1
|
Yang L, Gao Y, Wang Z, Yang L, Shao M. Spin detector for panchromatic circularly polarized light detection. Nat Commun 2025; 16:4161. [PMID: 40324979 PMCID: PMC12053581 DOI: 10.1038/s41467-025-59287-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
Circularly polarized light (CPL) detection is crucial for optical communication, bioimaging and quantum computing. However, CPL detectors based on chiral low-dimensional perovskites face a trade-off between optoelectronic performance and CPL discrimination, and typically exhibit a CPL response within a narrow spectral range. Here, we overcome these limitations by integrating three-dimensional (3D) and chiral-two-dimensional (2D) perovskites. The 3D perovskite serving as the photoabsorption layer extends the detection range to 760 nm and enhances optoelectronic responses, while also generating spin-polarized carriers through large Rashba splitting. The chiral-2D perovskite achieves spin filtering efficiency up to 80%. The synergy between spin polarization and chiral-induced spin selectivity processes enables a panchromatic CPL response, with a photocurrent asymmetry factor exceeding 0.28 across the visible spectrum and peaking at 0.35. Furthermore, our detector achieves a detectivity of 3.7×1011 Jones. Our work introduces a spin manipulation strategy for panchromatic CPL detection, expanding the scope of spintronics applications.
Collapse
Affiliation(s)
- Lvpeng Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yerun Gao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenye Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Long Yang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming Shao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
2
|
Kwon J, Jeon JB, Lee MG, Jeong S, Choi WJ, Kim KM, Yeom J. Enantioselective Se lattices for stable chiroptoelectronic processing media. Nat Commun 2025; 16:4134. [PMID: 40319032 PMCID: PMC12049412 DOI: 10.1038/s41467-025-59091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/09/2025] [Indexed: 05/07/2025] Open
Abstract
Chiroptoelectronic devices are crucial for applications in quantum computing, spin optical communications, and magnetic recording. However, the limited efficiency and low stability of conventional circularly polarized light (CPL)-sensing materials have restricted their broader use. Here, we introduce atomic chiral Se nanorod (NRs) films as broadband CPL detectors, leveraging the intrinsic chirality and stability of Se nanocrystals. We also perform incident circular polarization (ICP)-Raman optical activity (ROA) to explore the chiroptical activity of the large-area films. The Se NRs thin films detected CPL across a broad range from ultraviolet (UV) to short-wavelength infrared (SWIR), with a responsivity dissymmetry factor of up to 0.4, maintaining high stability under ambient conditions for longer than 13 months. CPL-sensitive Se NRs with intrinsic chirality have potential applications in chiral photonic synapses, chiral spin devices, and CPL-sensitive photocatalysts. ICP-ROA mapping also advances the analysis of 2D chiral materials.
Collapse
Affiliation(s)
- Junyoung Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
- Major of Nanotechnology Engineering, Pukyong National University, Busan, Republic of Korea
| | - Jae Bum Jeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Min Gu Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Serin Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Won Jin Choi
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California, USA
| | - Kyung Min Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jihyeon Yeom
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Ma X, Wang Z, Qin Q, Chen J, Liu X, Zou F, Xu Z, Chen W, Li G, Li Y, Zhai T, Li L. Simultaneous AoLP and DoLP Detection in a Bias-Switchable PdSe 2/MoS 2/PdSe 2 Heterojunction for Polarization Discrimination. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500572. [PMID: 40059528 DOI: 10.1002/adma.202500572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Indexed: 04/24/2025]
Abstract
On-chip polarized photodetectors play a crucial role in advancing ultra-compact optoelectronic devices for next-generation technologies. However, simultaneously detecting the angle of linear polarization (AoLP) and the degree of linear polarization (DoLP) within a single device remains a challenging task, particularly due to the inherently weak polarization states found in naturally anisotropic materials. In this paper, it is reported on the development of a twisted monopole barrier photodetector based on a PdSe2/MoS2/PdSe2 configuration. This photodetector features a rapid response time of 7-12 µs. In an imaging demonstration, it operates as a single-polarization photodetector, reconstructing AoLP and DoLP distributions of target objects through bias-switchable polarization detection across a wide spectral range, all without the plasmonic/metasurface nanostructures or polarization filters. Additionally, it demonstrates bipolar characteristics under zero-bias conditions at room temperature, enabling dual-binary coding for polarimetric-encoded communication. These combination of features positions the photodetector as a highly promising candidate for on-chip applications.
Collapse
Affiliation(s)
- Xiaofei Ma
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zeping Wang
- University of Science and Technology of China, Hefei, 230026, P. R. China
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Qinggang Qin
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Jiawang Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xue Liu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Fengxia Zou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhengyu Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P. R. China
| | - Wei Chen
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Guanghai Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology(HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology(HUST), Wuhan, 430074, P. R. China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Liang Li
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, P. R. China
- University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Pan Y, Sun H, Ji L, He X, Dong W, Chen H. Modulation anisotropy of nanomaterials toward monolithic integrated polarization-sensitive photodetectors. NANOSCALE 2025; 17:7533-7551. [PMID: 40012331 DOI: 10.1039/d4nr05034g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
By virtue of the unique ability of providing additional information beyond light intensity and spectra, polarization-sensitive photodetectors could precisely identify targets in several concealed, camouflaged, and non-cooperative backgrounds, making them highly suitable for potential applications in remote sensing, astronomical detection, medical diagnosis, etc. Therefore, to provide a comprehensive design guideline for a wide range of interdisciplinary researchers, this review provides a general overview of state-of-the-art linear, circular, and full-Stokes polarization-sensitive photodetectors. In particular, from the perspectives of technological progress and the development of nanoscience, the detailed discussion focuses on strategies to simplify high-performance polarization-sensitive photodetectors, reducing their size and achieving a smaller volume. In addition, to lay a solid foundation for modulating the properties of future nanostructure-based polarization-sensitive photodetectors, insights into light-matter interactions in low-symmetry materials and asymmetric structures are provided here. Meanwhile, the corresponding opportunities and challenges in this research field are identified.
Collapse
Affiliation(s)
- Yuan Pan
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Huiru Sun
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Lingxuan Ji
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Xuanxuan He
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Wenzhe Dong
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| | - Hongyu Chen
- Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Electronic Science and Engineering (School of Microelectronics), Faculty of Engineering, South China Normal University, Foshan 528225, P.R. China.
| |
Collapse
|
5
|
Bian S, Arteaga O. A simple pathway for complete polarization vision. Sci Rep 2025; 15:8885. [PMID: 40087403 PMCID: PMC11909227 DOI: 10.1038/s41598-025-92653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/03/2025] [Indexed: 03/17/2025] Open
Abstract
This paper introduces a novel method for achieving complete polarization vision through a full-Stokes polarization camera. Our technique employs a homogeneous dispersive retarder placed before a polarization sensor to harness wavelength-dependent retardation, enabling the differentiation of polarization states across the sensor's color channels. Assuming weak wavelength dependence of polarization for incoming light, this method facilitates the real-time, simultaneous measurement of the complete Stokes vector of incident light. This method provides a streamlined, versatile, and practical solution with broad potential applications in imaging, remote sensing, and augmented reality.
Collapse
Affiliation(s)
- Subiao Bian
- Dep. Física Aplicada, PLAT Group, IN2UB, University of Barcelona, Barcelona, 08028, Spain
| | - Oriol Arteaga
- Dep. Física Aplicada, PLAT Group, IN2UB, University of Barcelona, Barcelona, 08028, Spain.
| |
Collapse
|
6
|
Zhu R, Qian C, Xiao S, Yang J, Yan S, Liu H, Dai D, Li H, Yang L, Chen X, Yuan Y, Dai D, Zuo Z, Ni H, Niu Z, Wang C, Jin K, Gong Q, Xu X. Full polarization control of photons with evanescent wave coupling in the ultra subwavelength gap of photonic molecules. LIGHT, SCIENCE & APPLICATIONS 2025; 14:114. [PMID: 40044651 PMCID: PMC11882835 DOI: 10.1038/s41377-025-01794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/07/2025] [Accepted: 02/18/2025] [Indexed: 03/09/2025]
Abstract
Polarization of photons plays a key role in quantum optics and light-matter interactions, however, it is difficult to control in nanosystems since the eigenstate of a nanophotonic cavity is usually fixed and linearly polarized. Here, we reveal the polarization control of photons using photonic molecules (PMs) that host supermodes of two coupled nanobeam cavities. In contrast to conventional PMs in a 2D photonic crystal slab, for the two 1D photonic crystal nanobeam cavities the shift and gap between them can be tuned continuously. With an ultra subwavelength gap, the coupling between the two cavities is dominated by the evanescent wave coupling in the surrounding environment, rather not the emission wave coupling for conventional PMs. As such, the non-Hermiticity of the system becomes pronounced, and the supermodes consist of a non-trivial phase difference between bare eigenstates that supports elliptical polarization. We observe that both the polarization degree and polarization angle of the antisymmetric mode strongly depend on the shift and gap between the two cavities, exhibiting polarization states from linear to circular. This full polarization control indicates the great potential of PMs in quantum optical devices and spin-resolved cavity quantum electrodynamics.
Collapse
Affiliation(s)
- Rui Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenjiang Qian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shan Xiao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingnan Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Sai Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hanqing Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences, Beijing, China
| | - Deyan Dai
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences, Beijing, China
| | - Hancong Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Longlong Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiqing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yu Yuan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Danjie Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhanchun Zuo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Haiqiao Ni
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences, Beijing, China
| | - Zhichuan Niu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors Chinese Academy of Sciences, Beijing, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiulai Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
7
|
Feng J, Perry A, Weng X, González-Alcalde AK, Arteaga O, Mencagli MJ, Vuong LT. Polarimetric Compressed Sensing with Hollow, Self-Assembled Diffractive Films. ACS NANO 2025; 19:4222-4232. [PMID: 39847498 PMCID: PMC11803751 DOI: 10.1021/acsnano.4c09641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025]
Abstract
Sensing light's polarization and wavefront direction enables surface curvature assessment, material identification, shadow differentiation, and improved image quality in turbid environments. Traditional polarization cameras utilize multiple sensor measurements per pixel and polarization-filtering optics, which result in reduced image resolution. We propose a nanophotonic pipeline that enables compressive sensing and reduces the sampling requirements with a low-refractive-index, self-assembled optical encoder. These nanostructures scatter light into lattice modes, which encode the wavefront direction and the polarization ellipticity in the linearly polarized components of the diffracted, interference patterns. Combining optical encoders with a neural network, the system predicts pointing and polarization when the interference patterns are adequately sampled. A comparison of "ordered" and "random" optical encoders shows that the latter both blurs the interference patterns and achieves higher resolution. Our work centers on the unexpected modulation and spatial multiplexing of incident light polarization by self-assembled hollow nanocavity arrays as a class of materials distinct from traditional metasurfaces that will not only enable encoding for polarization and optical computing but also for compressed sensing and imaging.
