1
|
Wan Y, Li J, Jiang G, Pi F. Bimetallic SERS platform with femtomolar sensitivity for in situ monitoring of catalytic reactions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126092. [PMID: 40147398 DOI: 10.1016/j.saa.2025.126092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
We developed a gold-silver bimetallic surface-enhanced Raman scattering (SERS) chip (AuNPs@AuAg NSs island array chip) that combines excellent SERS enhancement with in situ catalytic properties. This platform exhibits superior plasmonic catalytic capabilities, enabling rapid in situ monitoring of redox reactions without the need for chemical reductants. Additionally, under simulated sunlight, the chip achieved effective degradation of methylene blue (MB) molecules, with a removal rate of 95.65 %, demonstrating its potential for environmental safety applications. The chip's uniform and dense SERS hotspots allow for the detection of pollutants at extremely low concentrations (as low as 10-15 M), offering a powerful tool for trace-level detection of hazardous substances. This work highlights the potential of such nanostructures for in situ monitoring of catalytic reactions and pollutant degradation, as well as for rapid, non-destructive, and high-throughput detection of ultra-low concentrations of analytes.
Collapse
Affiliation(s)
- Yuqi Wan
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jingkun Li
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoyong Jiang
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China.
| |
Collapse
|
2
|
Yan S, Zhang Z, Chen J, Wang Q, Wu Y, Sui Y, Wang S, Che Q, Zhou N, Chen L, Chen L. Cavity-Like Silver Aggregates-Based Colloidal SERS Microfluidic Platform for Highly Reproducible Online Reaction Process Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501338. [PMID: 40424064 DOI: 10.1002/smll.202501338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/21/2025] [Indexed: 05/28/2025]
Abstract
Process analytical technology (PAT) is a key tool in the chemical and biological production industry. However, it is still desirable to develop online PAT enabling rapid and sensitive detection of various reaction intermediates, to meet the requirements of precise and green chemistry. Here these challenges are addressed by developing a cavity-like silver aggregate (Ag cavity)-based colloidal surface-enhanced Raman scattering (SERS) microfluidic platform, which exhibits a reproducible flow detection window, enabling sensitive online monitoring and identification of the organic reaction intermediates of the model flow photochemical reactions. The key element of the platform is the colloidal Ag cavity prepared through a template-mediated method. Finite difference time domain (FDTD) simulation and molecular adsorption measurements indicate the increased electromagnetic field and the high surface area contribute to the high SERS sensitivity of the cavity-like silver aggregates. Moreover, the Ag cavity shows a long-term flow detection window in the microfluidic channel with high reproducibility (RSD = 3.72%). This platform is successfully used to monitor and analyze the photodegradation intermediates of the model antibiotics, indicating the promising practical applications. This study contributes to the advancement of online chemistry studies and provides an effective tool for online reaction monitoring across diverse organic production fields.
Collapse
Affiliation(s)
- Shuoyang Yan
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Zhiyang Zhang
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Jiadong Chen
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Qiaoning Wang
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yanzhou Wu
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Yifan Sui
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shiyu Wang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Quande Che
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Na Zhou
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Ling Chen
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Lingxin Chen
- Coastal Zone Ecological Environment Monitoring Technology and Equipment Shandong Engineering Research Center, Shandong Key Laboratory of Coastal Environmental Processes, CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| |
Collapse
|
3
|
Shi G, Guo H, Gao T, Wu H, Luo SH, Wang S, Lei Y, Zhang Y, Xie Y, Ren B, Tian ZQ, Shao GF, Liu GK. Unveiling Spectrum-Structure Correlation in Vibrational Spectroscopy: Task-Driven Deep Learning Classification Balancing Global Fusion and Local Extraction. Anal Chem 2025. [PMID: 40399767 DOI: 10.1021/acs.analchem.4c05842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Spectrum-structure correlation is crucial to identify and quantify chemicals, in which classification of mixtures and identification of functional groups are two central tasks. Deep learning-driven algorithms have made significant strides to these two tasks. However, many of these algorithms are merely adaptations of models originally designed for computer vision applications. As a result, the models often suffer from either low accuracy or limited generality when applied to spectral data due to the overlooked inherent limitations in feature richness and volume of spectral data. Here, in light of the distinctive difference in the attention of global and local information in spectral data between these two tasks, we developed contrapuntally two CNN-based algorithms, incorporating multiscale convolution and attention mechanism, to address the unique requirements of each task. It was found that the lightweight CNN-Peak algorithm is favored for the classification of a mixture, a type of single-label task, in which the feature fusion of global information is more important. Meanwhile, the more complex ResNet-ResPeak algorithm is ideally suited for the identification of functional groups, a type of multilabel task, in which the feature extraction of local information takes precedence. The task-oriented, conceptual design of deep learning algorithms not only enhances the efficacy and accuracy of spectrum-structure correlation analysis but also feeds back to achieve a more rigorous experimental design and implementation, forming a closed loop of AI for Science.
