (LFS) of 81.7%. The (+/+) group had the worst prognosis, with a CIR of 58.8%, OS of 29.4% and LFS of 23.5%. KMT2A dynamics were an independent risk factor for CIR (Hazard ratio [HR] = 11.070, 95%CI 2.395-51.165, p = 0.002), LFS (HR = 9.316, 95%CI 2.656-32.668, p < 0.001) and OS (HR = 7.172, 95%CI 1.999-25.730, p = 0.003). In conclusion, KMT2A-r status after chemotherapy and its kinetics are significant HSCT prognostic indicators.
Collapse
Affiliation(s)
- Jing Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Su Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Ya-Zhen Qin
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Qian Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Hao Jiang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Meng Lv
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Peking University, Beijing, China
| |
Collapse
|
14
|
Wei Q, Toruner GA, Thakral B, Patel KP, Pemmaraju N, Wang SA, Kanagal-Shamanna R, Tang G, Issa GC, Loghavi S, Medeiros LJ, DiNardo C. Cryptic KMT2A::AFDN Fusion Due to AFDN Insertion into KMT2A in a Patient with Acute Monoblastic Leukemia. Genes (Basel) 2025; 16:317. [PMID: 40149468 PMCID: PMC11942050 DOI: 10.3390/genes16030317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND KMT2A rearrangements occur in ~10% of acute myeloid leukemia (AML) cases and are critical for classification, risk stratification, and use of targeted therapy. However, insertions involving the KMT2A gene can evade detection using chromosomal analysis and/or fluorescence in situ hybridization (FISH). METHODS We present a case of a 22-year-old woman with acute monoblastic leukemia harboring a cryptic KMT2A::AFDN fusion identified by RNA sequencing. Initial FISH showed a 3' KMT2A deletion, while conventional karyotyping and the automated bioinformatic pipeline for optical genome mapping (OGM) did not identify the canonical translocation. RESULTS To resolve these discrepancies, metaphase KMT2A FISH (break-apart fusion probe) was performed to assess whether KMT2A was translocated to another chromosome. However, the results did not support this possibility. As the fusion signal remained on the normal chromosome 11, with the 5' KMT2A signal localized to the derivative chromosome 11. A subsequent manual review of the OGM data revealed a cryptic ~300 kb insertion of AFDN into the 3' region of KMT2A, reconciling the discrepancies between chromosomal analysis, FISH, and RNA fusion results. CONCLUSIONS This case highlights the importance of integrating multiple testing modalities with expert review when there is a discrepancy. Our findings emphasize the need for a comprehensive approach to genomic assessment to enhance diagnostic accuracy and guide therapeutic decision-making.
Collapse
MESH Headings
- Humans
- Female
- Myeloid-Lymphoid Leukemia Protein/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Oncogene Proteins, Fusion/genetics
- Leukemia, Monocytic, Acute/genetics
- Leukemia, Monocytic, Acute/pathology
- In Situ Hybridization, Fluorescence
- Translocation, Genetic/genetics
- Young Adult
- Chromosomes, Human, Pair 11/genetics
- Adult
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
Collapse
Affiliation(s)
- Qing Wei
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Gokce A. Toruner
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Beenu Thakral
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Keyur P. Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (N.P.); (G.C.I.); (C.D.)
| | - Sa A. Wang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Guilin Tang
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Ghayas C. Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (N.P.); (G.C.I.); (C.D.)
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (Q.W.); (B.T.); (K.P.P.); (S.A.W.); (R.K.-S.); (G.T.); (S.L.); (L.J.M.)
| | - Courtney DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, 6565 MD Anderson Avenue, Z5.5048, Houston, TX 77030, USA; (N.P.); (G.C.I.); (C.D.)
| |
Collapse
|
15
|
Bessière C, Zamani A, Pfeifer R, Dailhau S, Marchet C, Guibert B, Boureux A, Silva Da Silva R, Gilbert N, Commes T, Meggetto F, Touriol C, Récher C, Bousquet M, Pyronnet S. A strong internal promoter drives massive expression of YEATS-domain devoid MLLT3 transcripts in HSC and most lethal AML. Cancer Commun (Lond) 2025; 45:380-385. [PMID: 39749706 PMCID: PMC11947615 DOI: 10.1002/cac2.12650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/06/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025] Open
Affiliation(s)
- Chloé Bessière
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
- Institute for Regenerative Medicine and Biotherapy, INSERM UMR‐1183, Saint‐Éloi Hospital, Montpellier UniversityMontpellierFrance
| | - Ahmed Zamani
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
| | - Romain Pfeifer
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
| | - Sandra Dailhau
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
| | - Camille Marchet
- CRIStAL‐Research center in Computer Science, Signal and Automatic Control of Lille, CNRS UMR‐9189, Lille UniversityVilleneuve d'AscqFrance
| | - Benoit Guibert
- Institute for Regenerative Medicine and Biotherapy, INSERM UMR‐1183, Saint‐Éloi Hospital, Montpellier UniversityMontpellierFrance
| | - Anthony Boureux
- Institute for Regenerative Medicine and Biotherapy, INSERM UMR‐1183, Saint‐Éloi Hospital, Montpellier UniversityMontpellierFrance
| | - Raïssa Silva Da Silva
- Institute for Regenerative Medicine and Biotherapy, INSERM UMR‐1183, Saint‐Éloi Hospital, Montpellier UniversityMontpellierFrance
| | - Nicolas Gilbert
- Institute for Regenerative Medicine and Biotherapy, INSERM UMR‐1183, Saint‐Éloi Hospital, Montpellier UniversityMontpellierFrance
| | - Thérèse Commes
- Institute for Regenerative Medicine and Biotherapy, INSERM UMR‐1183, Saint‐Éloi Hospital, Montpellier UniversityMontpellierFrance
| | - Fabienne Meggetto
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
| | - Christian Touriol
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
| | - Christian Récher
- Hematology DepartmentUniversity Hospital Center, IUCT‐University Cancer InstituteToulouseFrance
| | - Marina Bousquet
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
| | - Stéphane Pyronnet
- Cancer Research Center of Toulouse, INSERM UMR‐1037, CNRS UMR‐5071, Toulouse UniversityToulouseFrance
| |
Collapse
|
16
|
Iyer P. Pediatric AML: state of the Art and Future Directions. Pediatr Hematol Oncol 2025; 42:126-145. [PMID: 39889807 DOI: 10.1080/08880018.2025.2453861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/03/2025]
Abstract
Pediatric acute myeloid leukemia (AML) is a heterogeneous and aggressive hematological malignancy. Despite advances in treatment, the survival rates remain unsatisfactory, emphasizing the need for innovative therapeutic approaches. This narrative review presents a comprehensive overview of the current approach and likely future directions for pediatric AML. The distinct genetic, epigenetic, and molecular features of pediatric AML contribute to its complex pathophysiology and impact on prognosis. Current treatment practices involve a multifaceted approach combining chemotherapy, molecularly targeted therapies, and hematopoietic stem cell transplantation. However, intensive treatment often leads to significant acute and long-term toxicity. Emerging strategies, including precision medicine, immunotherapy, and novel agents, hold promise for improving outcomes and minimizing adverse effects. Ongoing clinical trials are investigating the potential of these innovative approaches to transform pediatric AML care. By highlighting the evolving treatment paradigms and future perspectives, this review underscores the importance of continued research and development in pediatric AML to enhance the survival rates and quality of life of these young patients.
Collapse
Affiliation(s)
- Prasad Iyer
- Children's Blood and Cancer Centre, KK Women's and Children's Hospital, Singapore
- Duke NUS Medical School, Singapore
| |
Collapse
|
17
|
Csizmar CM, Litzow MR, Saliba AN. Antibody-Based and Other Novel Agents in Adult B-Cell Acute Lymphoblastic Leukemia. Cancers (Basel) 2025; 17:779. [PMID: 40075627 PMCID: PMC11899621 DOI: 10.3390/cancers17050779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025] Open
Abstract
Despite notable progress in managing B-cell acute lymphoblastic leukemia (B-ALL) over recent decades, particularly in pediatric cohorts where the 5-year overall survival (OS) reaches 90%, outcomes for the 10-15% with relapsed and refractory disease remain unfavorable. This disparity is further accentuated in adults, where individuals over the age of 40 years undergoing aggressive multiagent chemotherapy continue to have lower survival rates. While the adoption of pediatric-inspired treatment protocols has enhanced complete remission (CR) rates among younger adults, 20-30% of these patients experience relapse, resulting in a subsequent 5-year OS rate of 40-50%. For relapsed B-ALL in adults, there is no universally accepted standard salvage therapy, and the median OS is short. The cornerstone of B-ALL treatment continues to be the utilization of combined cytotoxic chemotherapy regimens to maximize early and durable disease control. In this manuscript, we go beyond the multiagent chemotherapy medications developed prior to the 1980s and focus on the incorporation of antibody-based therapy for B-ALL with an eye on existing and upcoming approved indications for blinatumomab, inotuzumab ozogamicin, other monoclonal antibodies, and chimeric antigen receptor (CAR) T cell products in frontline and relapsed/refractory settings. In addition, we discuss emerging investigational therapies that harness the therapeutic vulnerabilities of the disease through targeting apoptosis, modifying epigenetics, and inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Clifford M. Csizmar
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Antoine N. Saliba
- Division of Hematology, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
18
|
Richardson AI, Yap KL, Leuer K, Gong S. Hemophagocytic Lymphohistiocytosis with Predominant T-Lymphocytes in Young Child: An Unusual Presentation of Evolving Acute Myeloid Leukemia. J Clin Med 2025; 14:1511. [PMID: 40094975 PMCID: PMC11899776 DOI: 10.3390/jcm14051511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Hemophagocytic lymphohistiocytosis (HLH) is an aggressive, life-threatening condition commonly observed in young children. Distinguishing primary HLH from secondary HLH, such as malignancy-associated HLH, can be challenging, potentially leading to misdiagnosis and inappropriate treatment. Case presentation: A 16-month-old female presented with fever, decreased appetite, and rhinorrhea. A review of the peripheral blood smear revealed anemia and leukopenia, with absolute neutropenia characterized by a high lymphocyte count (approximately 80% were T cells by flow cytometry). Flow cytometry was negative for immunophenotypically abnormal cells. Initially, the cytopenia was attributed to a viral infection. However, the cytopenia did not improve, and a bone marrow evaluation revealed evidence of HLH but no immunophenotypically abnormal population. An extensive work-up for HLH, including next-generation sequencing (NGS) and cytogenetic testing identified the KMT2A::MLLT3 fusion transcript, indicating malignancy-associated HLH in the setting of evolving leukemia. Because there was no increase in blasts or immunophenotypically abnormal cells, the diagnosis of leukemia could not be made at that time. The patient was closely monitored and, seven weeks later, was diagnosed with acute myeloid leukemia/acute monocytic leukemia. In addition to the KMT2A::MLLT3 fusion, pathogenic variants in the PTPN11 and FLT3 genes were detected by NGS. Conclusions: The presentation of evolving acute monocytic leukemia can be nonspecific, mimicking conditions such as HLH, without an initial increase in immature cells or monocytes. Maintaining a broad differential diagnosis and including comprehensive molecular genetic testing may facilitate early diagnosis and appropriate treatment.