Collapse
Affiliation(s)
- Ji Feng
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Altai Perry
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Xiaojing Weng
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Alma K. González-Alcalde
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| | - Oriol Arteaga
- Dep.
Física Aplicada, Plat Group, IN2UB, Universitat de Barcelona, Barcelona 08028, Spain
| | - Mario J. Mencagli
- Department
of Electrical and Computer Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Luat T. Vuong
- Department
of Mechanical Engineering, University of
California at Riverside, Riverside, California 92521, United States
| |
Collapse
|
8
|
Liu Z, Liu M, Qi L, Zhang N, Wang B, Sun X, Zhang R, Li D, Li S. Versatile on-chip polarization-sensitive detection system for optical communication and artificial vision. LIGHT, SCIENCE & APPLICATIONS 2025; 14:68. [PMID: 39900930 PMCID: PMC11790936 DOI: 10.1038/s41377-025-01744-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/26/2024] [Accepted: 01/03/2025] [Indexed: 02/05/2025]
Abstract
Polarization is an important attribute of light and can be artificially modulated as a versatile information carrier. Conventional polarization-sensitive photodetection relies on a combination of polarizing optical elements and standard photodetectors, which requires a substantial amount of space and manufacturing expenses. Although on-chip polarized photodetectors have been realized in recent years based on two-dimensional (2D) materials with low-symmetry crystal structures, they are limited by the intrinsic anisotropic property and thus the optional range of materials, the operation wavelength, and more importantly, the low anisotropic ratio, hindering their practical applications. In this work, we construct a versatile platform that transcends the constraints of material anisotropy, by integrating WSe2-based photodetector with MoS2-based field-effect transistor, delivering high-performance broadband polarization detection capability with orders of magnitude improvement in anisotropic ratio and on/off ratio. The polarization arises from hot electron injection caused by the plasmonic metal electrode and is amplified by the transistor to raise the anisotropic ratio from 2 to an impressive value over 60 in the infrared (IR) band, reaching the level of existing applications. Meanwhile, the system achieves a significant improvement in photosensitivity, with an on/off ratio of over 103 in the IR band. Based on the above performance optimization, we demonstrated its polarization-modulated IR optical communication ability and polarized artificial vision applications with a high image recognition accuracy of ~99%. The proposed platform provides a promising route for the development of the long-sought minimized, high-performance, multifunctional optoelectronic systems.
Collapse
Affiliation(s)
- Zhilin Liu
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingxiu Liu
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liujian Qi
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Nan Zhang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Bin Wang
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Xiaojuan Sun
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Rongjun Zhang
- Department of Optical Science and Engineering, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Proception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Dabing Li
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China
| | - Shaojuan Li
- Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences & State Key Laboratory of Luminescence Science and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, 130033, China.
| |
Collapse
|
9
|
Li Y, Jia Y, Yang H, Wu Y, Cao Y, Zhang X, Lou C, Liu X, Huang L, Yao J. A Room-Temperature Terahertz Photodetector Imaging with High Stability and Polarization-Sensitive Based on Perovskite/Metasurface. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407634. [PMID: 39686840 PMCID: PMC11809364 DOI: 10.1002/advs.202407634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/06/2024] [Indexed: 12/18/2024]
Abstract
Terahertz (THz) polarization detection facilitates the capture of multidimensional data, including intensity, phase, and polarization state, with broad applicability in high-resolution imaging, communication, and remote sensing. However, conventional semiconductor materials are limited by energy band limitations, rendering them unsuitable for THz detection. Overcoming this challenge, the realization of high-stability, room-temperature polarization-sensitive THz photodetectors (PDs) leveraging the thermoelectric effect of Cs0.05(FA0.85MA0.15)0.95Pb(I0.85Br0.15)3 (CsFAMA)/metasurfaces is presented. Two different structures of (T-shaped and I-shaped) THz PDs are constructed. The incorporation of perovskite/metasurfaces forms enhanced local field thermoelectric effect and polarization response. Owning to THz surface plasmon polariton (SPP) resonance effect and more boundary effect, the I-shaped PDs exhibit superior performance, achieving a response of up to 94 V/W, with a response time of 138 µs, a low noise-equivalent power of 5.03 pW/Hz1/2 and an anisotropy ratio of 1.38 under 0.1THz laser irradiation. Furthermore, the PD's stability is verified with the anisotropy ratio decreased by only 2% and polarization imaging results after 240 days of storage in air condition. This research introduces a method for achieving high-performance, stable THz polarization detection technology, with significant potential for advancements in materials science, communication technology, and medical imaging.
Collapse
Affiliation(s)
- Yifan Li
- College of Electronic Information Engineering & Hebei Key Laboratory of Digital Medical EngineeringHebei UniversityBaoding071000China
- School of Precision Instruments and Opto‐Electronics EngineeringTianjin UniversityTianjin300072China
| | - Yiming Jia
- College of Electronic Information Engineering & Hebei Key Laboratory of Digital Medical EngineeringHebei UniversityBaoding071000China
| | - He Yang
- College of Electronic Information Engineering & Hebei Key Laboratory of Digital Medical EngineeringHebei UniversityBaoding071000China
| | - Yinghui Wu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Yajun Cao
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Xuyang Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Cunguang Lou
- College of Electronic Information Engineering & Hebei Key Laboratory of Digital Medical EngineeringHebei UniversityBaoding071000China
| | - Xiuling Liu
- College of Electronic Information Engineering & Hebei Key Laboratory of Digital Medical EngineeringHebei UniversityBaoding071000China
| | - Long‐Biao Huang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- National Key Laboratory of Green and Long‐Life Road Engineering in Extreme EnvironmentShenzhen UniversityShenzhen518060China
| | - Jianquan Yao
- School of Precision Instruments and Opto‐Electronics EngineeringTianjin UniversityTianjin300072China
| |
Collapse
|
10
|
Sultan S, Crovetto L, Rios R. Recent advances in the development of enantiopure BODIPYs and some related enantiomeric compounds. Chem Commun (Camb) 2025; 61:1989-2010. [PMID: 39752291 DOI: 10.1039/d4cc05809g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
During the process of developing smart chiroptical luminophores, small chiral organic dyes have emerged as candidates of utmost importance. In this regard, the chiral variants of boron dipyrromethene (BODIPY) serve as suitable molecules owing to their excellent photophysical properties such as high fluorescence quantum yields, narrow emission bandwidths with high peak intensities, high photo and chemical stability, and higher molar extinction coefficients. Thus, the last decade observed an influx of research from various research groups for the induction of chirality in originally achiral BODIPY. Among these, the generation of chiral centers at various positions in BODIPY favored the synthetic accessibility towards this particular chiral pool, which in turn is found to be applicable in various areas like photodynamic therapy, bio-imaging, dye-sensitized solar cells, optoelectronics, fluorescent indicators, dye lasers, and chiral sensing. This review summarizes these various aspects of creating stereogenic centers at various positions, like α, β, meso, or at boron, in BODIPYs.
Collapse
Affiliation(s)
- Shaista Sultan
- Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
| | - Luis Crovetto
- Department of Physical Chemistry, Universidad de Granada, Granada, Spain
| | - Ramon Rios
- Department of Chemistry, Khalifa University, SAN Campus, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
11
|
Hassanfiroozi A, Lu YC, Wu PC. Hybrid Anapole Induced Chirality in Metasurfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410568. [PMID: 39318103 DOI: 10.1002/adma.202410568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/04/2024] [Indexed: 09/26/2024]
Abstract
The interaction between light and matter, particularly chirality, plays a pivotal role in modern science and technology. Typically, metasurfaces achieve chiro-optical effects by coupling electric and magnetic dipoles in specific orientations. In this work, the design and optimization of an asymmetric H-shaped metasurface is explored to induce hybrid anapole (HA) for optical activity. When the symmetry of the metasurface structure is disrupted, the design can simultaneously excite first-order and pseudo high-order HA under illumination with a specific circular polarization, both occurring within the same spectral regime. This results in high reflection for one circular polarization and a significant reduction in reflection for the orthogonal polarization, thereby exhibiting exceptional chiro-optical activity. Moreover, the HA-based chiral metasurface demonstrates strong polarization control capabilities, as verified by Stokes parameter analysis, revealing high birefringence and a pronounced dependence on the incident polarization angle. These results provide valuable insights for the design and optimization of HA metasurfaces for advanced optical applications and polarization control, paving the way for new developments in chiral nanophotonics.
Collapse
Affiliation(s)
- Amir Hassanfiroozi
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yen Cheng Lu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, 70101, Taiwan
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan
- Meta-nanoPhotonics Center, National Cheng Kung University, Tainan, 70101, Taiwan
| |
Collapse
|
12
|
Li CR, Liao YW, Bikbaev RG, Yang JH, Chen LH, Maksimov DN, Pankin PS, Timofeev IV, Chen KP. Selective Plasmonic Responses of Chiral Metamirrors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1705. [PMID: 39513785 PMCID: PMC11547482 DOI: 10.3390/nano14211705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/15/2024]
Abstract
The properties of circularly polarized light has recently been used to selectively reflect chiral metasurfaces. Here we report the more complete basic functionalities of reflectors and absorbers that display various optical phenomena under circularly polarized light at normal incidence as before. For the chiral metamirrors we designed, the circular dichroism in about 0.4 reflection is experimentally observed in visible wavelengths. The experimental results also show high reflectance for right-handed circular polarization with preserved handedness and strongly absorbed left-handed circular polarization at chiroptical resonant wavelengths. By combining a nanobrick and wire grating for our design, we find and offer a new structure to demonstrate the superposition concept of the phase in the same plane that is helpful in effectively designing chiral metamirrors, and could advance development of their ultracompact optical components.
Collapse
Affiliation(s)
- Chang-Ruei Li
- Institute of Lighting and Energy Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan;
| | - Yu-Wei Liao
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan; (Y.-W.L.); (J.-H.Y.)
| | - Rashid G. Bikbaev
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Jhen-Hong Yang
- Institute of Photonic System, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan; (Y.-W.L.); (J.-H.Y.)
| | - Lu-Hsing Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan;
| | - Dmitrii N. Maksimov
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Pavel S. Pankin
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Ivan V. Timofeev
- Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Krasnoyarsk 660036, Russia; (R.G.B.); (D.N.M.); (P.S.P.); (I.V.T.)