Collapse
Affiliation(s)
- Guoyang Shi
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
- Key Laboratory of Big Data Intelligent Analysis and Decision, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Haoyu Guo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tianchu Gao
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Haoping Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sanlei Wang
- Key Laboratory of Big Data Intelligent Analysis and Decision, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Yong Lei
- Conservation Technology Department, Palace Museum, Beijing 100009, China
| | - Yun Zhang
- Conservation Technology Department, Palace Museum, Beijing 100009, China
| | - Yangfan Xie
- Conservation Technology Department, Palace Museum, Beijing 100009, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Gui-Fang Shao
- Key Laboratory of Big Data Intelligent Analysis and Decision, Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, Fujian 361102, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
4
|
Li D, Wu X, Chen Z, Liu T, Mu X. Surface-enhanced spectroscopy technology based on metamaterials. MICROSYSTEMS & NANOENGINEERING 2025; 11:60. [PMID: 40180920 PMCID: PMC11969004 DOI: 10.1038/s41378-025-00905-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/23/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025]
Abstract
Surface-enhanced spectroscopy technology based on metamaterials has flourished in recent years, and the use of artificially designed subwavelength structures can effectively regulate light waves and electromagnetic fields, making it a valuable platform for sensing applications. With the continuous improvement of theory, several effective universal modes of metamaterials have gradually formed, including localized surface plasmon resonance (LSPR), Mie resonance, bound states in the continuum (BIC), and Fano resonance. This review begins by summarizing these core resonance mechanisms, followed by a comprehensive overview of six main surface-enhanced spectroscopy techniques across the electromagnetic spectrum: surface-enhanced fluorescence (SEF), surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), terahertz (THz) sensing, refractive index (RI) sensing, and chiral sensing. These techniques cover a wide spectral range and address various optical characteristics, enabling the detection of molecular fingerprints, structural chirality, and refractive index changes. Additionally, this review summarized the combined use of different enhanced spectra, the integration with other advanced technologies, and the status of miniaturized metamaterial systems. Finally, we assess current challenges and future directions. Looking to the future, we anticipate that metamaterial-based surface-enhanced spectroscopy will play a transformative role in real-time, on-site detection across scientific, environmental, and biomedical fields.
Collapse
Affiliation(s)
- Dongxiao Li
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xueyuan Wu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Ziwei Chen
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Tao Liu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China
| | - Xiaojing Mu
- Defense Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology & Systems of Ministry of Education, International R & D center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
5
|
Huang T, Pan J, Yuan Q, Sun LP, Guan BO. Extraordinary Waveguide-Enhanced Optical Microfiber Sensor for Operando Electrocatalysis Studies. NANO LETTERS 2025; 25:4954-4960. [PMID: 40088160 DOI: 10.1021/acs.nanolett.5c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Optical detection and sensing have been widely applied to electrochemical systems, and their cutting-edge technology is creating current trends in operando characterization. The mass transfer at the electrode-electrolyte interface induces not only the electron exchange but also the changes in optical properties such as dielectric constants, resulting in detectable absorption or resonance signals. However, light-matter interactions are limited due to the inherently short optical path length of the interface. Here, we report the ultrasensitive detection of electrocatalytic processes enhanced by waveguide-engineered modal interference. We show that, by modulating the microfiber diameter so that the group phase velocity of beating modes approaches equalization, the substantially enhanced refractive index sensitivity enables accurate capture of chemical dynamics near the electrode surface, presenting a clear "eye diagram" related to the methanol oxidation reaction during operando studies.