Collapse
Affiliation(s)
- Aida I. Richardson
- Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (K.L.Y.); (K.L.); (S.G.)
| | | | | | | |
Collapse
|
19
|
Péterffy B, Krizsán S, Egyed B, Bedics G, Benard-Slagter A, Palit S, Erdélyi DJ, Müller J, Nagy T, Hegyi LL, Bekő A, Kenéz LA, Jakab Z, Péter G, Zombori M, Csanádi K, Ottóffy G, Csernus K, Vojcek Á, Tiszlavicz LG, Gábor KM, Kelemen Á, Hauser P, Kállay K, Kertész G, Gaál Z, Szegedi I, Barna G, Márk Á, Haltrich I, Hevessy Z, Ujfalusi A, Kajtár B, Timár B, Kiss C, Kriván G, Matolcsy A, Savola S, Kovács G, Bödör C, Alpár D. Molecular Profiling Reveals Novel Gene Fusions and Genetic Markers for Refined Patient Stratification in Pediatric Acute Lymphoblastic Leukemia. Mod Pathol 2025; 38:100741. [PMID: 40010436 DOI: 10.1016/j.modpat.2025.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/05/2025] [Accepted: 02/12/2025] [Indexed: 02/28/2025]
Abstract
Risk-adapted treatment protocols conferred remarkable improvement in the survival rates of pediatric acute lymphoblastic leukemia/lymphoma (ALL/LBL). Nevertheless, clinical management is still challenging in certain molecular subgroups and in the presence of alterations associated with an increased rate of relapse. In this study, disease-relevant genomic and transcriptomic profiles were established in a prospective, multicenter, real-world cohort involving 192 children diagnosed with ALL/LBL. Gene fusions were detected in 34.9% of B-ALL and 46.4% of T-ALL patients, with novel chimeric genes involving JAK2, KMT2A, PAX5, RUNX1, and NOTCH1, and with KMT2A-rearranged patients displaying the worst 3-year event-free survival (P = .019). Nonsynonymous mutations were uncovered in 74.9% of the analyzed patients, and pairwise scrutiny of genetic lesions revealed recurrent clonal selection mechanisms commonly converging on the same pathway (eg, Ras, JAK/STAT, and Notch) in individual patients. Investigation of matched diagnostic and relapse samples unraveled complex subclonal variegation, and mutations affecting the NT5C2, TP53, CDKN2A, and PIK3R1 genes, emerging at the time of relapse. TP53 and CREBBP mutations, even as subclonal aberrations, were associated with shorter 3-year event-free survival among all patients with B-ALL (TP53 mutant vs wild-type: P = .008, CREBBP mutant vs wild-type: P = .010), and notably, B-ALL patients showing no measurable residual disease on day 33 could be further stratified based on TP53 mutational status (P < .001). Our in-depth molecular characterization performed across all risk groups identified novel opportunities for molecularly targeted therapy in 55.9% of high-risk and 31.6% of standard/intermediate-risk patients.
Collapse
Affiliation(s)
- Borbála Péterffy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Szilvia Krizsán
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Bálint Egyed
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Gábor Bedics
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | | | - Sander Palit
- MRC Holland, Department of Oncogenetics, Amsterdam, The Netherlands
| | | | - Judit Müller
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Tibor Nagy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Department of Biochemistry and Molecular Biology, University of Debrecen, Debrecen, Hungary
| | - Lajos László Hegyi
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Anna Bekő
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Lili Anna Kenéz
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Jakab
- Hungarian Childhood Cancer Registry, Hungarian Pediatric Oncology Network, Budapest, Hungary
| | - György Péter
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Marianna Zombori
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Krisztina Csanádi
- Hemato-Oncology Unit, Heim Pál Children's Hospital, Budapest, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Csernus
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Ágnes Vojcek
- Department of Pediatrics, Oncohaematology Division, University of Pécs Medical School, Pécs, Hungary
| | - Lilla Györgyi Tiszlavicz
- Department of Pediatrics and Pediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Krisztina Mita Gábor
- Department of Pediatrics and Pediatric Health Care Center, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Ágnes Kelemen
- Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Péter Hauser
- Velkey László Child's Health Center, Borsod-Abaúj-Zemplén County Central Hospital and University Teaching Hospital, Miskolc, Hungary
| | - Krisztián Kállay
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Gabriella Kertész
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Zsuzsanna Gaál
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - István Szegedi
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gábor Barna
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Ágnes Márk
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Irén Haltrich
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Zsuzsanna Hevessy
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Anikó Ujfalusi
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Hungary
| | - Béla Kajtár
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - Botond Timár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Csongor Kiss
- Division of Pediatric Hematology-Oncology, Institute of Pediatrics, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Gergely Kriván
- Pediatric Hematology and Stem Cell Transplantation Department, Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - András Matolcsy
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Suvi Savola
- MRC Holland, Department of Oncogenetics, Amsterdam, The Netherlands
| | - Gábor Kovács
- Pediatric Center, Semmelweis University, Budapest, Hungary
| | - Csaba Bödör
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Donát Alpár
- HCEMM-SE Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary; MTA-SE "Lendület" Molecular Oncohematology Research Group, Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Akele M, Iervolino M, Van Belle S, Christ F, Debyser Z. Role of LEDGF/p75 (PSIP1) in oncogenesis. Insights in molecular mechanism and therapeutic potential. Biochim Biophys Acta Rev Cancer 2025; 1880:189248. [PMID: 39701326 DOI: 10.1016/j.bbcan.2024.189248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 12/21/2024]
Abstract
Aberrant gene expression due to dysfunction in proteins involved in transcriptional regulation is a hallmark of tumor development. Indeed, targeting transcriptional regulators represents an emerging approach in cancer therapeutics. Lens epithelium-derived growth factor (LEDGF/p75, PSIP1) is a co-transcriptional activator that tethers several proteins to the chromatin. LEDGF/p75 has been implicated in diseases such as HIV infection and KMT2A-rearranged leukemia. Notably, LEDGF/p75 is upregulated in various human cancers including prostate and breast cancer. In this review, we discuss the essential role of LEDGF/p75 in different malignancies and explore its mechanistic contribution to tumorigenesis revealing its potential as a therapeutic target for chemotherapy.
Collapse
Affiliation(s)
- Muluembet Akele
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Matteo Iervolino
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium; Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Siska Van Belle
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Frauke Christ
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
21
|
Sanvisens A, Bueno C, Calvete O, Solé F, Marcos-Gragera R, Solans M. Prenatal and Perinatal Factors Associated with Infant Acute Lymphoblastic Leukaemia: A Scoping Review. Cancers (Basel) 2025; 17:370. [PMID: 39941739 PMCID: PMC11816379 DOI: 10.3390/cancers17030370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE Acute lymphoblastic leukaemia (ALL) is the most frequent childhood cancer. Infant ALL (<1 year) is rare, but it captures a lot of interest due to its poor prognosis, especially in patients harbouring KMT2A rearrangements, which have been demonstrated to arise prenatally. However, epidemiological studies aimed at identifying specific risk factors in such cases are scarce, mainly due to sample-size limitations. We conducted a scoping review to elucidate the prenatal or perinatal factors associated with infant ALL. METHODS Original articles, letters, or conference abstracts published up to June 2022 were identified using the PubMed, Web of Science, and Embase databases, and 33 observational studies were selected. RESULTS The study reveals several well-established associations across the literature, such as maternal exposure to pesticides and high birth weight, and outlines suggestive associations, such as parental heavy smoking, parental use of several medications (e.g., dipyrone), and maternal exposure to air pollution during pregnancy. CONCLUSIONS This scoping review summarizes the few observational studies that have analysed the prenatal and perinatal risk factors for ALL in infants diagnosed before the age of 1 year. The results of this review highlight the lack of research into this specific age group, which merits further research.
Collapse
Affiliation(s)
- Arantza Sanvisens
- Epidemiology Unit and Girona Cancer Registry, Catalan Institute of Oncology, Catalan Cancer Plan, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI-CERCA), 17004 Girona, Spain
- Descriptive Epidemiology, Genetics, and Cancer Prevention Group, Josep Carreras Leukaemia Research Institute, 17004 Girona, Spain
| | - Clara Bueno
- Stem Cell Biology, Developmental Leukemia and Immunotherapy Group, Josep Carreras Leukaemia Research Institute, 08916 Barcelona, Spain
- RICORS-TERAV Network, Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), 08028 Barcelona, Spain
| | - Oriol Calvete
- Myelodysplastic Syndrome Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain (F.S.)
| | - Francesc Solé
- Myelodysplastic Syndrome Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain (F.S.)
| | - Rafael Marcos-Gragera
- Epidemiology Unit and Girona Cancer Registry, Catalan Institute of Oncology, Catalan Cancer Plan, Institut d’Investigació Biomèdica de Girona Dr. Josep Trueta (IDIBGI-CERCA), 17004 Girona, Spain
- Descriptive Epidemiology, Genetics, and Cancer Prevention Group, Josep Carreras Leukaemia Research Institute, 17004 Girona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Marta Solans
- Descriptive Epidemiology, Genetics, and Cancer Prevention Group, Josep Carreras Leukaemia Research Institute, 17004 Girona, Spain
- CIBER of Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, 17004 Girona, Spain
| |
Collapse
|
22
|
Hyprath M, Molitor M, Schweighöfer I, Marschalek R, Steinhilber D. MLL-AF4 upregulates 5-lipoxygenase expression in t(4;11) leukemia cells via the ALOX5 core promoter. Front Pharmacol 2025; 15:1520507. [PMID: 39877387 PMCID: PMC11772344 DOI: 10.3389/fphar.2024.1520507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/24/2024] [Indexed: 01/31/2025] Open
Abstract
5-Lipoxygenase (5-LO), encoded by the gene ALOX5, is implicated in several pathologies. As key enzyme in leukotriene biosynthesis, 5-LO plays a central role in inflammatory diseases, but the 5-LO pathway has also been linked to development of certain hematological and solid tumor malignancies. Of note, previous studies have shown that the leukemogenic fusion protein MLL-AF4 strongly increases ALOX5 gene promoter activity. Here, we investigate the upregulation of ALOX5 gene expression by MLL-AF4. Using reporter assays, we first identified the tandem GC box within the ALOX5 promotor sequence as the main target of MLL-AF4. Subsequently, we narrowed down the domains within the MLL-AF4 protein responsible for ALOX5 promoter activation. Our findings indicate that MLL-AF4 binds to the ALOX5 promoter via its CXXC domain and that the AF9ID, pSER and CHD domains redundantly activate transcriptional elongation. Knockdown of the MLL-AF4 gene in the human B cell line SEM revealed that MLL-AF4 is an inducer of ALOX5 gene expression in leukemic cells with lymphoid properties. Finally, we found that the MLL-AF4-related protein MLL-AF9, a driver of acute myeloid leukemia, similarly acts on the ALOX5 promoter. Taken together, we show that two prominent MLL fusion proteins are ALOX5 gene inducers in cells with lymphoid features.