- Institute of Engineering Physics and Radioelectronics, Siberian Federal University, Krasnoyarsk 660041, Russia
| | - Kuo-Ping Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu 30013, Taiwan;
- Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, 301 Gaofa 3rd Road, Tainan 71150, Taiwan
| |
Collapse
|
13
|
Volochanskyi O, Haider G, Alharbi EA, Kakavelakis G, Mergl M, Thakur MK, Krishna A, Graetzel M, Kalbáč M. Graphene-Templated Achiral Hybrid Perovskite for Circularly Polarized Light Sensing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52789-52798. [PMID: 39297304 PMCID: PMC11450682 DOI: 10.1021/acsami.4c10289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
This study points out the importance of the templating effect in hybrid organic-inorganic perovskite semiconductors grown on graphene. By combining two achiral materials, we report the formation of a chiral composite heterostructure with electronic band splitting. The effect is observed through circularly polarized light emission and detection in a graphene/α-CH(NH2)2PbI3 perovskite composite, at ambient temperature and without a magnetic field. We exploit the spin-charge conversion by introducing an unbalanced spin population through polarized light that gives rise to a spin photoconductive effect rationalized by Rashba-type coupling. The prepared composite heterostructure exhibits a circularly polarized photoluminescence anisotropy gCPL of ∼0.35 at ∼2.54 × 103 W cm-2 confocal power density of 532 nm excitation. A carefully engineered interface between the graphene and the perovskite thin film enhances the Rashba field and generates the built-in electric field responsible for photocurrent, yielding a photoresponsivity of ∼105 A W-1 under ∼0.08 μW cm-2 fluence of visible light photons. The maximum photocurrent anisotropy factor gph is ∼0.51 under ∼0.16 μW cm-2 irradiance. The work sheds light on the photophysical properties of graphene/perovskite composite heterostructures, finding them to be a promising candidate for developing miniaturized spin-photonic devices.
Collapse
Affiliation(s)
- Oleksandr Volochanskyi
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
- Faculty
of Chemical Engineering, Department of Physical Chemistry, University of Chemistry and Technology in Prague, Technická 5, 14200 Prague, Czech Republic
| | - Golam Haider
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| | - Essa A. Alharbi
- Microelectronics
and Semiconductors Institute, King Abdulaziz City for Science and
Technology (KACST), Riyadh 11442, Saudi Arabia
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
| | - George Kakavelakis
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
- Department
of Electronic Engineering, School of Engineering, Hellenic Mediterranean University, Romanou 3, Chalepa, GR-73100 Chania, Crete, Greece
| | - Martin Mergl
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| | - Mukesh Kumar Thakur
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| | - Anurag Krishna
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
| | - Michael Graetzel
- École
Polytechnique Fedérale du Lausanne, Laboratory of Photonics and Interfaces, Station 6, Lausanne 1015, Switzerland
| | - Martin Kalbáč
- Department
of Low-dimensional Systems, J. Heyrovsky
Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejšková 2155/3, 18223 Prague, Czech Republic
| |
Collapse
|
14
|
Hwang J, Zhang Y, Kim B, Jeong J, Yi J, Kim DR, Kim YL, Urbas A, Ariyawansa G, Xu B, Ku Z, Lee CH. Wafer-Scale Replication of Plasmonic Nanostructures via Microbubbles for Nanophotonics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404870. [PMID: 39225406 PMCID: PMC11516140 DOI: 10.1002/advs.202404870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Quasi-3D plasmonic nanostructures are in high demand for their ability to manipulate and enhance light-matter interactions at subwavelength scales, making them promising building blocks for diverse nanophotonic devices. Despite their potential, the integration of these nanostructures with optical sensors and imaging systems on a large scale poses challenges. Here, a robust technique for the rapid, scalable, and seamless replication of quasi-3D plasmonic nanostructures is presented straight from their production wafers using a microbubble process. This approach not only simplifies the integration of quasi-3D plasmonic nanostructures into a wide range of standard and custom optical imaging devices and sensors but also significantly enhances their imaging and sensing performance beyond the limits of conventional methods. This study encompasses experimental, computational, and theoretical investigations, and it fully elucidates the operational mechanism. Additionally, it explores a versatile set of options for outfitting nanophotonic devices with custom-designed plasmonic nanostructures, thereby fulfilling specific operational criteria.
Collapse
Affiliation(s)
- Jehwan Hwang
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Optical Lens Materials Research CenterKorea Photonics Technology Institute (KOPTI)Gwangju61007Republic of Korea
| | - Yue Zhang
- Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22904USA
| | - Bongjoong Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Department of Mechanical and System Design EngineeringHongik UniversitySeoul04066Republic of Korea
| | - Jinheon Jeong
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Jonghun Yi
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Dong Rip Kim
- School of Mechanical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Young L. Kim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Augustine Urbas
- Materials and Manufacturing DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Gamini Ariyawansa
- Sensors DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Baoxing Xu
- Department of Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleVA22904USA
| | - Zahyun Ku
- Apex Microdevices4871 Misrach CTWest ChesterOH45069‐7755USA
| | - Chi Hwan Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
15
|
Zhang G, Lyu X, Qin Y, Li Y, Fan Z, Meng X, Cheng Y, Cao Z, Xu Y, Sun D, Gao Y, Gong Q, Lyu G. High discrimination ratio, broadband circularly polarized light photodetector using dielectric achiral nanostructures. LIGHT, SCIENCE & APPLICATIONS 2024; 13:275. [PMID: 39327415 PMCID: PMC11427471 DOI: 10.1038/s41377-024-01634-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/29/2024] [Accepted: 09/08/2024] [Indexed: 09/28/2024]
Abstract
The on-chip measurement of polarization states plays an increasingly crucial role in modern sensing and imaging applications. While high-performance monolithic linearly polarized photodetectors have been extensively studied, integrated circularly polarized light (CPL) photodetectors are still hindered by inadequate discrimination capability. This study presents a broadband CPL photodetector utilizing achiral all-dielectric nanostructures, achieving an impressive discrimination ratio of ~107 at a wavelength of 405 nm. Our device shows outstanding CPL discrimination capability across the visible band without requiring intensity calibration. It functions based on the CPL-dependent near-field modes within achiral structures: under left or right CPL illumination, distinct near-field modes are excited, resulting in asymmetric irradiation of the two electrodes and generating a photovoltage with directions determined by the chirality of the incident light field. The proposed design strategy facilitates ultra-compact CPL detection across diverse materials, structures, and spectral ranges, presenting a novel avenue for achieving high-performance monolithic CPL detection.
Collapse
Affiliation(s)
- Guanyu Zhang
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yulu Qin
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Zipu Fan
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Xianghan Meng
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yuqing Cheng
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, China.
| | - Zini Cao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Yixuan Xu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
| | - Dong Sun
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China
| | - Guowei Lyu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, China.
| |
Collapse
|
16
|
Gao F, Han Y, Zhao Y, Zhou T, Deng J, Yan B. A liquid crystal based non-Hermitian metasurface for broadband full-Stokes polarization detection. NANOTECHNOLOGY 2024; 35:47LT01. [PMID: 39191266 DOI: 10.1088/1361-6528/ad73e0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
The ability to detect the polarization information of light is often crucial for various applications in optical systems. However, conventional polarization-sensitive photodetectors struggle to simultaneously achieve a wide band coverage and high-precision detection, severely hindering the development of polarization detectors. In this study, a reflective metasurface with full-Stokes detection capabilities over a wide range is proposed. It integrates four linear polarization filters and two circular polarization filters operating in the near-infrared region. By dynamically adjusting the refractive index of the liquid crystal covering the detector surface, high performance full-Stokes parameter detection can be achieved between 730-770 nm with detection error below 0.07. Therefore, this study provides a design approach for the potential application of Stokes polarization detection over a broadband spectrum.
Collapse
Affiliation(s)
- Fan Gao
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
- Collaborative Innovation Center for Bio-Med Physics Information Technology of ZJUT, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Yufan Han
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
- Collaborative Innovation Center for Bio-Med Physics Information Technology of ZJUT, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Yujia Zhao
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
- Collaborative Innovation Center for Bio-Med Physics Information Technology of ZJUT, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
- The Navy Deputation in Residence of Hangzhou, Hangzhou 310000, People's Republic of China
| | - Tao Zhou
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
- Collaborative Innovation Center for Bio-Med Physics Information Technology of ZJUT, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Juan Deng
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
- Collaborative Innovation Center for Bio-Med Physics Information Technology of ZJUT, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| | - Bo Yan
- School of Physics, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
- Collaborative Innovation Center for Bio-Med Physics Information Technology of ZJUT, Zhejiang University of Technology, Hangzhou 310023, People's Republic of China
| |
Collapse
|
17
|
Wang C, Wang R, Cheng X, Hu X, Wang C. Passively Broadband Tunable Dual Circular Dichroism via Bound States in the Continuum in Topological Chiral Metasurface. ACS NANO 2024; 18:18922-18932. [PMID: 38990704 DOI: 10.1021/acsnano.4c01697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Dynamic control for a strong circular dichroism (CD) response is essential in engineering applications such as polarization manipulation, sensing, and imaging. Here, we propose and experimentally demonstrate a broadband tunable dual CD response via bound states in the continuum (BICs) in two-dimensional topologically protected metasurfaces composed of all-dielectric Si chiral grating structures that generate a pair of mixed and degenerated BIC mode and circular dichroic mode (CDM) as an additional degree of freedom in CD manipulation. It is found that a singular CD peak of nearly 100% at 1.6 μm can be achieved by CDM when BIC is hidden under normal incidence, while the CD peak can be split into two in which peak wavelengths can be precisely and linearly tuned over a bandwidth of 180 nm by the incident angle when the BIC mode is excited under oblique incidence. Additionally, dynamic modulation of output polarization states from linear to circular can be arbitrarily achieved at the split CD peaks by controlling the incident angle when asymmetry perturbations on chiral gratings are introduced due to the decoupling of various polarization states at Γ point by BIC to different positions in K space. The proposed chiral grating metasurface exhibits unique angle-sensitive tunable CD spectral characteristics, making it ideal for hyperspectral and spin-selective wavefront shaping, and holds significant promise in various applications such as optical security, angle sensors, chiral lasers, nonlinear filters, and other active chiral optical devices.
Collapse
Affiliation(s)
- Chenqian Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Rui Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xiguo Cheng
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Xin Hu
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Chinhua Wang
- School of Optoelectronics Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
18
|
Bărar A, Maclean SA, Gross BM, Mănăilă-Maximean D, Dănilă O. Mixing Rules for Left-Handed Disordered Metamaterials: Effective-Medium and Dispersion Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1056. [PMID: 38921932 PMCID: PMC11206568 DOI: 10.3390/nano14121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024]
Abstract
Left-handed materials are known to exhibit exotic properties in controlling electromagnetic fields, with direct applications in negative reflection and refraction, conformal optical mapping, and electromagnetic cloaking. While typical left-handed materials are constructed periodic metal-dielectric structures, the same effect can be obtained in composite guest-host systems with no periodicity or structural order. Such systems are typically described by the effective-medium approach, in which the components of the electric permittivity tensor are determined as a function of individual material properties and doping concentration. In this paper, we extend the discussion on the mixing rules to include left-handed composite systems and highlight the exotic properties arising from the effective-medium approach in this framework in terms of effective values and dispersion properties.