Collapse
Affiliation(s)
- Tiansheng Huang
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Jiongshen Pan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Qijian Yuan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Li-Peng Sun
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| | - Bai-Ou Guan
- Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
- College of Physics & Optoelectronic Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Herkert EK, Garcia-Parajo MF. Harnessing the Power of Plasmonics for in Vitro and in Vivo Biosensing. ACS PHOTONICS 2025; 12:1259-1275. [PMID: 40124941 PMCID: PMC11926962 DOI: 10.1021/acsphotonics.4c01657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 03/25/2025]
Abstract
Plasmonic nanostructures exhibit localized surface plasmon resonances due to collective oscillation of conducting electrons that can be tuned by modulating the nanostructure size, shape, material composition, and local dielectric environment. The strong field confinement and enhancement provided by plasmonic nanostructures have been exploited over the years to enhance the sensitivity for analyte detection down to the single-molecule level, rendering these devices as potentially outstanding biosensors. Here, we summarize methods to detect biological analytes in vitro and in living cells, with a focus on plasmon-enhanced fluorescence, Raman scattering, infrared absorption, circular dichroism, and refractive index sensing. Given the tremendous advances in the field, we concentrate on a few recent examples toward biosensing under highly challenging detection conditions, including clinically relevant biomarkers in body fluids and nascent applications in living cells and in vivo. These emerging platforms serve as inspiration for exploring future directions of nanoplasmonics that can be further harnessed to advance real-world biosensing applications.
Collapse
Affiliation(s)
- Ediz Kaan Herkert
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
| | - Maria F. Garcia-Parajo
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science
and Technology, Castelldefels 08860 (Barcelona), Spain
- ICREA-Catalan
Institute for Research and Advanced Studies, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
7
|
Meng L, Liu G, Feng Z. Highly sensitive evanescent wave SERS probe based on exposed-core optical fibers and its application. RSC Adv 2025; 15:7987-7994. [PMID: 40092141 PMCID: PMC11908638 DOI: 10.1039/d4ra08733j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 03/19/2025] Open
Abstract
In this study, we developed a convenient and effective method for the fabrication of evanescent wave fiber surface-enhanced Raman scattering (SERS) probes constructed with ordered silver nanocolumn arrays on the curved surface of an exposed core. An exposed core optical fiber (ECF) is a type of fiber in which the cladding is intentionally removed, providing direct access to the evanescent field of the core. Such fibers enable obtaining high evanescent field power on the core side and rapid liquid infiltration and offer a strong interaction of the evanescent wave with analytes and a long effective interaction path. Besides, the silver nanocolumn array structure coated on the curved surface of the exposed core has a larger specific surface area. Furthermore, the silver nanocolumn array structures enhance the local evanescent field surrounding the ECF to excite the target molecules and have strong light capture for the incident light, providing light-matter overlap and enhanced interaction to improve sensitivity. Such ECF SERS probes can efficiently detect 4-aminothiophenol (4-ATP) and thiram in situ, and a low detection limit of 10-10 M for 4-ATP is achieved. This paper presents an easy and cost-effective technique for fabricating a highly effective and good reproducible evanescent wave fiber SERS probe, taking advantage of the synergy between manipulated ECF properties and silver nanocolumn array structures, and the probe exhibits great potential for label-free sensing and detection of biomolecules.