Collapse
Affiliation(s)
- Marius Hyprath
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Maximilian Molitor
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Ilona Schweighöfer
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| | - Rolf Marschalek
- Institute of Pharmaceutical Biology, Goethe University, Frankfurt, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Frankfurt, Germany
| |
Collapse
|
23
|
Liu D, Liu S, Ji Y, Jin Z, He Z, Hou M, Li D, Ma X. Lactylation modulation identifies key biomarkers and therapeutic targets in KMT2A-rearranged AML. Sci Rep 2025; 15:1511. [PMID: 39789150 PMCID: PMC11718094 DOI: 10.1038/s41598-025-86136-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Acute Myeloid Leukemia (AML) with KMT2A rearrangements (KMT2Ar), found on chromosome 11q23, is often called KMT2A-rearranged AML (KMT2Ar-AML). This variant is highly aggressive, characterized by rapid disease progression and poor outcomes. Growing knowledge of epigenetic changes, especially lactylation, has opened new avenues for investigation and management of this subtype. Lactylation plays a significant role in cancer, inflammation, and tissue regeneration, but the underlying mechanisms are not yet fully understood. This research examined the influence of lactylation on gene expression within KMT2Ar-AML, initially identifying twelve notable lactylation-dependent differentially expressed genes (DEGs). Using advanced machine learning techniques, six key lactylation-associated genes (PFN1, S100A6, CBR1, LDHB, LGALS1, PRDX1) were identified as essential for prognostic evaluation and linked to relevant disease pathways. The study also suggested PI3K inhibitors and Pevonedistat as possible therapeutic options to modulate immune cell infiltration. Our findings confirm the critical role of lactylation in KMT2Ar-AML and identify six key genes that may serve as biomarkers for diagnosis and treatment. In addition to highlighting the need for further validation in clinical settings, these findings contribute to our understanding of KMT2Ar-AML's molecular mechanisms.
Collapse
Grants
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. wzyw2021012 Science and Technology Bureau of Wuzhong District, Suzhou, Jiangsu Province, China
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 2020WSB03 Translational Research Grant of NCRCH
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 18KJA320005 Natural Science Foundation of the Jiangsu Higher Education Institution of China
- No. 81900130 National Natural Science Foundation of China
Collapse
Affiliation(s)
- Dan Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China.
| | - Silu Liu
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Yujie Ji
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Ziyan Jin
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Zhewei He
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengjia Hou
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Dongyang Li
- Soochow Hopes Hematonosis Hospital, Wudong Road 1339, Wuzhong District, Suzhou, 215100, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
- The First Affiliated Hospital of Soochow University, Shizi Street 188, Suzhou, 215006, China.
| |
Collapse
|
24
|
Fei F, Telatar M, Tomasian V, Chang L, Gust M, Yew H, Dyer T, Danilova O, Arias-Stella J, Pillai R, Aldoss I, Stewart FM, Becker PS, Pullarkat V, Marcucci G, Afkhami M. Application of RNA-Based Next-Generation Sequencing Fusion Assay for Hematological Malignancies. Int J Mol Sci 2025; 26:435. [PMID: 39859151 PMCID: PMC11765404 DOI: 10.3390/ijms26020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/27/2025] Open
Abstract
Recurrent fusions drive the pathogenesis of many hematological malignancies. Compared to routine cytogenetic/fluorescence in situ hybridization (FISH) studies, the RNA-based next-generation sequencing (NGS) fusion assay enables the identification of both known and novel fusions. In many cases, these recurrent fusions are crucial for diagnosis and are associated with prognosis, relapse prediction, and therapeutic options. The aim of this study is to investigate the application of the RNA-based NGS fusion assay in hematological malignancies. Our study included 3101 cases with available fusion results, and a fusion event was identified in 17.6% of cases. The discordant rate between the RNA-based NGS fusion assay and cytogenetic/FISH studies was 36.3%. Further analysis of discordant cases indicated that, compared to cytogenetic/FISH studies, the RNA-based NGS fusion assay significantly improved the identification of cryptic fusion genes, such as NUP98::NSD1, P2RY8::CRLF2, and KMT2A fusions involving different partners. Additionally, our study identified 24 novel fusions and 16 cases with the simultaneous presence of two fusions. These additional findings from the RNA-based NGS fusion assay resulted in improved risk stratification, disease targeting and monitoring. In conclusion, our study demonstrates the feasibility and utility of an RNA-based NGS fusion assay for patients with hematological malignancies, suggesting that it may be essential for the routine clinical workup of these patients.
Collapse
Affiliation(s)
- Fei Fei
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Milhan Telatar
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Vanina Tomasian
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Lisa Chang
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Mariel Gust
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Hooi Yew
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Tamerisa Dyer
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Olga Danilova
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Javier Arias-Stella
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Raju Pillai
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| | - Ibrahim Aldoss
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - F. Marc Stewart
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Pamela S. Becker
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Vinod Pullarkat
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Guido Marcucci
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Michelle Afkhami
- Department of Pathology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; (F.F.); (M.T.)
| |
Collapse
|
25
|
Niscola P, Gianfelici V, Giovannini M, Piccioni D, Mazzone C, de Fabritiis P. Menin Inhibitors: New Targeted Therapies for Specific Genetic Subtypes of Difficult-to-Treat Acute Leukemias. Cancers (Basel) 2025; 17:142. [PMID: 39796769 PMCID: PMC11720583 DOI: 10.3390/cancers17010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/20/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Menin (MEN1) is a well-recognized powerful tumor promoter in acute leukemias (AL) with KMT2A rearrangements (KMT2Ar, also known as MLL) and mutant nucleophosmin 1 (NPM1m) acute myeloid leukemia (AML). MEN1 is essential for sustaining leukemic transformation due to its interaction with wild-type KMT2A and KMT2A fusion proteins, leading to the dysregulation of KMT2A target genes. MEN1 inhibitors (MIs), such as revumenib, ziftomenib, and other active small molecules, represent a promising new class of therapies currently under clinical development. By disrupting the MEN1-KMT2Ar complex, a group of proteins involved in chromatin remodeling, MIs induce apoptosis and differentiation AL expressing KMT2Ar or NPM1m AML. Phase I and II clinical trials have evaluated MIs as standalone treatments and combined them with other synergistic drugs, yielding promising results. These trials have demonstrated notable response rates with manageable toxicities. Among MIs, ziftomenib received orphan drug and breakthrough therapy designations from the European Medicines Agency in January 2024 and the Food and Drug Administration (FDA) in April 2024, respectively, for treating R/R patients with NPM1m AML. Additionally, in November 2024, the FDA approved revumenib for treating R/R patients with KMT2Ar-AL. This review focuses on the pathophysiology of MI-sensitive AL, primarily AML. It illustrates data from clinical trials and discusses the emergence of resistance mechanisms. In addition, we outline future directions for the use of MIs and emphasize the need for further research to fully realize the potential of these novel compounds, especially in the context of specific genetic subtypes of challenging AL.
Collapse
Affiliation(s)
- Pasquale Niscola
- Hematology Unit, S. Eugenio Hospital (ASL Roma 2), 00122 Rome, Italy; (V.G.); (M.G.); (D.P.); (C.M.); (P.d.F.)
| | | | | | | | | | | |
Collapse
|
26
|
Heikamp EB, Armstrong SA. Revumenib Revises the Treatment Landscape for KMT2A-r Leukemia. J Clin Oncol 2025; 43:85-88. [PMID: 39509656 PMCID: PMC11771282 DOI: 10.1200/jco-24-01265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 11/15/2024] Open
Affiliation(s)
- Emily B. Heikamp
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
27
|
Hu Z, Feng Z, Liu S, He H, Dong Y, Fan Z, Li Y, Huang F, Xu N, Liu C, Zeng Y, Zhu P, Lin R, Jin H, Zhang X, Sun R, Liu Q, Xuan L. Intensified conditioning containing decitabine versus standard myeloablative conditioning for adult patients with KMT2A-rearranged leukemia: a multicenter retrospective study. BMC Med 2024; 22:605. [PMID: 39736728 DOI: 10.1186/s12916-024-03830-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/16/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is recommended for patients with KMT2A-rearranged (KMT2A-r) leukemia whereas relapse remains high. We aimed to determine whether intensified conditioning containing decitabine (Dec) could reduce relapse compared with standard myeloablative conditioning in adult patients with KMT2A-r leukemia. METHODS We performed a multicenter retrospective study at seven institutions in China. Eligible patients were aged 14 years or older at transplantation, had a diagnosis of KMT2A-r leukemia, and underwent the first allo-HSCT. Standard myeloablative conditioning regimens (standard group) included BuCy (busulfan 3.2 mg/kg/day on days -7 to -4; cyclophosphamide 60 mg/kg/day on days -3 to -2) and TBI-Cy (total body irradiation 4.5 Gy/day on days -5 to -4; Cy 60 mg/kg/day on days -3 to -2). Intensified conditioning regimens containing Dec (intensified group) consisted of Dec-BuCy (Dec 20 mg/m2/day on days -14 to -10; the same dose of BuCy) and Dec-TBI-Cy (Dec 20 mg/m2/day on days -10 to -6; the same dose of TBI-Cy). RESULTS Between April 2009 and December 2019, 218 patients were included in this study, of whom 105 were in the intensified group and 113 were in the standard group. The 3-year cumulative incidence of relapse was 17.6% and 34.5%, overall survival was 71.3% and 61.0%, disease-free survival was 70.1% and 56.0%, and non-relapse mortality was 12.3% and 9.5% in the intensified and standard groups, respectively (P = 0.001; P = 0.034; P = 0.005; P = 0.629). Subgroup analysis showed that the relapse rate of intensified conditioning was lower than that of standard conditioning in multiple subgroups, including different leukemia types, disease status at transplantation, high-risk cytogenetics and Bu-based regimens. There was no difference in regimen-related toxicity, engraftment, or graft-versus-host disease between the intensified and standard groups. CONCLUSIONS These results suggest that intensified conditioning containing Dec might be a better strategy than standard myeloablative conditioning for adult patients with KMT2A-r leukemia undergoing allo-HSCT.