Collapse
Affiliation(s)
- Ana Bărar
- Electronic Technology and Reliability Department, National University of Science and Technology Politehnica Bucharest, 060082 Bucharest, Romania;
| | - Stephen A. Maclean
- Chemical Engineering Department, Tandon School of Engineering, New York University, Brooklyn, New York, NY 11201, USA
| | - Barry M. Gross
- Optical Remote Sensing Laboratory, The City College of New York, New York, NY 10031, USA
- NOAA—Cooperative Science Center for Earth System Sciences and Remote Sensing Technologies, New York, NY 10031, USA
| | - Doina Mănăilă-Maximean
- Physics Department, National University of Science and Technology Politehnica Bucharest, 060082 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
| | - Octavian Dănilă
- Physics Department, National University of Science and Technology Politehnica Bucharest, 060082 Bucharest, Romania
- Laser Systems Department, National Institute for Physics and Nuclear Engineering, 077125 Măgurele, Ilfov, Romania
| |
Collapse
|
19
|
Gao H, Chen Y, Zhang R, Cao R, Wang Y, Tian Y, Xiao Y. Dual-ligand quasi-2D perovskites with chiral-induced spin selectivity for room temperature spin-LEDs. MATERIALS HORIZONS 2024; 11:2906-2913. [PMID: 38567407 DOI: 10.1039/d3mh02029k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Spin-LEDs have been a central topic in semiconductor spintronics research and represent a promising avenue for advanced optoelectronic devices and applications. The future advancements of spin-LEDs will undoubtedly hinge on the generation and manipulation of spin-polarized population at room temperature. In this research, we elucidate the development of room-temperature spin-LEDs using quasi-2D perovskites, based on the chiral-induced spin selectivity (CISS) effect. During the carrier transfer from the chiral n2 phase to the randomly oriented high-n phase caused by the bandgap gradient distribution, CISS works to generate non-equilibrium spin population, leading to room-temperature spin-polarized fluorescence. A spin-polarization of ∼93% is observed for the films. Finally, we realize spin-LEDs at room temperature, exhibiting a |gCP-EL| value of 0.05 and an EQE of 3.8%. This work highlights the potential of integrating dual ligands to optimize the phase distribution and crystalline orientation in quasi-2D films to achieve efficient CISS for spin-LED applications.
Collapse
Affiliation(s)
- Haotian Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yu Chen
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ruxi Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Rui Cao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yong Wang
- School of Science, Tianjin University, Tianjin 300072, P. R. China.
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Sichuan 610065, P. R. China.
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| |
Collapse
|
20
|
Ren L, Yang X, Huang S, Zhong Z, Peng J, Ye L, Hou Y, Zhang B. Towards high-performance polarimeters with large-area uniform chiral shells: a comparative study on the polarization detection precision enabled by the Mueller matrix and deep learning algorithm. OPTICS EXPRESS 2024; 32:16414-16425. [PMID: 38859268 DOI: 10.1364/oe.521432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/05/2024] [Indexed: 06/12/2024]
Abstract
Polarization detection and imaging technologies have attracted significant attention for their extensive applications in remote sensing, biological diagnosis, and beyond. However, previously reported polarimeters heavily relied on polarization-sensitive materials and pre- established mapping relationships between the Stokes parameters and detected light intensities. This dependence, along with fabrication and detection errors, severely constrain the working waveband and detection precision. In this work, we demonstrated a highly precise, stable, and broadband full-Stokes polarimeter based on large-area uniform chiral shells and a post-established mapping relationship. By precisely controlling the geometry through the deposition of Ag on a large-area microsphere monolayer with a uniform lattice, the optical chirality and anisotropy of chiral shells can reach about 0.15 (circular dichroism, CD) and 1.7, respectively. The post-established mapping relationship between the Stokes parameters and detected light intensities is established through training a deep learning algorithm (DLA) or fitting the derived mapping-relationship formula based on the Mueller matrix theory with a large dataset collected from our home-built polarization system. For the detection precision with DLA, the mean squared errors (MSEs) at 710 nm can reach 0.10% (S1), 0.41% (S2), and 0.24% (S3), while for the Mueller matrix theory, the corresponding values are 0.14% (S1), 0.46% (S2), and 0.48% (S3). The in-depth comparative studies indicate that the DLA outperforms the Mueller matrix theory in terms of detection precision and robustness, especially for weak illumination, small optical anisotropy and chirality. The averaged MSEs over a broad waveband ranging from 500 nm to 750 nm are 0.16% (S1), 0.46% (S2), and 0.61% (S3), which are significantly smaller than those derived from the Mueller matrix theory (0.45% (S1), 1% (S2), and 39.8% (S3)). The optical properties of chiral shells, the theory and DLA enabled mapping-relationships, the combination modes of chiral shells, and the MSE spectra have been systematically investigated.
Collapse
|
21
|
Kim AS, Goswami A, Taghinejad M, Cai W. Phototransformation of achiral metasurfaces into handedness-selectable transient chiral media. Proc Natl Acad Sci U S A 2024; 121:e2318713121. [PMID: 38498706 PMCID: PMC10990111 DOI: 10.1073/pnas.2318713121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Chirality is a geometric property describing the lack of mirror symmetry. This unique feature enables photonic spin-selectivity in light-matter interaction, which is of great significance in stereochemistry, drug development, quantum optics, and optical polarization control. The versatile control of optical geometry renders optical metamaterials as an effective platform for engineered chiral properties at prescribed spectral regimes. Unfortunately, geometry-imposed restrictions only allow one circular polarization state of photons to effectively interact with chiral meta-structures. This limitation motivates the idea of discovering alternative techniques for dynamically reconfiguring the chiroptical responses of metamaterials in a fast and facile manner. Here, we demonstrate an approach that enables optical, sub-picosecond conversion of achiral meta-structures to transient chiral media in the visible regime with desired handedness upon the inhomogeneous generation of plasmonic hot electrons. As a proof of concept, we utilize linearly polarized laser pulse to demonstrate near-complete conversion of spin sensitivity in an achiral meta-platform-a functionality yet achieved in a non-mechanical fashion. Owing to the generation, diffusion, and relaxation dynamics of hot electrons, the demonstrated technique for all-optical creation of chirality is inherently fast, opening new avenues for ultrafast spectro-temporal construction of chiral platforms with on-demand spin-selectivity.
Collapse
Affiliation(s)
- Andrew S. Kim
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Anjan Goswami
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
| | - Mohammad Taghinejad
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
| | - Wenshan Cai
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA30332
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA30332
| |
Collapse
|
22
|
Feng Y, Weng D, Huang J, Song J, Zhou J, Liu W, Li Z. Ultrafast polarization characterization with Mueller matrix based on optical time-stretch and spectral encoding. OPTICS EXPRESS 2024; 32:9128-9138. [PMID: 38571153 DOI: 10.1364/oe.517968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/21/2024] [Indexed: 04/05/2024]
Abstract
High-speed optical polarization characterization is highly desirable for a wide range of applications, including remote sensing, telecommunication, and medical diagnosis. The utilization of the Mueller matrix provides a superior systematic and comprehensive approach to represent polarization attributes when matter interacts with optical beams. However, the current measurement speed of Mueller matrix is limited to only seconds or milliseconds. In this study, we present an ultrafast Mueller matrix polarimetry (MMP) technique based on optical time-stretch and spectral encoding that enables us to achieve an impressive temporal resolution of 4.83 nanoseconds for accurate Mueller matrix measurements. The unique feature of optical time-stretch technology enables continuous, ultrafast single-shot spectroscopy, resulting in a remarkable speed of up to 207 MHz for spectral encoding Mueller matrix measurement. We have employed an effective Mueller linear reconstruction algorithm based on the measured modulation matrix, accounting for all potential non-ideal effects of polarization components like retardance error and azimuth error. To ensure high precision, prior to the actual measurement, high-order dispersion induced by time-stretch requires adjustment through proper modulation matrix design. Upon such correction, both the results of static and rapid dynamic samples measurements exhibit exceptional accuracy with root-mean-square error (RMSE) approximately equal to 0.04 and 0.07 respectively. This presented ultrafast MMP provides a significant advance over preceding endeavors, enabling superior accuracy and increased speed concurrently.
Collapse
|
23
|
Ki YG, Jeon BJ, Song IH, Kim SJ, Jeon S, Kim SJ. Realizing Minimally Perturbed, Nonlocal Chiral Metasurfaces for Direct Stokes Parameter Detection. ACS NANO 2024; 18:7064-7073. [PMID: 38373394 PMCID: PMC10919284 DOI: 10.1021/acsnano.3c10749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/21/2024]
Abstract
Recent development in nonlocal resonance based chiral metasurfaces draws great attention due to their abilities to strongly interact with circularly polarized light at a relatively narrow spectral bandwidth. However, there still remain challenges in realizing effective nonlocal chiral metasurfaces in optical frequency due to demanding fabrications such as 3D-multilayered or nanoscaled chiral geometry, which, in particular, limit their applications to polarimetric detection with high-Q spectra. Here, we study the underlying working principles and reveal the important role of the interaction between high-Q nonlocal resonance and low-Q localized Mie resonance in realizing effective nonlocal chiral metasurfaces. Based on the working principles, we demonstrate one of the simplest types of nonlocal chiral metasurfaces which directly detects a set of Stokes parameters without the numerical combination of transmitted values presented from typical Stokes metasurfaces. This is achieved by minimally altering the geometry and filling ratio of every constituent nanostructure in a unit cell, facilitating consistent-sized nanolithography for all samples experimentally at a targeted wavelength with relatively high-Q spectra. This work provides an alternative design rule to realizing effective polarimetric metasurfaces and the potential applications of nonlocal Stokes parameters detection.