Collapse
Affiliation(s)
- Luping Meng
- School of Optoelectronic Engineering, Zaozhuang University Zaozhuang 277160 China
| | - Guangqiang Liu
- School of Physics and Physical Engineering, Qufu Normal University Qufu 273100 China
| | - Zongying Feng
- School of Engineering, Qufu Normal University Rizhao 276826 China
| |
Collapse
|
8
|
Yi J, You EM, Hu R, Wu DY, Liu GK, Yang ZL, Zhang H, Gu Y, Wang YH, Wang X, Ma H, Yang Y, Liu JY, Fan FR, Zhan C, Tian JH, Qiao Y, Wang H, Luo SH, Meng ZD, Mao BW, Li JF, Ren B, Aizpurua J, Apkarian VA, Bartlett PN, Baumberg J, Bell SEJ, Brolo AG, Brus LE, Choo J, Cui L, Deckert V, Domke KF, Dong ZC, Duan S, Faulds K, Frontiera R, Halas N, Haynes C, Itoh T, Kneipp J, Kneipp K, Le Ru EC, Li ZP, Ling XY, Lipkowski J, Liz-Marzán LM, Nam JM, Nie S, Nordlander P, Ozaki Y, Panneerselvam R, Popp J, Russell AE, Schlücker S, Tian Y, Tong L, Xu H, Xu Y, Yang L, Yao J, Zhang J, Zhang Y, Zhang Y, Zhao B, Zenobi R, Schatz GC, Graham D, Tian ZQ. Surface-enhanced Raman spectroscopy: a half-century historical perspective. Chem Soc Rev 2025; 54:1453-1551. [PMID: 39715320 DOI: 10.1039/d4cs00883a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers. (2) Classifying four pivotal phases from the view of innovative methodologies in the fifty-year progression: initial development (mid-1970s to mid-1980s), downturn (mid-1980s to mid-1990s), nano-driven transformation (mid-1990s to mid-2010s), and recent boom (mid-2010s onwards). (3) Illuminating the entire journey and framework of SERS and its family members such as tip-enhanced Raman spectroscopy (TERS) and shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) and highlighting the trajectory. (4) Emphasizing the importance of innovative methods to overcome developmental bottlenecks, thereby expanding the material, morphology, and molecule generalities to leverage SERS as a versatile technique for broad applications. (5) Extracting the invaluable spirit of groundbreaking discovery and perseverant innovations from the pioneers and trailblazers. These key inspirations include proactively embracing and leveraging emerging scientific technologies, fostering interdisciplinary cooperation to transform the impossible into reality, and persistently searching to break bottlenecks even during low-tide periods, as luck is what happens when preparation meets opportunity.
Collapse
Affiliation(s)
- Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - En-Ming You
- School of Ocean Information Engineering, Fujian Provincial Key Laboratory of Oceanic Information Perception and Intelligent Processing, Jimei University, Xiamen 361021, China
| | - Ren Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Guo-Kun Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhi-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Gu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yang Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jun-Yang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Feng Ru Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Chao Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jing-Hua Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Yu Qiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Hailong Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Zhao-Dong Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bing-Wei Mao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| | - Javier Aizpurua
- Donostia International Physics Center, DIPC, and Ikerbasque, Basque Agency for Research, and University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Vartkess Ara Apkarian
- Department of Chemistry, University of California Irvine, Irvine, California 92697, USA
| | - Philip N Bartlett
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Jeremy Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, UK
| | - Steven E J Bell
- School of Chemistry and Chemical Engineering, Queen's University Belfast, David Keir Building, BT9 5AG Belfast, UK
| | - Alexandre G Brolo
- Department of Chemistry, University of Victoria, Victoria, BC, V8N 4Y3, Canada
- Centre for Advanced Materials and Related Technologies (CAMTEC), University of Victoria, Victoria, BC V8P 5C2, Canada
| | - Louis E Brus
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea
| | - Li Cui
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Volker Deckert
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Katrin F Domke
- Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany
| | - Zhen-Chao Dong
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Karen Faulds
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Renee Frontiera
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Naomi Halas
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Christy Haynes
- Department of Chemistry, University of Minnesota, 207 Pleasant St SE, Minneapolis, Minnesota 55455, USA
| | - Tamitake Itoh
- Health and Medical Research Institute (HRI), National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Kagawa 761-0395, Japan
| | - Janina Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Katrin Kneipp
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Eric C Le Ru
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Zhi-Peng Li