Collapse
Affiliation(s)
- Zhongli Hu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Zinan Feng
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Shiqi Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hai He
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China
| | - Ying Dong
- Department of Hematology, Maoming People's Hospital, Maoming, China
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Yiqing Li
- Department of Hematology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Na Xu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Can Liu
- Department of Hematology, Hunan Provincial People's Hospital, Changsha, China
| | - Yunxin Zeng
- Department of Hematology, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ping Zhu
- Department of Hematology, the First People Hospital of Chenzhou, Chenzhou, China
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China
| | - Xiong Zhang
- Department of Hematology, Maoming People's Hospital, Maoming, China.
| | - Ruijuan Sun
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China.
- Department of Bone Marrow Transplantation, Hebei Yanda Lu Daopei Hospital, Langfang, China.
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
- Clinical Medical Research Center of Hematology Diseases of Guangdong Province, Guangzhou, China.
| |
Collapse
|
28
|
Wei Q, Hu S, Xu J, Loghavi S, Daver N, Toruner GA, Wang W, Medeiros LJ, Tang G. Detection of KMT2A Partial Tandem Duplication by Optical Genome Mapping in Myeloid Neoplasms: Associated Cytogenetics, Gene Mutations, Treatment Responses, and Patient Outcomes. Cancers (Basel) 2024; 16:4193. [PMID: 39766092 PMCID: PMC11674272 DOI: 10.3390/cancers16244193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
KMT2A partial tandem duplication (PTD) involves intragenic KMT2A duplications and has been associated with poorer prognosis. In this study, we evaluated KMT2A PTD in 1277 patients with hematological malignancies using optical genome mapping (OGM). KMT2A PTD was detected in 35 patients with acute myeloid leukemia (AML) (7%), 5 patients with myelodysplastic syndrome (MDS) (2.2%), and 5 patients with chronic myelomonocytic leukemia (CMML) (7.1%). The PTDs varied in size, region, and copy number. An Archer RNA fusion assay confirmed KMT2A PTD in all 25 patients tested: 15 spanning exons 2 to 8 and 10 spanning exons 2 to 10. Most patients exhibited a normal (n = 21) or non-complex (n = 20) karyotype. The most common chromosomal abnormalities included loss of 20q or 7q and trisomy 11/gain of 11q. All patients had gene mutations, with FLT3 ITD and DNMT3A prevalent in AML and DNMT3A and RUNX1 common in MDS and CMML. Among patients who received treatment and had at least one follow-up bone marrow evaluation, 82% of those with de novo AML achieved complete remission after initial induction chemotherapy, whereas 90% of patients with secondary or refractory/relapsed AML showed refractory or partial responses. All but one patient with MDS and CMML were refractory to therapy. We conclude that OGM is an effective tool for detecting KMT2A PTD. Neoplasms with KMT2A PTD frequently harbor gene mutations and display normal or non-complex karyotypes. Patients with KMT2A PTD are generally refractory to conventional therapy, except for de novo AML.
Collapse
Affiliation(s)
- Qing Wei
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| | - Shimin Hu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| | - Jie Xu
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| | - Sanam Loghavi
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA;
| | - Gokce A. Toruner
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| | - Wei Wang
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| | - L. Jeffrey Medeiros
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| | - Guilin Tang
- Department of Hematopathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (Q.W.); (S.H.); (J.X.); (S.L.); (G.A.T.); (W.W.); (L.J.M.)
| |
Collapse
|
29
|
Lacoste SA, Gagnon V, Béliveau F, Lavallée S, Collin V, Hébert J. Unveiling the Complexity of KMT2A Rearrangements in Acute Myeloid Leukemias with Optical Genome Mapping. Cancers (Basel) 2024; 16:4171. [PMID: 39766070 PMCID: PMC11674939 DOI: 10.3390/cancers16244171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
Background:KMT2A rearrangements are major genetic entities in the classification of acute myeloid leukemias (AMLs), but their diverse and frequently cryptic nature makes their detection and characterization challenging. Karyotypic anomalies at the KMT2A locus and/or abnormal KMT2A Fluorescence in situ hybridization (FISH) results strongly indicate a KMT2A fusion, but the identification of the translocation partner gene often requires further investigation. KMT2A partial tandem duplications (PTDs), on the other hand, are undetectable by standard cytogenetics methods. Methods: We herein report the optical genome mapping (OGM) analysis of 38 AML samples: 12 cryptic/hard-to-characterize KMT2A fusions, 20 KMT2A-PTDs and 6 cases with no KMT2A anomaly. Results: In all the fusion cases, the rearrangement between 5'KMT2A and the 3'partner gene was identified as a translocation t(v;11q23.3)(v;118479068), and the analysis of co-occurring variants elucidated the formation of the rearrangement. The KMT2A variants detected in the KMT2A-PTD cases were surprisingly diverse. Combined with RNAseq data, OGM analysis identified 9 distinct in-frame KMT2A-PTD variants among the 20 cases analyzed. Conclusions: With the clinical development of menin inhibitors for the treatment of patients with KMT2A-rearranged acute leukemias, the characterization of these rearrangements is of utmost importance. Our results suggest that OGM is a promising tool for accurate genetic diagnosis in this context.
Collapse
Affiliation(s)
- Sandrine A. Lacoste
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - Vanessa Gagnon
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - François Béliveau
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - Sylvie Lavallée
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
| | - Vanessa Collin
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
| | - Josée Hébert
- Quebec Leukemia Cell Bank, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada; (S.A.L.); (V.G.); (F.B.); (S.L.); (V.C.)
- Cytogenetics Laboratory, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
- Division of Hematology-Oncology and Cellular Therapy, Maisonneuve-Rosemont Hospital, Montréal, QC H1T 2M4, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
30
|
Liapodimitri A, Tetens AR, Craig-Schwartz J, Lunsford K, Skalitzky KO, Koldobskiy MA. Progress Toward Epigenetic Targeted Therapies for Childhood Cancer. Cancers (Basel) 2024; 16:4149. [PMID: 39766049 PMCID: PMC11674401 DOI: 10.3390/cancers16244149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations. The inherent reversibility of epigenetic lesions has led to an intense interest in the development of epigenetic targeted therapies. Additionally, the recent appreciation of the interplay between the epigenome and immune regulation has sparked interest in combination therapies and synergistic immunotherapy approaches. Further, the recent appreciation of epigenetic variability as a driving force in cancer evolution has suggested new roles for epigenetic therapies in limiting plasticity and resistance. Here, we review recent progress and emerging directions in the development of epigenetic targeted therapeutics and their promise across the landscape of childhood cancers.
Collapse
Affiliation(s)
- Athanasia Liapodimitri
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Ashley R. Tetens
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Jordyn Craig-Schwartz
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kayleigh Lunsford
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kegan O. Skalitzky
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Michael A. Koldobskiy
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
31
|
Loo S, Potter N, Ivey A, O'Nions J, Moon R, Jovanovic J, Fong CY, Anstee NS, Tiong IS, Othman J, Chua CC, Renshaw H, Baker R, Fleming S, Russell NH, Ritchie D, Bajel A, Hou HA, Dillon R, Wei AH. Pretransplant MRD detection of fusion transcripts is strongly prognostic in KMT2A-rearranged acute myeloid leukemia. Blood 2024; 144:2554-2557. [PMID: 39316646 DOI: 10.1182/blood.2024026605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
ABSTRACT Pretransplant detection of KMT2Ar measurable residual disease ≥0.001% by quantitative polymerase chain reaction was associated with significantly inferior posttransplant survival (2-year relapse-free survival 17% vs 59%; P = .001) and increased 2-year cumulative incidence of relapse (75% vs 25%, P = .0004).
Collapse
Affiliation(s)
- Sun Loo
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Nicola Potter
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Adam Ivey
- Molecular Pathology, The Alfred Hospital, Melbourne, Australia
| | - Jenny O'Nions
- Department of Haematology, University College London NHS Foundation Trust, London, United Kingdom
- Specialist Integrated Haematology Malignancy Diagnostic Service, Health Services Laboratories, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Roderick Moon
- Molecular Pathology, The Alfred Hospital, Melbourne, Australia
| | - Jelena Jovanovic
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
| | - Chun Y Fong
- Department of Haematology, Austin Hospital, Melbourne, Australia
| | - Natasha S Anstee
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Ing Soo Tiong
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia
| | - Jad Othman
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Chong Chyn Chua
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Department of Haematology, Monash Health, Clayton, Australia
| | - Hanna Renshaw
- Department of Haematology, University College London NHS Foundation Trust, London, United Kingdom
| | - Robert Baker
- Department of Haematology, University College London NHS Foundation Trust, London, United Kingdom
- Specialist Integrated Haematology Malignancy Diagnostic Service, Health Services Laboratories, University College London Hospitals NHS Foundation Trust, University College London, London, United Kingdom
| | - Shaun Fleming
- Department of Haematology, The Alfred Hospital and Monash University, Melbourne, Australia
| | - Nigel H Russell
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - David Ritchie
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Ashish Bajel
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
- Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Hsin-An Hou
- Division of Hematology and Division of General Medicine, Department of Internal Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Richard Dillon
- Department of Medical and Molecular Genetics, King's College London, London, United Kingdom
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Andrew H Wei
- Department of Haematology, Peter MacCallum Cancer Centre and Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| |
Collapse
|
32
|
Marcoux C, Kebriaei P. Transplant in ALL: who, when, and how? HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2024; 2024:93-101. [PMID: 39644076 DOI: 10.1182/hematology.2024000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Allogeneic hematopoietic stem cell transplantation (allo-HCT) remains a cornerstone in the treatment of high-risk acute lymphoblastic leukemia (ALL), yet optimal patient selection is challenging in the era of rapidly changing modern therapy. Refined molecular characterization allows for better risk assessment, sparing low-risk patients from allo-HCT toxicity while identifying those who may benefit from intensified approaches. Measurable residual disease (MRD) has emerged as a powerful predictor of relapse irrespective of treatment strategy, challenging the necessity of transplant in MRD-negative patients. Further, expanded donor options, particularly haploidentical transplantation coupled with reduced intensity conditioning, have extended the applicability of allo-HCT to a broader range of patients. Finally, immunotherapies and targeted treatments are increasingly integrated into both initial and relapsed treatment protocols yielding deep remission and allowing for successful transplant in patients with a history of advanced disease. In this review, we provide an overview of the contemporary role of transplant in adult patients with ALL, focusing on indications for allo-HCT in first remission, optimal sequencing of transplant with novel therapies, and advancements in donor selection and conditioning regimens.