Collapse
Affiliation(s)
- Yu Geun Ki
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Byeong Je Jeon
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Il Hoon Song
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seong Jun Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sangtae Jeon
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soo Jin Kim
- School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
24
|
Chang S, Kong DJ, Song YM. Advanced visual components inspired by animal eyes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:859-879. [PMID: 39634370 PMCID: PMC11501362 DOI: 10.1515/nanoph-2024-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/08/2024] [Indexed: 12/07/2024]
Abstract
Artificial vision systems pervade our daily lives as a foremost sensing apparatus in various digital technologies, from smartphones to autonomous cars and robotics. The broad range of applications for conventional vision systems requires facile adaptation under extreme and dynamic visual environments. However, these current needs have complicated individual visual components for high-quality image acquisition and processing, which indeed leads to a decline in efficiency in the overall system. Here, we review recent advancements in visual components for high-performance visual processing based on strategies of biological eyes that execute diverse imaging functionalities and sophisticated visual processes with simple and concise ocular structures. This review first covers the structures and functions of biological eyes (i.e., single-lens eyes and compound eyes), which contain micro-optic components and nanophotonic structures. After that, we focus on their inspirations in imaging optics/photonics, light-trapping and filtering components, and retinomorphic devices. We discuss the remaining challenges and notable biological structures waiting to be implemented.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Duk-Jo Kong
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
- Artificial Intelligence (AI) Graduate School, Gwangju Institute of Science and Technology (GIST), Gwangju61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology, Gwangju61005, Republic of Korea
| |
Collapse
|
25
|
Zhang B, Wang B, Chamoli SK. Wide-angle camouflage detectors by manipulating emissivity using a non-reciprocal metasurface array. Phys Chem Chem Phys 2024; 26:4011-4020. [PMID: 38224166 DOI: 10.1039/d3cp05097a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Camouflage detectors that can detect incoming radiation from any angle without being detected are extremely important in stealth, guided missile, and heat-seeking missile industries. In order to accomplish this, the absorption and emission processes must be manipulated simultaneously. However, Kirchhoff's fundamental law suggests that absorption and emission are always in the same direction α(θ) = ε(θ), i.e., absorption and emission are reciprocal. This means that the emission from the detector always points back to the source, for example towards a laser source in a guided missile. Thus, detector emission serves as a complementary measure to hide an object. Here, we present a novel camouflage detector that uses a nonreciprocal metasurface array to independently detect the direction of the incoming radiation as well as manipulate its emissivity response. This is accomplished by using a magneto-optical material called indium arsenide (InAs), which breaks Lorentz reciprocity and Kirchhoff's fundamental law such that α(θ) ≠ ε(θ). This design results in the following absorption and emission: α(θ) = ε(-θ). Nine metasurfaces were designed, optimized, and operated at different incident angles from +50° to -50° at a wavelength of 13 μm. Furthermore, by keeping all metasurfaces in a pixilated array form, one could make a device that works over the full ±50° range. Potentially, this array of nonreciprocal metasurfaces can be used to fabricate thermal emitters or solar-harvesting systems.
Collapse
Affiliation(s)
- Bowei Zhang
- Chongqing College of Electronic Engineering (CQCEE), Chongqing 401331, China
| | - Bin Wang
- Chongqing College of Electronic Engineering (CQCEE), Chongqing 401331, China
| | - Sandeep Kumar Chamoli
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China.
- Nanyang Technological University, Singapore
| |
Collapse
|
26
|
Dai X, Yu Y, Ye T, Deng J, Bu Y, Shi M, Wang R, Zhou J, Sun L, Chen X, Shen X. Dynamically Reconfigurable on-Chip Polarimeters Based on Nanoantenna Enabled Polarization Dependent Optoelectronic Computing. NANO LETTERS 2024; 24:983-992. [PMID: 38206182 DOI: 10.1021/acs.nanolett.3c04454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
On-chip polarization detectors have attracted extensive research interest due to their filterless and ultracompact architecture. However, their polarization-dependent photoresponses cannot be dynamically adjusted, hindering the development toward intelligence. Here, we propose dynamically reconfigurable polarimetry based on in-sensor differentiation of two self-powered photoresponses with orthogonal polarization dependences and tunable responsivities. Such a device can be electrostatically configured in an ultrahigh polarization extinction ratio (PER) mode, where the PER tends to infinity, a Stokes parameter direct sensing mode, where the photoresponse is proportional to S1 or S2 with high accuracy (RMSES1 = 1.5%, RMSES2 = 2.0%), or a background suppressing mode, where the target-background polarization contrast is singularly enhanced. Moreover, the device achieves a polarization angle sensitivity of 0.51 mA·W-1·degree-1 and a specific polarization angle detectivity of 2.8 × 105 cm·Hz1/2·W·degree-1. This scheme is demonstrated throughout the near-to-long-wavelength infrared range, and it will bring a leap for next-generation on-chip polarimeters.
Collapse
Affiliation(s)
- Xu Dai
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yu Yu
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tao Ye
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jie Deng
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yonghao Bu
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Mengdie Shi
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Ruowen Wang
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xiaoshuang Chen
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Xuechu Shen
- State Key Laboratory of Infrared Science and Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| |
Collapse
|
27
|
Chen C, Xiao X, Ye X, Sun J, Ji J, Yu R, Song W, Zhu S, Li T. Neural network assisted high-spatial-resolution polarimetry with non-interleaved chiral metasurfaces. LIGHT, SCIENCE & APPLICATIONS 2023; 12:288. [PMID: 38044390 PMCID: PMC10694149 DOI: 10.1038/s41377-023-01337-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 12/05/2023]
Abstract
Polarimetry plays an indispensable role in modern optics. Nevertheless, the current strategies generally suffer from bulky system volume or spatial multiplexing scheme, resulting in limited performances when dealing with inhomogeneous polarizations. Here, we propose a non-interleaved, interferometric method to analyze the polarizations based on a tri-channel chiral metasurface. A deep convolutional neural network is also incorporated to enable fast, robust and accurate polarimetry. Spatially uniform and nonuniform polarizations are both measured through the metasurface experimentally. Distinction between two semblable glasses is also demonstrated. Our strategy features the merits of compactness and high spatial resolution, and would inspire more intriguing design for detecting and sensing.
Collapse
Affiliation(s)
- Chen Chen
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Xingjian Xiao
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Xin Ye
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Jiacheng Sun
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Jitao Ji
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Rongtao Yu
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Wange Song
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Shining Zhu
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China
| | - Tao Li
- Nanjing University, National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulations, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Sciences, 210093, Nanjing, China.
| |
Collapse
|
28
|
Fan Q, Xu W, Hu X, Zhu W, Yue T, Yan F, Lin P, Chen L, Song J, Lezec HJ, Agrawal A, Lu Y, Xu T. Disordered metasurface enabled single-shot full-Stokes polarization imaging leveraging weak dichroism. Nat Commun 2023; 14:7180. [PMID: 37935685 PMCID: PMC10630513 DOI: 10.1038/s41467-023-42944-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
Polarization, one of the fundamental properties of light, is critical for certain imaging applications because it captures information from the scene that cannot directly be recorded by traditional intensity cameras. Currently, mainstream approaches for polarization imaging rely on strong dichroism of birefringent crystals or artificially fabricated structures that exhibit a high diattenuation typically exceeding 99%, which corresponds to a polarization extinction ratio (PER) >~100. This not only limits the transmission efficiency of light, but also makes them either offer narrow operational bandwidth or be non-responsive to the circular polarization. Here, we demonstrate a single-shot full-Stokes polarization camera incorporating a disordered metasurface array with weak dichroism. The diattenuation of the metasurface array is ~65%, which corresponds to a PER of ~2. Within the framework of compressed sensing, the proposed disordered metasurface array serves as an efficient sensing matrix. By incorporating a mask-aware reconstruction algorithm, the signal can be accurately recovered with a high probability. In our experiments, the proposed approach exhibits high-accuracy full-Stokes polarimetry and high-resolution real-time polarization imaging. Our demonstration highlights the potential of combining meta-optics with reconstruction algorithms as a promising approach for advanced imaging applications.
Collapse
Affiliation(s)
- Qingbin Fan
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- School of Electronic Sciences and Engineering, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Weizhu Xu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- School of Electronic Sciences and Engineering, Nanjing University, Nanjing, 210093, China
| | - Xuemei Hu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- School of Electronic Sciences and Engineering, Nanjing University, Nanjing, 210093, China
| | - Wenqi Zhu
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, Maryland, 20899, USA
| | - Tao Yue
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- School of Electronic Sciences and Engineering, Nanjing University, Nanjing, 210093, China.
| | - Feng Yan
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- School of Electronic Sciences and Engineering, Nanjing University, Nanjing, 210093, China.
| | - Peicheng Lin
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Lu Chen
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, Maryland, 20899, USA
| | - Junyeob Song
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
| | - Henri J Lezec
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
| | - Amit Agrawal
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland, 20899, USA
| | - Yanqing Lu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- School of Electronic Sciences and Engineering, Nanjing University, Nanjing, 210093, China.
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Ting Xu
- National Laboratory of Solid-State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
- School of Electronic Sciences and Engineering, Nanjing University, Nanjing, 210093, China.
- College of Engineering and Applied Sciences and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
29
|
Liu Q, Wei Q, Ren H, Zhou L, Zhou Y, Wang P, Wang C, Yin J, Li M. Circular polarization-resolved ultraviolet photonic artificial synapse based on chiral perovskite. Nat Commun 2023; 14:7179. [PMID: 37935714 PMCID: PMC10630371 DOI: 10.1038/s41467-023-43034-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Circularly polarized light (CPL) adds a unique dimension to optical information processing and communication. Integrating CPL sensitivity with light learning and memory in a photonic artificial synapse (PAS) device holds significant value for advanced neuromorphic vision systems. However, the development of such systems has been impeded by the scarcity of suitable CPL active optoelectronic materials. In this work, we employ a helical chiral perovskite hybrid combined with single-wall carbon nanotubes to achieve circularly polarized ultraviolet neuromorphic vision sensing and imaging. The heterostructure demonstrates long-term charge storage as evidenced by multiple-pulsed transient absorption measurements and highly sensitive circular polarization-dependent photodetection, thereby enabling efficient CPL-resolved synaptic and neuromorphic behaviors. Significantly, our PAS sensor arrays adeptly visualize, discriminate, and memorize distinct circularly polarized images with up to 93% recognition accuracy in spiking neural network simulations. These findings underscore the pivotal role of chiral perovskites in advancing PAS technology and circular polarization-enhanced ultraviolet neuromorphic vision systems.
Collapse
Affiliation(s)
- Qi Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Qi Wei
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Hui Ren
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Luwei Zhou
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yifan Zhou
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Pengzhi Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chenghao Wang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Mingjie Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, Guangdong, 518057, China.
- Photonics Research Institute, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
30
|
Kim DS, Kim M, Seo S, Kim JH. Nature-Inspired Chiral Structures: Fabrication Methods and Multifaceted Applications. Biomimetics (Basel) 2023; 8:527. [PMID: 37999168 PMCID: PMC10669407 DOI: 10.3390/biomimetics8070527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023] Open
Abstract
Diverse chiral structures observed in nature find applications across various domains, including engineering, chemistry, and medicine. Particularly notable is the optical activity inherent in chiral structures, which has emerged prominently in the field of optics. This phenomenon has led to a wide range of applications, encompassing optical components, catalysts, sensors, and therapeutic interventions. This review summarizes the imitations and applications of naturally occurring chiral structures. Methods for replicating chiral architectures found in nature have evolved with specific research goals. This review primarily focuses on a top-down approach and provides a summary of recent research advancements. In the latter part of this review, we will engage in discussions regarding the diverse array of applications resulting from imitating chiral structures, from the optical activity in photonic crystals to applications spanning light-emitting devices. Furthermore, we will delve into the applications of biorecognition and therapeutic methodologies, comprehensively examining and deliberating upon the multifaceted utility of chiral structures.