- Beijing Key Laboratory for Nano-Photonics and Nano-Structure (NPNS), Department of Physics, Capital Normal University, Beijing 100048, China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jacek Lipkowski
- Electrochemical Technology Center, Department of Chemistry, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Cinbio, University of Vigo, 36310 Vigo, Spain
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Shuming Nie
- Department of Bioengineering, Department of Electrical and Computer Engineering, Department of Materials Science and Engineering and Department of Chemistry, University of Illinois at Urbana - Champaign, Champaign, Illinois 61801, USA
| | - Peter Nordlander
- Department of Chemistry, Department of Electrical and Computer Engineering, Department of Physics & Astronomy, Department of Materials Science and Nanoengineering, Laboratory for Nanophotonics Rice University, Houston, Texas 77005, USA
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo 669-1330, Japan
| | | | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Str. 9, 07745 Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Andrea E Russell
- School of Chemistry and Chemical Engineering, University of Southampton, Highfield, Southampton SO17 1BJ, UK
| | - Sebastian Schlücker
- Physical Chemistry I, Department of Chemistry, and Center of Nanointegration Duisburg-Essen (CENIDE) & Center of Medical Biotechnology (ZMB), University of Duisburg-Essen (UDE), 45141 Essen, Germany
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Lianming Tong
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, 100871 Beijing, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Microelectronics, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- Henan Academy of Sciences, Zhengzhou 450046, China
| | - Yikai Xu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Liangbao Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianlin Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Jin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, China
| | - Yang Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Yao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, School of Physics and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
| | - George C Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208-3113, USA
| | - Duncan Graham
- Centre for Nanometrology, Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, UK
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, College of Environment and Ecology, State Key Laboratory of Marine Environmental Science, Department of Physics, iChEM, IKKEM, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
9
|
Bebesi T, Pálmai M, Szigyártó IC, Gaál A, Wacha A, Bóta A, Varga Z, Mihály J. Surface-enhanced infrared spectroscopic study of extracellular vesicles using plasmonic gold nanoparticles. Colloids Surf B Biointerfaces 2025; 246:114366. [PMID: 39531836 DOI: 10.1016/j.colsurfb.2024.114366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Extracellular vesicles (EVs), sub-micrometer lipid-bound particles released by most cells, are considered a novel area in both biology and medicine. Among characterization methods, infrared (IR) spectroscopy, especially attenuated total reflection (ATR), is a rapidly emerging label-free tool for molecular characterization of EVs. The relatively low number of vesicles in biological fluids (∼1010 particle/mL), however, and the complex content of the EVs' milieu (protein aggregates, lipoproteins, buffer molecules) might result in poor signal-to-noise ratio in the IR analysis of EVs. Exploiting the increment of the electromagnetic field at the surface of plasmonic nanomaterials, surface-enhanced infrared spectroscopy (SEIRS) provides an amplification of characteristic IR signals of EV samples. Negatively charged citrate-capped and positively charged cysteamine-capped gold nanoparticles with around 10 nm diameter were synthesized and tested with blood-derived EVs. Both types of gold nanoparticles contributed to an enhancement of the EVs' IR spectroscopic signature. Joint evaluation of UV-Vis and IR spectroscopic results, supported by FF-TEM images, revealed that proper interaction of gold nanoparticles with EVs is crucial, and an aggregation or clustering of gold nanoparticles is necessary to obtain the SEIRS effect. Positively charged gold nanoparticles resulted in higher enhancement, probably due to electrostatic interaction with EVs, commonly negatively charged.
Collapse
Affiliation(s)
- Tímea Bebesi
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Hevesy György PhD School of Chemistry, Eötvös Lóránd University, Pázmány Péter sétány 1/A, Budapest 1117, Hungary
| | - Marcell Pálmai
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Imola Csilla Szigyártó
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Anikó Gaál
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - András Wacha
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Attila Bóta
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary
| | - Zoltán Varga
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Judith Mihály
- Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences (RCNS), Magyar tudósok körútja 2, Budapest 1117, Hungary; Department of Chemistry, Eszterházy Károly Catholic University, Leányka u. 6, Eger 3300, Hungary.