Collapse
Affiliation(s)
- Curtis Marcoux
- Division of Hematology, Dalhousie University, Halifax, Canada
| | - Partow Kebriaei
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
33
|
Kovach AE, Komova D, Itov A, Gaskova M, Kalinina I, Voronin K, Rumiantseva Y, Karachunskii A, Maschan M, Maschan A, Novichkova G, Olshanskaya Y, Bhojwani D, Raca G, Zerkalenkova E. Pediatric therapy-related hematologic neoplasms show enrichment for KMT2A rearrangement and lymphoblastic phenotype. Leuk Lymphoma 2024; 65:1840-1852. [PMID: 39116419 DOI: 10.1080/10428194.2024.2376166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 08/10/2024]
Abstract
In children, therapy-related hematologic neoplasms (t-HN) are uncommon. Many are driven by genetic events independent of clonal hematopoiesis. We sought to understand the clinical and genetic factors of pediatric t-HN in a large independent cohort. Fifty-six t-HN were retrospectively identified. Chromosome microarray, next-generation and/or RNA sequencing were performed. Patients had primary hematologic, solid, or central nervous system tumors. t-HN included myeloid (t-MN) and lymphoblastic (t-ALL) phenotypes. Approximately half of the cases harbored KMTA2A rearrangement (KMT2Ar). Among t-HN without KMT2Ar, genetic drivers were heterogeneous, including diverse fusions or aneuploidy. Approximately 18% harbored 17p deletions and/or TP53 mutations. EFS/OS was not associated with t-HN lineage or KMT2Ar, but HSCT was associated with improved EFS and OS. We detail one of the largest cohorts to date of pediatric t-HN, confirming frequent KMT2Ar and t-ALL.
Collapse
Affiliation(s)
- Alexandra E Kovach
- Hematopathology, Division of Laboratory Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daria Komova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Albert Itov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Maria Gaskova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Irina Kalinina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Kirill Voronin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Rumiantseva
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexander Karachunskii
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Michael Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Alexey Maschan
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Galina Novichkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Yulia Olshanskaya
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| | - Deepa Bhojwani
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Division of Hematology/Oncology, Department of Pediatrics, Children's Hospital Los Angeles, CA, USA
| | - Gordana Raca
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Cytogenomics, Division of Genomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, CA, USA
| | - Elena Zerkalenkova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russian Federation
| |
Collapse
|
34
|
Smith MA, Houghton PJ, Lock RB, Maris JM, Gorlick R, Kurmasheva RT, Li XN, Teicher BA, Chuang JH, Dela Cruz FS, Dyer MA, Kung AL, Lloyd MW, Mossé YP, Stearns TM, Stewart EA, Bult CJ, Erickson SW. Lessons learned from 20 years of preclinical testing in pediatric cancers. Pharmacol Ther 2024; 264:108742. [PMID: 39510293 DOI: 10.1016/j.pharmthera.2024.108742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
Programs for preclinical testing of targeted cancer agents in murine models of childhood cancers have been supported by the National Cancer Institute (NCI) since 2004. These programs were established to work collaboratively with industry partners to address the paucity of targeted agents for pediatric cancers compared with the large number of agents developed and approved for malignancies primarily affecting adults. The distinctive biology of pediatric cancers and the relatively small numbers of pediatric cancer patients are major challenges for pediatric oncology drug development. These factors are exacerbated by the division of cancers into multiple subtypes that are further sub-classified by their genomic properties. The imbalance between the large number of candidate agents and small patient populations requires careful prioritization of agents developed for adult cancers for clinical evaluation in children with cancer. The NCI-supported preclinical pediatric programs have published positive and negative results of efficacy testing for over 100 agents to aid the pediatric research community in identifying the most promising candidates to move forward for clinical testing in pediatric oncology. Here, we review and summarize lessons learned from two decades of experience with the design and execution of preclinical trials of antineoplastic agents in murine models of childhood cancers.
Collapse
Affiliation(s)
- Malcolm A Smith
- National Cancer Institute, Bethesda, MD, United States of America.
| | - Peter J Houghton
- The University of Texas Health at San Antonio, TX, United States of America
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - John M Maris
- The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Richard Gorlick
- The University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | | - Xiao-Nan Li
- Lurie Children's Hospital, Northwestern University Feiberg School of Medicine, Chicago, IL, United States of America
| | | | - Jeffrey H Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, United States of America
| | - Filemon S Dela Cruz
- Memorial Sloan Kettering Cancer Center, New York City, NY, United States of America
| | - Michael A Dyer
- St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Andrew L Kung
- Memorial Sloan Kettering Cancer Center, New York City, NY, United States of America
| | - Michael W Lloyd
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Yael P Mossé
- The Children's Hospital of Philadelphia and the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States of America
| | - Timothy M Stearns
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | - Elizabeth A Stewart
- St. Jude Children's Research Hospital, Memphis, TN, United States of America
| | - Carol J Bult
- The Jackson Laboratory for Mammalian Genetics, Bar Harbor, ME, United States of America
| | | |
Collapse
|
35
|
Cantilena S, AlAmeri M, Che N, Williams O, de Boer J. Synergistic Strategies for KMT2A-Rearranged Leukemias: Beyond Menin Inhibitor. Cancers (Basel) 2024; 16:4017. [PMID: 39682203 DOI: 10.3390/cancers16234017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
KMT2A-rearranged leukemias are a highly aggressive subset of acute leukemia, characterized by poor prognosis and frequent relapses despite intensive treatment. Menin inhibitors, which target the critical KMT2A-menin interaction driving leukemogenesis, have shown promise in early clinical trials. However, resistance to these inhibitors, often driven by menin mutations or alternative oncogenic pathways, remains a significant challenge. This review explores combination therapies aimed at overcoming resistance and improving patient outcomes. Potential strategies include inhibiting DOT1L, a histone methyltransferase essential for KMT2A-driven transcription, and BRD4, a regulator of transcriptional super-enhancers. Additionally, targeting MYC, a key oncogene frequently upregulated in KMT2A-rearranged leukemia, offers another approach. Direct inhibition of KMT2A-fusion proteins and c-MYB, a transcription factor critical for leukemic stem cell maintenance, is also explored. By integrating these diverse strategies, we propose a comprehensive therapeutic paradigm that targets multiple points of the leukemic transcriptional and epigenetic network. These combination approaches aim to disrupt key oncogenic pathways, reduce resistance, and enhance treatment efficacy, ultimately providing more durable remissions and improved survival for patients with KMT2A-rearranged leukemias.
Collapse
Affiliation(s)
- Sandra Cantilena
- Hemispherian AS, 0585 Oslo, Norway
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Mohamed AlAmeri
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Department of Health-Abu Dhabi, Abu Dhabi 20224, United Arab Emirates
| | - Noelia Che
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Owen Williams
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
| | - Jasper de Boer
- Cancer Section, Development Biology and Cancer Programme, UCL GOS Institute of Child Health, London WC1N 1EH, UK
- Australian & New Zealand Children's Haematology/Oncology Group, Melbourne, VIC 3052, Australia
- Australia & Hudson Institute of Medical Research, Melbourne, VIC 3168, Australia
| |
Collapse
|
36
|
Doculara L, Evans K, Gooding JJ, Bayat N, Lock RB. Patient-Specific Circulating Tumor DNA for Monitoring Response to Menin Inhibitor Treatment in Preclinical Models of Infant Leukemia. Cancers (Basel) 2024; 16:3990. [PMID: 39682177 DOI: 10.3390/cancers16233990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/19/2024] [Accepted: 11/23/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND In infant KMT2A (MLL1)-rearranged (MLL-r) acute lymphoblastic leukemia (ALL), early relapse and treatment response are currently monitored through invasive repeated bone marrow (BM) biopsies. Circulating tumor DNA (ctDNA) in peripheral blood (PB) provides a minimally invasive alternative, allowing for more frequent disease monitoring. However, a poor understanding of ctDNA dynamics has hampered its clinical translation. We explored the predictive value of ctDNA for detecting minimal/measurable residual disease (MRD) and drug response in a patient-derived xenograft (PDX) model of infant MLL-r ALL. METHODS Immune-deficient mice engrafted with three MLL-r ALL PDXs were monitored for ctDNA levels before and after treatment with the menin inhibitor SNDX-50469. RESULTS The amount of ctDNA detected strongly correlated with leukemia burden during initial engraftment prior to drug treatment. However, following SNDX-50469 treatment, the leukemic burden assessed by either PB leukemia cells through flow cytometry or ctDNA levels through droplet digital polymerase chain reaction (ddPCR) was discrepant. This divergence could be attributed to the persistence of leukemia cells in the spleen and BM, highlighting the ability of ctDNA to reflect disease dynamics in key leukemia infiltration sites. CONCLUSIONS Notably, ctDNA analysis proved to be a superior predictor of MRD compared to PB assessment alone, especially in instances of low disease burden. These findings highlight the potential of ctDNA as a sensitive biomarker for monitoring treatment response and detecting MRD in infant MLL-r ALL.
Collapse
Affiliation(s)
- Louise Doculara
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Kathryn Evans
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - J Justin Gooding
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Narges Bayat
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
37
|
Fischer J, Erkner E, Radszuweit P, Hentrich T, Keppeler H, Korkmaz F, Schulze-Hentrich J, Fitzel R, Lengerke C, Schneidawind D, Schneidawind C. Only Infant MLL-Rearranged Leukemia Is Susceptible to an Inhibition of Polo-like Kinase 1 (PLK-1) by Volasertib. Int J Mol Sci 2024; 25:12760. [PMID: 39684470 DOI: 10.3390/ijms252312760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
MLL-rearranged (MLLr) leukemia is characterized by a poor prognosis. Depending on the cell of origin, it differs in the aggressiveness and therapy response. For instance, in adults, volasertib blocking Polo-like kinase 1 (PLK-1) exhibited limited success. Otherwise, PLK-1 characterizes an infant MLLr signature, indicating potential sensitivity. By using our CRISPR/Cas9 MLLr model in CD34+ cells from human cord blood (huCB) and bone marrow (huBM) mimicking the infant and adult patient diseases, we were able to shed light on this phenomenon. The PLK-1 mRNA level was significantly increased in our huCB compared to the huBM model, which was underpinned by analyzing infant and adult MLLr leukemia patients. Importantly, the expression levels correlated with a functional response. Volasertib induced a significant dose-dependent decrease in proliferation and cell cycle arrest, most pronounced in the infant model. Mechanistically, upon volasertib treatment, we uncovered negative feedback only in the huBM model by compensatory upregulation of PLK-1 and related genes like AURKA involved in mitosis. Importantly, the poor response could be overcome by a combinatorial strategy with alisertib, an Aurora kinase A inhibitor. Our study emphasizes the importance of considering the cell of origin in therapeutic decision-making and provides the rationale for evaluating volasertib and alisertib in MLLr leukemia.