Collapse
Affiliation(s)
- Da-Seul Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Myounggun Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Soonmin Seo
- Department of Bionano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Ju-Hyung Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea (M.K.)
- Department of Chemical Engineering, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
31
|
Xu W, Li H, Duan S, Xu H, Zheng C, Li J, Song C, Zhang Y, Shen Y, Yao J. On-demand multiplexed vortex beams for terahertz polarization detection based on metasurfaces. NANOSCALE 2023; 15:17184-17197. [PMID: 37855083 DOI: 10.1039/d3nr03905f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The manipulation of polarization states is crucial for tailoring light-matter interactions and has great applications in fundamental science. Nevertheless, conventional polarization measurement approaches are extremely challenging to determine the polarization state of incident terahertz (THz) beams. The combination of metasurfaces and inhomogeneous vector vortex beams (VVBs) provides a new solution for integrated polarization-related functional devices. Herein, a general design strategy for spin-multiplexing all-silicon metasurfaces is presented and demonstrated in THz polarization detection. The employment of basic building blocks with a high aspect ratio (AR) imparts a greater degree of freedom for generating vector beams, and those basic blocks are subsequently utilized to explore the visualized polarization state. With the assistance of a THz near-field scanning system, we evaluate the capability of reconstructing the incident polarization state from the longitudinal polarization component multiplexed by vortex beams with tight focusing characteristics. Not only that, we also utilize the polarization with dynamically varying behavior as the illumination method to elucidate the evolution trend of the polarization state under a single snapshot and establish a visualized parametric model. This work paves the way to realize ultra-compact THz polarization detection-related devices for future applications in remote sensing, high-resolution imaging, and communications.
Collapse
Affiliation(s)
- Wenhui Xu
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Hui Li
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Shouxin Duan
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Hang Xu
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Chenglong Zheng
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Jie Li
- Information Materials and Device Applications Key Laboratory of Sichuan Provincial Universities, Chengdu University of Information Technology, Chengdu 610225, China
| | - Chunyu Song
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yating Zhang
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Yun Shen
- Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Jianquan Yao
- Key Laboratory of Opto-Electronics Information Technology (Tianjin University), Ministry of Education, School of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
32
|
Feng J, Liang Z, Shi X, Dong Y, Yang F, Zhang X, Dai R, Jia Y, Liu H, Li S. Detector of UV light chirality based on a diamond metasurface. OPTICS EXPRESS 2023; 31:34252-34263. [PMID: 37859186 DOI: 10.1364/oe.497854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/02/2023] [Indexed: 10/21/2023]
Abstract
Circularly polarized light (CPL) finds diverse applications in fields such as quantum communications, quantum computing, circular dichroism (CD) spectroscopy, polarization imaging, and sensing. However, conventional techniques for detecting CPL face challenges related to equipment miniaturization, system integration, and high-speed operation. In this study, we propose a novel design that addresses these limitations by employing a quarter waveplate constructed from a diamond metasurface, in combination with a linear polarizer crafted from metallic aluminum. The diamond array, with specific dimensions (a = 84 nm, b = 52 nm), effectively transforms left-handed and right-handed circularly polarized light into two orthogonally linearly polarized beams who have a polarization degree of approximately 0.9. The aluminum linear polarizer then selectively permits the transmission of these transformed linearly polarized beams.Our proposed design showcases remarkable circular dichroism performance at a wavelength of 280 nm, concurrently maintaining high transmittance and achieving a substantial extinction ratio of 25. Notably, the design attains an ultraviolet wavelength transmission efficiency surpassing 80%. Moreover, our design incorporates a rotation mechanism that enables the differentiation of linearly polarized light and singly circularly polarized light. In essence, this innovative design introduces a fresh paradigm for ultraviolet circularly polarized light detection, offering invaluable insights and references for applications in polarization detection, imaging, biomedical diagnostics, and circular dichroic spectroscopy.
Collapse
|
33
|
Dai T, Phan T, Wang EW, Kwon S, Son J, Lee M, Fan JA. Snapshot Mueller spectropolarimeter imager. MICROSYSTEMS & NANOENGINEERING 2023; 9:125. [PMID: 37814609 PMCID: PMC10560212 DOI: 10.1038/s41378-023-00588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 10/11/2023]
Abstract
We introduce an imaging system that can simultaneously record complete Mueller polarization responses for a set of wavelength channels in a single image capture. The division-of-focal-plane concept combines a multiplexed illumination scheme based on Fourier optics together with an integrated telescopic light-field imaging system. Polarization-resolved imaging is achieved using broadband nanostructured plasmonic polarizers as functional pinhole apertures. The recording of polarization and wavelength information on the image sensor is highly interpretable. We also develop a calibration approach based on a customized neural network architecture that can produce calibrated measurements in real-time. As a proof-of-concept demonstration, we use our calibrated system to accurately reconstruct a thin film thickness map from a four-inch wafer. We anticipate that our concept will have utility in metrology, machine vision, computational imaging, and optical computing platforms.
Collapse
Affiliation(s)
- Tianxiang Dai
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Thaibao Phan
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Evan W. Wang
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Soonyang Kwon
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd, Gyeonggi-do, 18848 Republic of Korea
| | - Jaehyeon Son
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd, Gyeonggi-do, 18848 Republic of Korea
| | - Myungjun Lee
- Equipment R&D Team 4, Mechatronics Research, Samsung Electronics Co., Ltd, Gyeonggi-do, 18848 Republic of Korea
| | - Jonathan A. Fan
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305 USA
| |
Collapse
|
34
|
Wang R, Wang C, Sun T, Hu X, Wang C. Simultaneous broadband and high circular dichroism with two-dimensional all-dielectric chiral metasurface. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:4043-4053. [PMID: 39635644 PMCID: PMC11501280 DOI: 10.1515/nanoph-2023-0407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/05/2023] [Indexed: 12/07/2024]
Abstract
Chiral metasurfaces have great potential in various applications such as polarimetric imaging and biomedical recognition. However, simultaneous broadband and high circular dichroism (CD) with high polarization extinction ratio (PER) remains a challenge. Here, we present a novel approach to realize simultaneous broadband and high CD with high PER in the optical communication band using a two-dimensional all-dielectric chiral metasurface. The structure is formed by a two-level chiral structure of split cross (first-order) and trapezoid-shaped (second-order) of Si nano ribs, respectively, in which constructively coupled first- and second-order of chirality occurs, resulting in the broad chiral response in the far field of multipoles excited by incident light of different chiralities. Theoretical results show that a CD in transmission reaching 0.9 (up to 0.993) and a PER exceeding 20 dB (up to 35 dB) over the entire wavelength range from 1.39 to 1.61 μm can be achieved simultaneously, consistent with the experimental results of CD ∼0.9 and PER of 10 dB (up to 19.7 dB). Our design paves the way for chiral metasurfaces toward practical applications in terms of working bandwidth, high CD and PER as well as integrality of the devices in many fields.
Collapse
Affiliation(s)
- Rui Wang
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou215006, China
| | - Chenqian Wang
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou215006, China
| | - Ti Sun
- School of Optoelectronic Science and Engineering, Soochow University, Suzhou215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou215006, China
| | - Xin Hu
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou215006, China
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou215006, China
| | - Chinhua Wang
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou215006, China
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou215006, China
| |
Collapse
|
35
|
Wilson NC, Shin E, Bangle RE, Nikodemski SB, Vella JH, Mikkelsen MH. Ultrathin Pyroelectric Photodetector with Integrated Polarization-Sensing Metasurface. NANO LETTERS 2023; 23:8547-8552. [PMID: 37671730 DOI: 10.1021/acs.nanolett.3c02341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
An abundance of metallic metasurfaces have been realized with miniscule, intricate features capable of tailored scattering, reflection, and absorption; however, high losses through heat limit their use in optoelectronics. Here, codesign of a detector and a polarization-sensing metasurface overcomes this challenge by utilizing the heat generation for integrated pyroelectric detection of the incoming light polarization. Using a nanogap metasurface with asymmetric metallic elements, polarization-sensitive photodetection exhibits high extinction ratios up to 19 for orthogonally polarized light and allows extraction of Stokes parameters with <12% deviation from theoretical values. This polarization-sensitive photodetector is ultrathin, consisting of active layers of only 290 nm, and exhibits fast response times of ∼2 ns. The structure is fully integrated, requiring no external cameras, detectors, or power sources, and points toward the creation of layered, multifunctional devices that utilize exotic metasurface properties for novel and compact sensing and imaging.
Collapse
Affiliation(s)
- Nathaniel C Wilson
- Department of Physics, Duke University, Durham, North Carolina 27708, United States
| | - Eunso Shin
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Rachel E Bangle
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| | | | - Jarrett H Vella
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Maiken H Mikkelsen
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
36
|
Kong L, Li G, Su Q, Tan X, Zhang X, Liu Z, Liao G, Sun B, Shi T. Polarization-Sensitive, Self-Powered, and Broadband Semimetal MoTe 2/MoS 2 van der Waals Heterojunction for Photodetection and Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43135-43144. [PMID: 37590916 DOI: 10.1021/acsami.3c07709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The emerging type II Weyl semimetal 1T' MoTe2 as a promising material in polarization-sensitive photodetectors has aroused much attention due to its narrow bandgap and intrinsic in-plane anisotropic crystal structure. However, the semimetal properties lead to a large dark current and a low response. Herein, we demonstrate for the first time an all-2D semimetal MoTe2/MoS2 van der Waals (vdWs) heterojunction to improve the performance of the photodetectors and realize polarization-sensitive, self-powered, and broadband photodetection and imaging. Owing to the built-in electric field of the heterojunction, the device achieves a self-powered photoresponse ranging from 520 to 1550 nm. Under 915 nm light illumination, the device demonstrates outstanding performance, including a high responsivity of 79 mA/W, a specific detectivity of 1.2 × 1010 Jones, a fast rise/decay time of 180/202 μs, and a high on/off ratio of 1.3 × 10.3 Wavelength-dependent photocurrent anisotropic ratio is revealed to vary from 1.10 at 638 nm to 2.24 at 1550 nm. Furthermore, we demonstrate the polarization imaging capabilities of the device in scattering surroundings, and the DoLP and AoLP images achieve 78% and 112% contrast enhancement, respectively, compared to the S0. This work opens up new avenues to develop anisotropic semimetals heterojunction photodetectors for high-performance polarization-sensitive photodetection and next-generation polarized imaging.