| |
Collapse
|
10
|
Lai H, Wang X, Qi M, Huang H, Yu B. Advances in Surface-Enhanced Raman Spectroscopy for Therapeutic Drug Monitoring. Molecules 2024; 30:15. [PMID: 39795073 PMCID: PMC11721930 DOI: 10.3390/molecules30010015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Therapeutic drug monitoring (TDM) is pivotal for optimizing drug dosage regimens in individual patients, particularly for drugs with a narrow therapeutic index. Surface-enhanced Raman spectroscopy (SERS) has shown great potential in TDM due to high sensitivity, non-destructive analysis, specific fingerprint spectrum, low sample consumption, simple operation, and low ongoing costs. Due to the rapid development of SERS for TDM, a review focusing on the analytical method is presented to better understand the trends. This review examines the latest advancements in SERS substrates and their applications in TDM, highlighting the innovations in substrate design that enhance detection sensitivity and selectivity. We discuss the challenges faced by SERS for TDM, such as substrate signal reproducibility and matrix interference from complex biological samples, and explore solutions like digital colloid-enhanced Raman spectroscopy, enrichment detection strategies, microfluidic SERS, tandem instrument technologies, and machine learning-enabled SERS. These advancements address the limitations of traditional SERS applications and improve analytical efficiency in TDM. Finally, conclusions and perspectives on future research directions are presented. The integration of SERS with emerging technologies presents a transformative approach to TDM, with the potential to significantly enhance personalized medicine and improve patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Bingqiong Yu
- Jiangxi Province Key Laboratory of Pharmacology of Traditional Chinese Medicine, School of Pharmacy, Gannan Medical University, Ganzhou 341000, China; (X.W.); (M.Q.); (H.H.)
| |
Collapse
|
11
|
Trindade FCS, de Souza Sobrinha IG, Pereira G, Pereira GAL, Raimundo IM, Pereira CF. A surface-enhanced infrared absorption spectroscopy (SEIRA) multivariate approach for atrazine detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124867. [PMID: 39059263 DOI: 10.1016/j.saa.2024.124867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/08/2024] [Accepted: 07/21/2024] [Indexed: 07/28/2024]
Abstract
A green, fast and effective multivariate method for the determination of atrazine (ATZ) was developed using conventional infrared equipment furnished with an attenuated total reflectance module (ATR-IR), providing limit of detection (LOD) and limit of quantification (LOQ) in the ranges from 1.9 to 4.6 µg/mL and from 5.6 to 14 µg/mL, respectively. Furthermore, the surface-enhanced infrared absorption (SEIRA) approach was investigated to improve the sensitivity of the measurements and detect ATZ at low concentrations, addressing the compatibility with reference methods. To this end, a substrate formed by silver selenide quantum dots stabilized with mercaptopropionic acid (Ag2Se/MPA), synthesized in aqueous medium by an one-pot synthesis, was used. The spectral data were investigated by univariate and multivariate calibrations, allowing to calculate the enhancement factor (EF) and the multivariate enhancement factor (MEF), respectively. The SEIRA strategy proved to be able to enhance the atrazine signal up to 86-fold, allowing the detection of ATZ at concentrations as low as 0.001 µg/mL.
Collapse
Affiliation(s)
- Felipe C S Trindade
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Izabel G de Souza Sobrinha
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Goreti Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560; Universidade de Aveiro, Departamento de Química & CESAM, Aveiro, Portugal 3810-193
| | - Giovannia A L Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560
| | - Ivo M Raimundo
- Universidade Estadual de Campinas, Instituto de Química, Campinas, São Paulo, Brazil 13083-970
| | - Claudete F Pereira
- Universidade Federal de Pernambuco, Departamento de Química Fundamental, Recife, Pernambuco, Brazil 50740560.