Collapse
Affiliation(s)
- Jacqueline Fischer
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Estelle Erkner
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Pia Radszuweit
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Thomas Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Hildegard Keppeler
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Fulya Korkmaz
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Julia Schulze-Hentrich
- Department of Genetics/Epigenetics, Faculty NT, Saarland University, 66123 Saarbruecken, Germany
| | - Rahel Fitzel
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Claudia Lengerke
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
| | - Dominik Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| | - Corina Schneidawind
- Department of Medicine II, University Hospital Tuebingen, Eberhard Karls University, 72074 Tuebingen, Germany
- Department of Medical Oncology and Hematology, University Hospital Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
38
|
Ni W, Liu J, Deng K, Zeng Z, Kong Q, Weng X. A rare case of pediatric T-cell acute lymphoblastic leukemia with myeloid mimicry. Discov Oncol 2024; 15:691. [PMID: 39572436 PMCID: PMC11582310 DOI: 10.1007/s12672-024-01600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) with granular blasts was historically referred to as "granular ALL", but this is not recognized as a distinct entity in the current WHO classification. This rare morphological feature is predominantly associated with a B-cell immunophenotype, while T-ALL with prominent cytoplasmic granules is extremely rare, with limited available genetic, molecular, and prognostic data. Here, we report a unique case of ALL in a 9-year-old girl. Initial blood tests revealed leukocytosis, and both peripheral blood and bone marrow morphology showed a high number of blasts with granular cytoplasm and bilobed nuclei. Immunophenotyping confirmed T-cell origin. The patient tested positive for KMT2A::AFDN, with WT1 overexpression, and NRAS and EZH2 mutations were detected by next-generation sequencing (NGS). Remarkably, the patient achieved complete remission after treatment and has shown no signs of relapse for nearly four years. Her favorable response to conventional therapy underscores the importance of molecular phenotyping in the treatment of this disease. The continued use of NGS to gather relevant molecular data is crucial for further understanding the molecular phenotype and prognosis of such atypical ALL cases.
Collapse
Affiliation(s)
- Wenpeng Ni
- Clinical Laboratory, Boai Hospital of Zhongshan, No. 6 Chenggui Road, Zhongshan, 528400, Guangdong, China.
| | - Ji Liu
- Clinical Laboratory, Boai Hospital of Zhongshan, No. 6 Chenggui Road, Zhongshan, 528400, Guangdong, China
| | - Kunyi Deng
- Clinical Laboratory, Boai Hospital of Zhongshan, No. 6 Chenggui Road, Zhongshan, 528400, Guangdong, China
| | - Zhouyu Zeng
- Clinical Laboratory, Boai Hospital of Zhongshan, No. 6 Chenggui Road, Zhongshan, 528400, Guangdong, China
| | - Qingzhu Kong
- Clinical Laboratory, Boai Hospital of Zhongshan, No. 6 Chenggui Road, Zhongshan, 528400, Guangdong, China
| | - Xiaoling Weng
- Clinical Laboratory, Boai Hospital of Zhongshan, No. 6 Chenggui Road, Zhongshan, 528400, Guangdong, China
| |
Collapse
|
39
|
de Groot AP, de Haan G. How CBX proteins regulate normal and leukemic blood cells. FEBS Lett 2024; 598:2788-2806. [PMID: 38426219 PMCID: PMC11586599 DOI: 10.1002/1873-3468.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Hematopoietic stem cell (HSC) fate decisions are dictated by epigenetic landscapes. The Polycomb Repressive Complex 1 (PRC1) represses genes that induce differentiation, thereby maintaining HSC self-renewal. Depending on which chromobox (CBX) protein (CBX2, CBX4, CBX6, CBX7, or CBX8) is part of the PRC1 complex, HSC fate decisions differ. Here, we review how this occurs. We describe how CBX proteins dictate age-related changes in HSCs and stimulate oncogenic HSC fate decisions, either as canonical PRC1 members or by alternative interactions, including non-epigenetic regulation. CBX2, CBX7, and CBX8 enhance leukemia progression. To target, reprogram, and kill leukemic cells, we suggest and describe multiple therapeutic strategies to interfere with the epigenetic functions of oncogenic CBX proteins. Future studies should clarify to what extent the non-epigenetic function of cytoplasmic CBX proteins is important for normal, aged, and leukemic blood cells.
Collapse
Affiliation(s)
- Anne P. de Groot
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
| | - Gerald de Haan
- European Research Institute for Biology of Ageing (ERIBA)University Medical Center Groningen (UMCG)The Netherlands
- Sanquin Research, Landsteiner LaboratorySanquin Blood SupplyAmsterdamThe Netherlands
- Department of Hematology, Amsterdam UMCUniversity of AmsterdamThe Netherlands
| |
Collapse
|
40
|
Salman MY, Stein EM. Revumenib for patients with acute leukemia: a new tool for differentiation therapy. Haematologica 2024; 109:3488-3495. [PMID: 39086307 PMCID: PMC11532683 DOI: 10.3324/haematol.2022.282621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Treatment of acute leukemia is gradually moving away from a "one-size-fits-all" approach, as scientific and clinical advances expand the arsenal of available targeted therapies. One of the recent additions is the group of menin inhibitors; oral, selective, small molecules that disrupt the interaction between the chromatin adapter menin, and an epigenetic regulator, the lysine methyltransferase 2A (KMT2A) complex. Two susceptible leukemia subtypes have been identified: (i) acute myeloid leukemia with a mutation in nucleophosmin 1 (NPM1), and (ii) any acute leukemia, myeloid or lymphoid, with a translocation resulting in the rearrangement of KMT2A. These leukemias share a distinct genetic expression, maintained by the KMT2A-menin interaction. Together they account for approximately 40% of patients with acute myeloid leukemia and 10% of patients with acute lymphoblastic leukemia. This spotlight review follows the journey of revumenib, as a representative of menin inhibitors, from bench to bedside. It focuses on the pathophysiology of leukemias sensitive to menin inhibition, delineation of how this understanding led to targeted drug development, and data from clinical trials. The important discovery of resistance mechanisms is also explored, as well as future directions in the use of menin inhibitors for treating leukemia.
Collapse
Affiliation(s)
- Meira Yisraeli Salman
- Leukemia Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Hematology, Shaare Zedek Medical Center, Jerusalem
| | - Eytan M Stein
- Leukemia Service, Division of Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New York, NY.
| |
Collapse
|
41
|
Janssens DH, Duran M, Otto DJ, Wu W, Xu Y, Kirkey D, Mullighan CG, Yi JS, Meshinchi S, Sarthy JF, Ahmad K, Henikoff S. MLL oncoprotein levels influence leukemia lineage identities. Nat Commun 2024; 15:9341. [PMID: 39472576 PMCID: PMC11522475 DOI: 10.1038/s41467-024-53399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Chromosomal translocations involving the mixed-lineage leukemia (MLL) locus generate potent oncogenic fusion proteins (oncoproteins) that disrupt regulation of developmental gene expression. By profiling the oncoprotein-target sites of 36 broadly representative MLL-rearranged leukemia samples, including three samples that underwent a lymphoid-to-myeloid lineage-switching event in response to therapy, we find the genomic enrichment of the oncoprotein is highly variable between samples and subject to dynamic regulation. At high levels of expression, the oncoproteins preferentially activate either an acute lymphoblastic leukemia (ALL) program, enriched for pro-B-cell genes, or an acute myeloid leukemia (AML) program, enriched for hematopoietic-stem-cell genes. The fusion-partner-specific-binding patterns over these gene sets are highly correlated with the prevalence of each mutation in ALL versus AML. In lineage-switching samples the oncoprotein levels are reduced and the oncoproteins preferentially activate granulocyte-monocyte progenitor (GMP) genes. In a sample that lineage switched during treatment with the menin inhibitor revumenib, the oncoprotein and menin are reduced to undetectable levels, but ENL, a transcriptional cofactor of the oncoprotein, persists on numerous oncoprotein-target loci, including genes in the GMP-like lineage-switching program. We propose MLL oncoproteins promote lineage-switching events through dynamic chromatin binding at lineage-specific target genes, and may support resistance to menin inhibitors through similar changes in chromatin occupancy.
Collapse
Affiliation(s)
- Derek H Janssens
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Melodie Duran
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Dominik J Otto
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Translational Data Science IRC, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Weifang Wu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Yiling Xu
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Danielle Kirkey
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Joanna S Yi
- Pediatric Hematology and Oncology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Soheil Meshinchi
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Division of Hematology and Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jay F Sarthy
- Seattle Children's Research Institute, Seattle, WA, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
42
|
Nagashima T, Yamaguchi K, Urakami K, Shimoda Y, Ohnami S, Ohshima K, Tanabe T, Naruoka A, Kamada F, Serizawa M, Hatakeyama K, Ohnami S, Maruyama K, Mochizuki T, Mizuguchi M, Shiomi A, Ohde Y, Bando E, Sugiura T, Mukaigawa T, Nishimura S, Hirashima Y, Mitsuya K, Yoshikawa S, Kiyohara Y, Tsubosa Y, Katagiri H, Niwakawa M, Takahashi K, Kashiwagi H, Yasunaga Y, Ishida Y, Sugino T, Kenmotsu H, Terashima M, Takahashi M, Uesaka K, Akiyama Y. Evaluation of whole genome sequencing utility in identifying driver alterations in cancer genome. Sci Rep 2024; 14:23898. [PMID: 39396060 PMCID: PMC11470963 DOI: 10.1038/s41598-024-74272-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
In cancer genome analysis, identifying pathogenic alterations and assessing their effects on oncogenic processes is important. Although whole exome sequencing (WES) can effectively detect such changes, driver alterations could not be identified in 27.8% of the cases, according to a previous study. The objectives of the present study were to evaluate the utility of whole genome sequencing (WGS) and clarify its differences with WES in terms of driver alteration detection. For this purpose, WGS analysis was conducted on 177 driverless WES samples, selected from 5,480 fresh frozen samples derived from 5,140 Japanese patients with cancer. These samples were selected as primary tumor, both WES and transcriptome profiling were performed, estimated tumor content of ≥ 30%, and no driver alterations were identified by WES. WGS identified driver and likely driver alterations in 68.4 and 22.6% of the samples, respectively. The most frequent alteration type was oncogene amplification, followed by tumor suppressor gene deletion and small variants located outside the coding region. In the remaining 9.0% of samples, no such signals were identified; therefore, further investigations are required. The current study clearly demonstrated the role and utility of WGS in identifying genomic alterations that contribute to tumorigenesis.
Collapse
Affiliation(s)
- Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777, Japan.