Collapse
Affiliation(s)
- Lingxian Kong
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangliang Li
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qi Su
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xianhua Tan
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Xuning Zhang
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhiyong Liu
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guanglan Liao
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bo Sun
- School of Aerospace Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tielin Shi
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Cheng B, Song G. Full-Stokes polarization photodetector based on the hexagonal lattice chiral metasurface. OPTICS EXPRESS 2023; 31:30993-31004. [PMID: 37710629 DOI: 10.1364/oe.497898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 09/16/2023]
Abstract
A hexagonal lattice silicon (Si) metasurface formed by the displacement of two mirrored isosceles trapezoid blocks in opposite directions is integrated into an InGaAs/InP photodetector to sense the circularly polarized light, whose optical properties mainly are controlled by the Fabry-Pérot (FP) cavity mode supported in the air slit called the Tunnel A. The Si metasurface can also be equivalent to the combination of the electric quadrupole (EQ) and the magnetic quadrupole (MQ) for the right circularly polarized (RCP) mode and the magnetic quadrupole for the left circularly polarized (LCP) mode. The external quantum efficiency of the circular polarization photodetectors is 0.018 and 0.785 for the RCP and LCP incidence, respectively. In addition, the full Stokes pixel based on the six-image-element technique can almost accurately measure arbitrary polarized light at 1550 nm operation wavelength, whose errors of the degree of linear polarizations (Dolp) and the degree of circular polarizations (Docp) are less than 0.01 and 0.15, respectively.
Collapse
|
38
|
Zuo J, Bai J, Choi S, Basiri A, Chen X, Wang C, Yao Y. Chip-integrated metasurface full-Stokes polarimetric imaging sensor. LIGHT, SCIENCE & APPLICATIONS 2023; 12:218. [PMID: 37673857 PMCID: PMC10482842 DOI: 10.1038/s41377-023-01260-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023]
Abstract
Polarimetric imaging has a wide range of applications for uncovering features invisible to human eyes and conventional imaging sensors. Chip-integrated, fast, cost-effective, and accurate full-Stokes polarimetric imaging sensors are highly desirable in many applications, which, however, remain elusive due to fundamental material limitations. Here we present a chip-integrated Metasurface-based Full-Stokes Polarimetric Imaging sensor (MetaPolarIm) realized by integrating an ultrathin (~600 nm) metasurface polarization filter array (MPFA) onto a visible imaging sensor with CMOS compatible fabrication processes. The MPFA is featured with broadband dielectric-metal hybrid chiral metasurfaces and double-layer nanograting polarizers. This chip-integrated polarimetric imaging sensor enables single-shot full-Stokes imaging (speed limited by the CMOS imager) with the most compact form factor, records high measurement accuracy, dual-color operation (green and red) and a field of view up to 40 degrees. MetaPolarIm holds great promise to enable transformative applications in autonomous vision, industry inspection, space exploration, medical imaging and diagnosis.
Collapse
Grants
- 2048230 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 1809997 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- ECCS-1542160 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 2048230 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 1809997 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- ECCS-1542160 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 2048230 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 1809997 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- ECCS-1542160 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 2048230 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 1809997 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- ECCS-1542160 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 2048230 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 1809997 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- ECCS-1542160 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 2048230 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 1809997 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- ECCS-1542160 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 2048230 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- 1809997 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- ECCS-1542160 NSF | ENG/OAD | Division of Electrical, Communications and Cyber Systems (ECCS)
- DE-EE0008999 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
- DE-EE0008999 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
- DE-EE0008999 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
- DE-EE0008999 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
- DE-EE0008999 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
- DE-EE0008999 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
- DE-EE0008999 DOE | Advanced Research Projects Agency - Energy (Advanced Research Projects Agency - Energy - U.S. Department of Energy)
Collapse
Affiliation(s)
- Jiawei Zuo
- School of Electrical, Computer and Energy Engineering, Arizona State University, 85281, Tempe, AZ, USA
- Center for Photonic Innovation, Arizona State University, 85281, Tempe, AZ, USA
| | - Jing Bai
- School of Electrical, Computer and Energy Engineering, Arizona State University, 85281, Tempe, AZ, USA
- Center for Photonic Innovation, Arizona State University, 85281, Tempe, AZ, USA
| | - Shinhyuk Choi
- School of Electrical, Computer and Energy Engineering, Arizona State University, 85281, Tempe, AZ, USA
- Center for Photonic Innovation, Arizona State University, 85281, Tempe, AZ, USA
| | - Ali Basiri
- School of Electrical, Computer and Energy Engineering, Arizona State University, 85281, Tempe, AZ, USA
- Center for Photonic Innovation, Arizona State University, 85281, Tempe, AZ, USA
| | - Xiahui Chen
- School of Electrical, Computer and Energy Engineering, Arizona State University, 85281, Tempe, AZ, USA
- Center for Photonic Innovation, Arizona State University, 85281, Tempe, AZ, USA
| | - Chao Wang
- School of Electrical, Computer and Energy Engineering, Arizona State University, 85281, Tempe, AZ, USA
- Center for Photonic Innovation, Arizona State University, 85281, Tempe, AZ, USA
- Biodesign Center for Molecular Design and Biomimetics, Arizona State University, 85281, Tempe, AZ, USA
| | - Yu Yao
- School of Electrical, Computer and Energy Engineering, Arizona State University, 85281, Tempe, AZ, USA.
- Center for Photonic Innovation, Arizona State University, 85281, Tempe, AZ, USA.
| |
Collapse
|
39
|
Wang Y, Yue W, Gao S. Dielectric diatomic metasurface-assisted versatile bifunctional polarization conversions and incidence-polarization-secured meta-image. OPTICS EXPRESS 2023; 31:29900-29911. [PMID: 37710779 DOI: 10.1364/oe.498108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 09/16/2023]
Abstract
Dielectric metasurface empowering efficient light polarization control at the nanoscale, has recently garnered tremendous research interests in the field of high-resolution image encryption and display, particularly at low-loss wavelengths in the visible band. Nevertheless, due to the single fixed polarization conversion function, the image (either positive or negative image) can always be decrypted in a host-uncontrollable manner as long as the user applies an analyzer to select the polarization component of the output light. Here, we resort to half-waveplate- and quarter-waveplate-like silicon nanopillars to form a metamolecule of a dielectric diatomic metasurface, which can yield versatile linearly polarized (LP) and circularly polarized (CP) light upon orthogonally linear-polarized incidences, providing new degrees of freedom for image display and encryption. We show both theoretically and numerically that versatile different paired LP and CP combinations could be achieved by simply adjusting the orientation angles of the two nanopillars. The bifunctional polarization conversion functions make possible that a meta-image can only be seen when incident light is linearly polarized at a specific polarization angle, whereas no image can be discerned for the orthogonal polarization incidence case, indicating the realization of incidence-polarization secured meta-image. This salient feature holds for all individual metamolecules, reaching a remarkable image resolution of 52,916 dots per inch. By fully exploiting all polarization conversions of four designed metamolecules, three-level incidence polarization-secured meta-image can also be expected.
Collapse
|
40
|
Wang X, Zhu K, Zhu K, Li B, Shen D, Zheng ZG. A simple polarimetric measurement based on a computational algorithm. OPTICS LETTERS 2023; 48:4085-4088. [PMID: 37527124 DOI: 10.1364/ol.494727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/02/2023] [Indexed: 08/03/2023]
Abstract
A simple and compact polarimeter comprising two electrically controlled liquid-crystal variable retarders (LCVRs) and a linear polarizer is demonstrated, which is enabled by analyzing the intensity variation of the modulated output light based on a computational algorithm. A proof-of-concept prototype is presented, which is mounted onto a power meter or a CMOS camera for the intensity data collection. The polarimetric measurement for the spatial variant polarization states of light is also verified, indicating the possibility of achieving a resolution-lossless polarimeter. Thus, our proposed method shows a cost-effective way to realize a compact polarimeter in polarization optics.
Collapse
|
41
|
Zhao Y, Gu J, Li B, Zhou G. Three-core photonic crystal fiber for the in-line measurement of full-polarization states by multi-core polarization interference theory. OPTICS LETTERS 2023; 48:3985-3988. [PMID: 37527099 DOI: 10.1364/ol.496816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/06/2023] [Indexed: 08/03/2023]
Abstract
In this Letter, we demonstrate and experimentally verify the application of three-core photonic crystal fiber (3C-PCF) for the in-line detection of fully polarized states. We prove the response of 3C-PCF to full-polarization states under multi-core polarization interference through experiments. The sensitivity at 1472 nm is 0.0273 nm/rad, and the linear response is better than 98.9% (the optimal operating wavelength can be designed in the range of 1470 to 1570 nm). With the advantages of an all-fiber integrated system, robustness, and wide wavelength coverage, our design holds great promise for facilitating fiber-optic-integrated polarization meters for optical fiber communication and biomedical diagnostic applications.
Collapse
|
42
|
Cheng B, Song G. The Ultra-Large-Bandwidth Cascade Full-Stokes-Imaging Metasurface Based on the Dual-Major-Axis Circular Dichroism Grating. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2211. [PMID: 37570529 PMCID: PMC10420911 DOI: 10.3390/nano13152211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
A dual-major-axis grating composed of two metal-insulator-metal (MIM) waveguides with different dielectric layer thicknesses is numerically proposed to achieve the function of the quarter-wave plate with an extremely large bandwidth (1.0-2.2 μm), whose optical properties can be controlled by the Fabry-Pérot (FP) resonance. For the TE incident mode wave, MIM waveguides with large (small) dielectric layer thicknesses control the guided-mode resonant channels of long (short) waves, respectively, in this miniaturized optical element. Meanwhile, for the TM incident mode wave, the propagation wave vector of this structure is controlled by the hybrid mode of two gap-SPPs (gap-surface plasmon polaritons) with different gap thicknesses. We combine this structure with a thick silver grating to propose a circularly polarizing dichroism device, whose effective bandwidth can reach an astonishing 1.65 μm with a circular polarization extinction ratio greater than 10 dB. The full Stokes pixel based on the six-image element technique can almost accurately measure arbitrary polarization states at 1.2-2.8 μm (including elliptically polarized light), which is the largest bandwidth (1600 nm) of the full Stokes large-image element to date in the near-infrared band. In addition, the average errors of the degree of linear polarizations (Dolp) and degree of circular polarizations (Docp) are less than -25 dB and -10 dB, respectively.