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tomoe Tanabe
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
- SRL Inc., Tokyo, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Fukumi Kamada
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Cancer Multiomics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Koji Maruyama
- Experimental Animal Facility, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Maki Mizuguchi
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhisa Ohde
- Division of Thoracic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Etsuro Bando
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Mukaigawa
- Division of Head and Neck Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Seiichiro Nishimura
- Division of Breast Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuyuki Hirashima
- Division of Gynecology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Koichi Mitsuya
- Division of Neurosurgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Shusuke Yoshikawa
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshio Kiyohara
- Division of Dermatology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirohisa Katagiri
- Division of Orthopedic Oncology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masashi Niwakawa
- Division of Urology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Kaoru Takahashi
- Division of Breast Oncology Center, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hiroya Kashiwagi
- Division of Ophthalmology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yoshichika Yasunaga
- Division of Plastic and Reconstructive Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yuji Ishida
- Division of Pediatrics, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Hirotsugu Kenmotsu
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | | | | | | | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| |
Collapse
|
43
|
Ogino J, Dou Y. Histone methyltransferase KMT2A: Developmental regulation to oncogenic transformation. J Biol Chem 2024; 300:107791. [PMID: 39303915 PMCID: PMC11736124 DOI: 10.1016/j.jbc.2024.107791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024] Open
Abstract
Our current understanding of epigenetic regulation is deeply rooted in the founding contributions of Dr C. David Allis. In 2002, Allis and colleagues first characterized the lysine methyltransferase activity of the mammalian KMT2A (MLL1), a paradigm-shifting discovery that brings epigenetic dysregulation into focus for many human diseases that carry KMT2A mutations. This review will discuss the current understanding of the multifaceted roles of KMT2A in development and disease, which has paved the way for innovative and upcoming approaches to cancer therapy.
Collapse
Affiliation(s)
- Jayme Ogino
- Division of Pediatric Hematology-Oncology, Children's Hospital Los Angeles, Los Angeles, California, USA; Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Yali Dou
- Department of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
44
|
Cuglievan B, Kantarjian H, Rubnitz JE, Cooper TM, Zwaan CM, Pollard JA, DiNardo CD, Kadia TM, Guest E, Short NJ, McCall D, Daver N, Nunez C, Haddad FG, Garcia M, Bhalla KN, Maiti A, Catueno S, Fiskus W, Carter BZ, Gibson A, Roth M, Khazal S, Tewari P, Abbas HA, Bourgeois W, Andreeff M, Shukla NN, Truong DD, Connors J, Ludwig JA, Stutterheim J, Salzer E, Juul-Dam KL, Sasaki K, Mahadeo KM, Tasian SK, Borthakur G, Dickson S, Jain N, Jabbour E, Meshinchi S, Garcia-Manero G, Ravandi F, Stein EM, Kolb EA, Issa GC. Menin inhibitors in pediatric acute leukemia: a comprehensive review and recommendations to accelerate progress in collaboration with adult leukemia and the international community. Leukemia 2024; 38:2073-2084. [PMID: 39179671 PMCID: PMC11436367 DOI: 10.1038/s41375-024-02368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/26/2024]
Abstract
Aberrant expression of HOX and MEIS1 family genes, as seen in KMT2A-rearranged, NUP98-rearranged, or NPM1-mutated leukemias leads to arrested differentiation and leukemia development. HOX family genes are essential gatekeepers of physiologic hematopoiesis, and their expression is regulated by the interaction between KMT2A and menin. Menin inhibitors block this interaction, downregulate the abnormal expression of MEIS1 and other transcription factors and thereby release the differentiation block. Menin inhibitors show significant clinical efficacy against KMT2A-rearranged and NPM1-mutated acute leukemias, with promising potential to address unmet needs in various pediatric leukemia subtypes. In this collaborative initiative, pediatric and adult hematologists/oncologists, and stem cell transplant physicians have united their expertise to explore the potential of menin inhibitors in pediatric leukemia treatment internationally. Our efforts aim to provide a comprehensive clinical overview of menin inhibitors, integrating preclinical evidence and insights from ongoing global clinical trials. Additionally, we propose future international, inclusive, and efficient clinical trial designs, integrating pediatric populations in adult trials, to ensure broad access to this promising therapy for all children and adolescents with menin-dependent leukemias.
Collapse
Affiliation(s)
- Branko Cuglievan
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Hagop Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey E Rubnitz
- Department of Oncology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Todd M Cooper
- Cancer and Blood Disorders Center, Seattle Children's Hospital, University of Washington, Seattle, WA, USA
| | - C Michel Zwaan
- Princess Maxima Center for Pediatric Oncology, Utrecht, the Netherlands; Pediatric Oncology, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands; The Innovative Therapies for Children with Cancer Consortium, Paris, France
| | | | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Erin Guest
- Department of Pediatric Oncology, Children's Mercy, Kansas City, MO, USA
| | - Nicholas J Short
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David McCall
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cesar Nunez
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fadi G Haddad
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Miriam Garcia
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kapil N Bhalla
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Abhishek Maiti
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samanta Catueno
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Warren Fiskus
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bing Z Carter
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Amber Gibson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Roth
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sajad Khazal
- Division of Transplant and Cellular Therapy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Priti Tewari
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Hussein A Abbas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Michael Andreeff
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Neerav N Shukla
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeremy Connors
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer, Houston, TX, USA
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Elisabeth Salzer
- Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Kristian L Juul-Dam
- Department of Pediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kris M Mahadeo
- Division of Pediatric Transplantation and Cellular Therapy, Duke University, Durham, NC, USA
| | - Sarah K Tasian
- Department of Pediatrics and Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samantha Dickson
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nitin Jain
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eytan M Stein
- Department of Leukemia, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E Anders Kolb
- Moseley Institute for Cancer and Blood Disorders, Nemours Children's Health, Wilmington, DE, USA
| | - Ghayas C Issa
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
45
|
Yin L, Wan L, Zhang Y, Hua S, Shao X. Recent Developments and Evolving Therapeutic Strategies in KMT2A-Rearranged Acute Leukemia. Cancer Med 2024; 13:e70326. [PMID: 39428967 PMCID: PMC11491690 DOI: 10.1002/cam4.70326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/09/2024] [Accepted: 09/28/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Rearrangements of the histone-lysine-N-methyltransferase (KMT2A), previously referred to as mixed-lineage leukemia (MLL), are among the most common chromosomal abnormalities in patients with acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), involving numerous different fusion partners. KMT2A-rearranged (KMT2A-r) leukemia is characterized by a rapid onset, aggressive progression, and significantly worse prognosis compared to non-KMT2A-r leukemias. Even with contemporary chemotherapeutic treatments and hematopoietic stem cell transplantations (HSCT), patients with KMT2A-r leukemia typically experience poor outcomes and limited responses to these therapies. OBJECTIVES This review aims to consolidate recent studies on the general gene characteristics and associated mechanisms of KMT2A-r acute leukemia, as well as the cytogenetics, immunophenotype, clinical presentation, and risk stratification of both KMT2A-r-AML and KMT2A-r-ALL. Particularly, the treatment targets in KMT2A-r acute leukemia are examined. METHODS A comprehensive review was carried out by systematically synthesizing existing literature on PubMed, using the combination of the keywords 'KMT2A-rearranged acute leukemia', 'lymphoblastic leukemia', 'myeloid leukemia', and 'therapy'. The available studies were screened for selection based on quality and relevance. CONCLUSIONS Studies indicate that KMT2A rearrangements are present in over 70% of infant leukemia cases, approximately 10% of adult AML cases, and numerous instances of secondary acute leukemias, making it a disease of critical concern to clinicians and researchers alike. The future of KMT2A-r acute leukemia research is characterized by an expanding knowledge of the disease's biology, with an emphasis on personalized therapies, immunotherapies, genomic advancements, and innovative therapeutic combinations. The overarching aim is to enhance patient outcomes, lessen the disease burden, and elevate the quality of life for those affected. Ongoing research and clinical trials in this area continue to offer promising opportunities for refining treatment strategies and improving patient prognosis.
Collapse
Affiliation(s)
- Lei Yin
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Lin Wan
- Department of PediatricsThe First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan HospitalJinanChina
| | - Youjian Zhang
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Shenghao Hua
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| | - Xuejun Shao
- Department of Clinical LaboratoryChildren's Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
46
|
Kwon MC, Thuring JW, Querolle O, Dai X, Verhulst T, Pande V, Marien A, Goffin D, Wenge DV, Yue H, Cutler JA, Jin C, Perner F, Hogeling SM, Shaffer PL, Jacobs F, Vinken P, Cai W, Keersmaekers V, Eyassu F, Bhogal B, Verstraeten K, El Ashkar S, Perry JA, Jayaguru P, Barreyro L, Kuchnio A, Darville N, Krosky D, Urbanietz G, Verbist B, Edwards JP, Cowley GS, Kirkpatrick R, Steele R, Ferrante L, Guttke C, Daskalakis N, Pietsch EC, Wilson DM, Attar R, Elsayed Y, Fischer ES, Schuringa JJ, Armstrong SA, Packman K, Philippar U. Preclinical efficacy of the potent, selective menin-KMT2A inhibitor JNJ-75276617 (bleximenib) in KMT2A- and NPM1-altered leukemias. Blood 2024; 144:1206-1220. [PMID: 38905635 PMCID: PMC11419783 DOI: 10.1182/blood.2023022480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
ABSTRACT The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 (bleximenib) is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) acute myeloid leukemia (AML) cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent antiproliferative activity across several AML and acute lymphoblastic leukemia (ALL) cell lines and patient samples harboring KMT2A or NPM1 alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent antiproliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A cocrystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).
Collapse
MESH Headings
- Nucleophosmin
- Humans
- Animals
- Mice
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Histone-Lysine N-Methyltransferase/genetics
- Histone-Lysine N-Methyltransferase/antagonists & inhibitors
- Histone-Lysine N-Methyltransferase/metabolism
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Nuclear Proteins/antagonists & inhibitors
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Xenograft Model Antitumor Assays
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/antagonists & inhibitors
- Proto-Oncogene Proteins/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Mice, SCID
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
| | | | - Olivier Querolle
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Xuedong Dai
- Discovery Product Development and Supply, Janssen R&D, Shanghai, China
| | | | - Vineet Pande
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Ann Marien
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Dries Goffin
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Daniela V. Wenge
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Hong Yue
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jevon A. Cutler
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Cyrus Jin
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Florian Perner
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | - Shanna M. Hogeling
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul L. Shaffer
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Frank Jacobs
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Petra Vinken
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Wei Cai
- Discovery Product Development and Supply, Janssen R&D, Shanghai, China
| | | | | | - Balpreet Bhogal
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | | | - Jennifer A. Perry
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | | - Anna Kuchnio
- Discovery Oncology, Janssen R&D, Beerse, Belgium
| | - Nicolas Darville
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Daniel Krosky
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Gregor Urbanietz
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | | | - James P. Edwards
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | - Glenn S. Cowley
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | - Ruth Steele
- Discovery Product Development and Supply, Janssen R&D, Spring House, PA
| | | | | | | | | | - David M. Wilson
- Discovery Product Development and Supply, Janssen R&D, Beerse, Belgium
| | - Ricardo Attar
- Translational Research, Janssen R&D, Spring House, PA
| | | | - Eric S. Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA
| | - Jan Jacob Schuringa
- Department of Experimental Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Scott A. Armstrong
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children's Hospital, and Harvard Medical School, Boston, MA
| | | | | |
Collapse
|
47
|
Conn VM, Chinnaiyan AM, Conn SJ. Circular RNA in cancer. Nat Rev Cancer 2024; 24:597-613. [PMID: 39075222 DOI: 10.1038/s41568-024-00721-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Over the past decade, circular RNA (circRNA) research has evolved into a bona fide research field shedding light on the functional consequence of this unique family of RNA molecules in cancer. Although the method of formation and the abundance of circRNAs can differ from their cognate linear mRNA, the spectrum of interacting partners and their resultant cellular functions in oncogenesis are analogous. However, with 10 times more diversity in circRNA variants compared with linear RNA variants, combined with their hyperstability in the cell, circRNAs are equipped to influence every stage of oncogenesis. This is an opportune time to address the breadth of circRNA in cancer focused on their spatiotemporal expression, mutations in biogenesis factors and contemporary functions through each stage of cancer. In this Review, we highlight examples of functional circRNAs in specific cancers, which satisfy critical criteria, including their physical co-association with the target and circRNA abundance at stoichiometrically valid quantities. These considerations are essential to develop strategies for the therapeutic exploitation of circRNAs as biomarkers and targeted anticancer agents.
Collapse
Affiliation(s)
- Vanessa M Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Simon J Conn
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, South Australia, Australia.
| |
Collapse
|
48
|
Zhang Q, Falqués‐Costa T, Pilheden M, Sturesson H, Ovlund T, Rissler V, Castor A, Marquart HVH, Lausen B, Fioretos T, Hyrenius‐Wittsten A, Hagström‐Andersson AK. Activating mutations remodel the chromatin accessibility landscape to drive distinct regulatory networks in KMT2A-rearranged acute leukemia. Hemasphere 2024; 8:e70006. [PMID: 39329074 PMCID: PMC11426354 DOI: 10.1002/hem3.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 09/28/2024] Open
Abstract
Activating FLT3 and RAS mutations commonly occur in leukemia with KMT2A-gene rearrangements (KMT2A-r). However, how these mutations cooperate with the KMT2A-r to remodel the epigenetic landscape is unknown. Using a retroviral acute myeloid leukemia (AML) mouse model driven by KMT2A::MLLT3, we show that FLT3 ITD , FLT3 N676K , and NRAS G12D remodeled the chromatin accessibility landscape and associated transcriptional networks. Although the activating mutations shared a common core of chromatin changes, each mutation exhibits unique profiles with most opened peaks associating with enhancers in intronic or intergenic regions. Specifically, FLT3 N676K and NRAS G12D rewired similar chromatin and transcriptional networks, distinct from those mediated by FLT3 ITD . Motif analysis uncovered a role for the AP-1 family of transcription factors in KMT2A::MLLT3 leukemia with FLT3 N676K and NRAS G12D , whereas Runx1 and Stat5a/Stat5b were active in the presence of FLT3 ITD . Furthermore, transcriptional programs linked to immune cell regulation were activated in KMT2A-r AML expressing NRAS G12D or FLT3 N676K , and the expression of NKG2D-ligands on KMT2A-r cells rendered them sensitive to CAR T cell-mediated killing. Human KMT2A-r AML cells could be pharmacologically sensitized to NKG2D-CAR T cells by treatment with the histone deacetylase inhibitor LBH589 (panobinostat) which caused upregulation of NKG2D-ligand levels. Co-treatment with LBH589 and NKG2D-CAR T cells enabled robust AML cell killing, and the strongest effect was observed for cells expressing NRAS G12D . Finally, the results were validated and extended to acute leukemia in infancy. Combined, activating mutations induced mutation-specific changes in the epigenetic landscape, leading to changes in transcriptional programs orchestrated by specific transcription factor networks.
Collapse
Affiliation(s)
- Qirui Zhang
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Ton Falqués‐Costa
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Mattias Pilheden
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Helena Sturesson
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Tina Ovlund
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Vendela Rissler
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Anders Castor
- Childhood Cancer CenterSkåne University HospitalLundSweden
| | - Hanne V. H. Marquart
- Department of Clinical ImmunologyNational University HospitalRigshospitalet, CopenhagenDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Birgitte Lausen
- Department of Paediatrics and Adolescent Medicine, RigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Thoas Fioretos
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | - Axel Hyrenius‐Wittsten
- Department of Laboratory Medicine, Division of Clinical GeneticsLund UniversityLundSweden
| | | |
Collapse
|
49
|
Hernández-Sánchez A, González T, Sobas M, Sträng E, Castellani G, Abáigar M, Valk PJM, Villaverde Ramiro Á, Benner A, Metzeler KH, Azibeiro R, Tettero JM, Martínez-López J, Pratcorona M, Martínez Elicegui J, Mills KI, Thiede C, Sanz G, Döhner K, Heuser M, Haferlach T, Turki AT, Reinhardt D, Schulze-Rath R, Barbus M, Hernández-Rivas JM, Huntly B, Ossenkoppele G, Döhner H, Bullinger L. Rearrangements involving 11q23.3/KMT2A in adult AML: mutational landscape and prognostic implications - a HARMONY study. Leukemia 2024; 38:1929-1937. [PMID: 38965370 PMCID: PMC11347382 DOI: 10.1038/s41375-024-02333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/17/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Balanced rearrangements involving the KMT2A gene (KMT2Ar) are recurrent genetic abnormalities in acute myeloid leukemia (AML), but there is lack of consensus regarding the prognostic impact of different fusion partners. Moreover, prognostic implications of gene mutations co-occurring with KMT2Ar are not established. From the HARMONY AML database 205 KMT2Ar adult patients were selected, 185 of whom had mutational information by a panel-based next-generation sequencing analysis. Overall survival (OS) was similar across the different translocations, including t(9;11)(p21.3;q23.3)/KMT2A::MLLT3 (p = 0.756). However, independent prognostic factors for OS in intensively treated patients were age >60 years (HR 2.1, p = 0.001), secondary AML (HR 2.2, p = 0.043), DNMT3A-mut (HR 2.1, p = 0.047) and KRAS-mut (HR 2.0, p = 0.005). In the subset of patients with de novo AML < 60 years, KRAS and TP53 were the prognostically most relevant mutated genes, as patients with a mutation of any of those two genes had a lower complete remission rate (50% vs 86%, p < 0.001) and inferior OS (median 7 vs 30 months, p < 0.001). Allogeneic hematopoietic stem cell transplantation in first complete remission was able to improve OS (p = 0.003). Our study highlights the importance of the mutational patterns in adult KMT2Ar AML and provides new insights into more accurate prognostic stratification of these patients.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/mortality
- Leukemia, Myeloid, Acute/therapy
- Myeloid-Lymphoid Leukemia Protein/genetics
- Histone-Lysine N-Methyltransferase/genetics
- Middle Aged
- Prognosis
- Adult
- Female
- Male
- Mutation
- Chromosomes, Human, Pair 11/genetics
- Aged
- Young Adult
- Translocation, Genetic
- Gene Rearrangement
- Adolescent
- Aged, 80 and over
- Survival Rate
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Alberto Hernández-Sánchez
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Teresa González
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | | | - Eric Sträng
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - María Abáigar
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Peter J M Valk
- Department of Hematology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ángela Villaverde Ramiro
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Axel Benner
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Raúl Azibeiro
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Jesse M Tettero
- Department of Hematology, Amsterdam UMC Location VUMC, Amsterdam, The Netherlands
| | | | - Marta Pratcorona
- Department of Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Javier Martínez Elicegui
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
| | - Ken I Mills
- Patrick G Johnston Centre for Cancer Research, Queen's University, Belfast, UK
| | - Christian Thiede
- University of Technics Dresden Medical Department, Dresden, Germany
| | - Guillermo Sanz
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
- Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Amin T Turki
- Marienhospital University Hospital, Ruhr-University Bochum, Bochum, Germany
- Universitätsklinikum Essen, Essen, Germany
| | - Dirk Reinhardt
- Department of Pediatrics III, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | | | - Jesús María Hernández-Rivas
- Hematology Department, University Hospital of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
- Cancer Research Center of Salamanca (IBMCC, USAL-CSIC), Salamanca, Spain
- Department of Medicine, University of Salamanca, Salamanca, Spain
| | - Brian Huntly
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Gert Ossenkoppele
- Department of Hematology, Amsterdam UMC Location VUMC, Amsterdam, The Netherlands
| | - Hartmut Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Lars Bullinger
- Department of Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
50
|
Guarnera L, D’Addona M, Bravo-Perez C, Visconte V. KMT2A Rearrangements in Leukemias: Molecular Aspects and Therapeutic Perspectives. Int J Mol Sci 2024; 25:9023. [PMID: 39201709 PMCID: PMC11354696 DOI: 10.3390/ijms25169023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/03/2024] Open
Abstract
KMT2A (alias: mixed-lineage leukemia [MLL]) gene mapping on chromosome 11q23 encodes the lysine-specific histone N-methyltransferase 2A and promotes transcription by inducing an open chromatin conformation. Numerous genomic breakpoints within the KMT2A gene have been reported in young children and adults with hematologic disorders and are present in up to 10% of acute leukemias. These rearrangements describe distinct features and worse prognosis depending on the fusion partner, characterized by chemotherapy resistance and high rates of relapse, with a progression-free survival of 30-40% and overall survival below 25%. Less intensive regimens are used in pediatric patients, while new combination therapies and targeted immunotherapeutic agents are being explored in adults. Beneficial therapeutic effects, and even cure, can be reached with hematopoietic stem cell transplantation, mainly in young children with dismal molecular lesions; however, delayed related toxicities represent a concern. Herein, we summarize the translocation partner genes and partial tandem duplications of the KMT2A gene, their molecular impact, clinical aspects, and novel targeted therapies.
Collapse
Affiliation(s)
- Luca Guarnera
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
- Department of Biomedicine and Prevention, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Matteo D’Addona
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
| | - Carlos Bravo-Perez
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
- Department of Hematology and Medical Oncology, Hospital Universitario Morales Meseguer, CIBERER—Instituto de Salud Carlos III, University of Murcia, IMIB-Pascual Parrilla, 30005 Murcia, Spain
| | - Valeria Visconte
- Department of Translational Hematology & Oncology Research, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44114, USA; (L.G.); (M.D.); (C.B.-P.)
| |
Collapse
|