Collapse
Affiliation(s)
- Bo Cheng
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guofeng Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
43
|
Lee YT, Chen MH, Ho YL, Wang Z, Lee YC, Delaunay JJ. Angular Control of Circularly Polarized Emission from Achiral Molecules via Magnetic Dipoles Sustained in a Chiral Metamirror. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37463328 DOI: 10.1021/acsami.3c05717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Circularly polarized emission (CPE) plays an important role in the designs of advanced displays and photonic integrated circuits. Unfortunately, the control of CPE handedness is limited by the chiral metasurfaces employed to emit chiral light. Particularly, the switching of the handedness with chiral metasurfaces relies on flipping the metasurfaces, which adds some constraints to practical applications. Herein, we propose an angle-sensitive chiral metamirror with Mie resonators to realize handedness switching. The Mie resonator supports a magnetic dipole having large field enhancement. This chiral metamirror is applied to excite CPEs with opposite handedness at emission angles within 10°. In contrast to the conventional methods, this work proposes a more efficient approach to manipulate the handedness of CPE.
Collapse
Affiliation(s)
- Ying-Tsung Lee
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Mu-Hsin Chen
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ya-Lun Ho
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Zhiyu Wang
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yang-Chun Lee
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jean-Jacques Delaunay
- School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
44
|
Hussain S, Ji R, Wang S. High-performance circular polarization modulation using a dielectric metasurface. APPLIED OPTICS 2023; 62:4860-4865. [PMID: 37707261 DOI: 10.1364/ao.491366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 09/15/2023]
Abstract
We demonstrate a chiral metasurface that exhibits a giant chiroptical response as well as functions as an optical diode due to geometrical asymmetry for circularly polarized light (CPL). Engineering the Mie-type multipole radiation using geometrical features led to performance values in terms of near-unity transmission and circular dichroism (CD) efficiency (about 0.96) and an extinction ratio of ∼3.8×104 for 1550 nm wavelength. A continuous stopband of 1538-1556 nm is achieved for an unchosen component of CPL while keeping the transmission efficiency of the chosen CPL component larger than 0.9. Because of the high extinction ratio and CD efficiency, the proposed metasurface has the potential for chiroptical applications including high-contrast polarization imaging, precise Stokes parameters measurement, optical diodes, and polarization detection for CPL.
Collapse
|
45
|
Yang Y, Seong J, Choi M, Park J, Kim G, Kim H, Jeong J, Jung C, Kim J, Jeon G, Lee KI, Yoon DH, Rho J. Integrated metasurfaces for re-envisioning a near-future disruptive optical platform. LIGHT, SCIENCE & APPLICATIONS 2023; 12:152. [PMID: 37339970 DOI: 10.1038/s41377-023-01169-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 06/22/2023]
Abstract
Metasurfaces have been continuously garnering attention in both scientific and industrial fields, owing to their unprecedented wavefront manipulation capabilities using arranged subwavelength artificial structures. To date, research has mainly focused on the full control of electromagnetic characteristics, including polarization, phase, amplitude, and even frequencies. Consequently, versatile possibilities of electromagnetic wave control have been achieved, yielding practical optical components such as metalenses, beam-steerers, metaholograms, and sensors. Current research is now focused on integrating the aforementioned metasurfaces with other standard optical components (e.g., light-emitting diodes, charged-coupled devices, micro-electro-mechanical systems, liquid crystals, heaters, refractive optical elements, planar waveguides, optical fibers, etc.) for commercialization with miniaturization trends of optical devices. Herein, this review describes and classifies metasurface-integrated optical components, and subsequently discusses their promising applications with metasurface-integrated optical platforms including those of augmented/virtual reality, light detection and ranging, and sensors. In conclusion, this review presents several challenges and prospects that are prevalent in the field in order to accelerate the commercialization of metasurfaces-integrated optical platforms.
Collapse
Affiliation(s)
- Younghwan Yang
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhwa Seong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Minseok Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junkyeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyeongtae Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hongyoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junhyeon Jeong
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Chunghwan Jung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joohoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Gyoseon Jeon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Kyung-Il Lee
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Dong Hyun Yoon
- Research Institute of Industrial Science and Technology (RIST), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea.
| |
Collapse
|
46
|
Qu J, Wang Z, Cehng Z, Wang Y, Yu C. Full-Stokes parameters detection enabled by a non-interleaved fiber-compatible metasurface. OPTICS EXPRESS 2023; 31:20836-20849. [PMID: 37381198 DOI: 10.1364/oe.491836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 06/30/2023]
Abstract
Polarization of the optical field determines the way of light-matter interaction, which lays the foundation for various applications such as chiral spectroscopy, biomedical imaging, and machine vision. Currently, with the rise of the metasurface, miniaturized polarization detectors have attracted extensive interest. However, due to the limitation of the working area, it is still a challenge to integrate polarization detectors on the fiber end face. Here, we propose a design of compact non-interleaved metasurface that can be integrated on the tip of a large-mode-area photonic crystal fiber (LMA-PCF) to realize full-Stokes parameters detection. Through concurrent control over the dynamic phase and Pancharatnam-Berry (PB) phase, different helical phases are assigned to the two orthogonal circular polarization bases, of which the amplitude contrast and relative phase difference can be represented by two non-overlapped foci and an interference ring pattern, respectively. Therefore, the determination of arbitrary polarization states through the proposed ultracompact fiber-compatible metasurface can be achieved. Moreover, we calculated full-Stokes parameters according to simulation results and obtained that the average detection deviation is relatively low at 2.84% for 20 elucidated samples. The novel metasurface exhibits excellent polarization detection performance and overcomes the limitation of the small integrated area, which provides insights into the further practical explorations of ultracompact polarization detection devices.
Collapse
|
47
|
Hu R, Lu X, Hao X, Qin W. An Organic Chiroptical Detector Favoring Circularly Polarized Light Detection from Near-Infrared to Ultraviolet and Magnetic-Field-Amplifying Dissymmetry in Detectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211935. [PMID: 36916071 DOI: 10.1002/adma.202211935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Circularly polarized light detection has attracted growing attention because of its unique application in security surveillance and quantum optics. Here, through designing a chiral polymer as a donor, a high-performance circularly polarized light detector is fabricated, successfully enabling detection from ultraviolet (300 nm) to near-infrared (1100 nm). The chiroptical detector presents an excellent ability to distinguish right-handed and left-handed circularly polarized light, where dissymmetries in detectivity, responsivity, and electric current are obtained and then optimized. The dissymmetry in electric current can be increased from 0.18 to 0.23 once an external magnetic field is applied. This is a very rare report on the dissymmetry tunability by an external field in chiroptical detectors. Moreover, the chirality-generated orbital angular momentum is one of the key factors determining the performance of the circularly polarized light detection. Overall, the organic chiroptical detector presents excellent stability in detection, which provides great potential for future flexible and compact integrated platforms.
Collapse
Affiliation(s)
- Renjie Hu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiangqian Lu
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Xiaotao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Wei Qin
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
48
|
Dong L, Wang B, Li H, Wu Y. New-Type Shearing Interference Detection System Based on Double-Grating Structure for Suppressing the Skylight Background. SENSORS (BASEL, SWITZERLAND) 2023; 23:4695. [PMID: 37430607 DOI: 10.3390/s23104695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/01/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023]
Abstract
To overcome the influence of the daytime skylight background on long-distance optical detection, a new type of shearing interference detection system was proposed to improve the detection performance of the traditional detection system for finding dark objects such as dim stars during the daytime. This article focuses on the basic principle and mathematical model as well as the simulation and experimental research of the new type of shearing interference detection system. The comparison of the detection performance between this new-type detection system and the traditional system is also carried out in this article. The experimental results show that the detection performance of the new type of shearing interference detection system is significantly better than that of the traditional system, and the image signal-to-noise ratio of this new-type system (about 13.2) is much higher than that of the best result of the traditional detection system (about 5.1).
Collapse
Affiliation(s)
- Lei Dong
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Bin Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Hongzhuang Li
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Yuanhao Wu
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| |
Collapse
|
49
|
Liu Y, Xing P. Circularly Polarized Light Responsive Materials: Design Strategies and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300968. [PMID: 36934302 DOI: 10.1002/adma.202300968] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Circularly polarized light (CPL) with the end of optical vector traveling along circumferential trajectory shows left- and right-handedness, which transmits chiral information to materials via complicated CPL-matter interactions. Materials with circular dichroism respond to CPL illumination selectively with differential outputs that can be used to design novel photodetectors. Racemic or achiral compounds under CPL go through photodestruction, photoresolution, and asymmetric synthesis pathways to generate enantiomeric bias and optical activity. By this strategy, helical polymers and chiral inorganic plasmonic nanostructures are synthesized directly, and their intramolecular folding and subsequent self-assembly are photomodulable as well. In the aggregated state of self-assembly and liquid crystal phase, helical sense of the dynamic molecular packing is sensitive to enantiomeric bias brought by CPL, enabling the chiral amplification to supramolecular scale. In this review, the application-guided design strategies of CPL-responsive materials are aimed to be systematically summarized and discussed. Asymmetric synthesis, resolution, and property-modulation of small organic compounds, polymers, inorganic nanoparticles, supramolecular assemblies and liquid crystals are highlighted based on the important developments during the last decades. Besides, applications of light-matter interactions including CPL detection and biomedical applications are also referred.
Collapse
Affiliation(s)
- Yiping Liu
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education and School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
50
|
Xian S, Yang X, Zhou J, Gao F, Hou Y. Deep learning-enabled broadband full-Stokes polarimeter with a portable fiber optical spectrometer. OPTICS LETTERS 2023; 48:1359-1362. [PMID: 36946927 DOI: 10.1364/ol.484988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Portable fiber optical spectrometers (PFOSs) have been widely used in the contemporary industrial and agricultural production and life due its low cost and small volume. PFOSs mainly combine one fiber to guide light and one optical spectrometer to detect spectra. In this work, we demonstrate that PFOSs can work as a broadband full-Stokes polarimeter through slightly bending the fiber several times and establishing the mapping relationship between the Stokes parameters S^ and the bending-dependent light intensities I^, i.e., S^=f(I^). The different bending geometries bring different birefringence effects and reflection effects that change the polarization state of the out-going light. In the meanwhile, the grating owns a polarization-depended diffraction efficiency especially for the asymmetric illumination geometry that introduces an extrinsic chiroptical effect, which is sensitive to both the linear and spin components of light. The minimum mean squared error (MSE) can reach to smaller than 1% for S1, S2, and S3 at 810 nm, and the averaged MSE in the wave band from 440 nm to 840 nm is smaller than 2.5%, where the working wavelength can be easily extended to arbitrary wave band by applying PFOSs with proper parameters. Our findings provide a convenient and practical method for detecting full-Stokes parameters.
Collapse
|