| |
Collapse
|
12
|
Montaño-Priede JL, Zapata-Herrera M, Esteban R, Zabala N, Aizpurua J. An overview on plasmon-enhanced photoluminescence via metallic nanoantennas. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:4771-4794. [PMID: 39640204 PMCID: PMC11614590 DOI: 10.1515/nanoph-2024-0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024]
Abstract
In the realm of nanotechnology, the integration of quantum emitters with plasmonic nanostructures has emerged as an innovative pathway for applications in quantum technologies, sensing, and imaging. This research paper provides a comprehensive exploration of the photoluminescence enhancement induced by the interaction between quantum emitters and tailored nanostructure configurations. Four canonical nanoantennas (spheres, rods, disks, and crescents) are systematically investigated theoretically in three distinct configurations (single, gap, and nanoparticle-on-mirror nanoantennas), as a representative selection of the most fundamental and commonly studied structures and arrangements. A detailed analysis reveals that the rod gap nanoantenna configuration achieves the largest photoluminescence enhancement factor, of up to three orders of magnitude. The study presented here provides insights for the strategic design of plasmonic nanoantennas in the visible and near-IR spectral range, offering a roadmap for these structures to meet specific requirements in plasmon-enhanced fluorescence. Key properties such as the excitation rate, the quantum yield, the enhanced emitted power, or the directionality of the emission are thoroughly reviewed. The results of this overview contribute not only to the fundamental understanding of plasmon-enhanced emission of quantum emitters but also set the basis for the development of advanced nanophotonic devices with enhanced functionalities.
Collapse
Affiliation(s)
- José Luis Montaño-Priede
- Centro de Física de Materiales CFM-MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018Donostia, Spain
| | - Mario Zapata-Herrera
- Centro de Física de Materiales CFM-MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018Donostia, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018Donostia, Spain
| | - Ruben Esteban
- Centro de Física de Materiales CFM-MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018Donostia, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018Donostia, Spain
| | - Nerea Zabala
- Centro de Física de Materiales CFM-MPC (CSIC-UPV/EHU), Paseo Manuel de Lardizabal 5, 20018Donostia, Spain
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018Donostia, Spain
- Department of Electricity and Electronics, FCT-ZTF, UPV-EHU, Bilbao, 48080, Spain
| | - Javier Aizpurua
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018Donostia, Spain
- Department of Electricity and Electronics, FCT-ZTF, UPV-EHU, Bilbao, 48080, Spain
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013Bilbao, Spain
| |
Collapse
|
13
|
Bao YF, Zhu MY, Zhao XJ, Chen HX, Wang X, Ren B. Nanoscale chemical characterization of materials and interfaces by tip-enhanced Raman spectroscopy. Chem Soc Rev 2024; 53:10044-10079. [PMID: 39229965 DOI: 10.1039/d4cs00588k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Materials and their interfaces are the core for the development of a large variety of fields, including catalysis, energy storage and conversion. In this case, tip-enhanced Raman spectroscopy (TERS), which combines scanning probe microscopy with plasmon-enhanced Raman spectroscopy, is a powerful technique that can simultaneously obtain the morphological information and chemical fingerprint of target samples at nanometer spatial resolution. It is an ideal tool for the nanoscale chemical characterization of materials and interfaces, correlating their structures with chemical performances. In this review, we begin with a brief introduction to the nanoscale characterization of materials and interfaces, followed by a detailed discussion on the recent theoretical understanding and technical improvements of TERS, including the origin of enhancement, TERS instruments, TERS tips and the application of algorithms in TERS. Subsequently, we list the key experimental issues that need to be addressed to conduct successful TERS measurements. Next, we focus on the recent progress of TERS in the study of various materials, especially the novel low-dimensional materials, and the progresses of TERS in studying different interfaces, including both solid-gas and solid-liquid interfaces. Finally, we provide an outlook on the future developments of TERS in the study of materials and interfaces.
Collapse
Affiliation(s)
- Yi-Fan Bao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Meng-Yuan Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiao-Jiao Zhao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Hong-Xuan Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Xiang Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Bin Ren
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
14
|
Fernández-Galiana Á, Bibikova O, Vilms Pedersen S, Stevens MM. Fundamentals and Applications of Raman-Based Techniques for the Design and Development of Active Biomedical Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210807. [PMID: 37001970 DOI: 10.1002/adma.202210807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Raman spectroscopy is an analytical method based on light-matter interactions that can interrogate the vibrational modes of matter and provide representative molecular fingerprints. Mediated by its label-free, non-invasive nature, and high molecular specificity, Raman-based techniques have become ubiquitous tools for in situ characterization of materials. This review comprehensively describes the theoretical and practical background of Raman spectroscopy and its advanced variants. The numerous facets of material characterization that Raman scattering can reveal, including biomolecular identification, solid-to-solid phase transitions, and spatial mapping of biomolecular species in bioactive materials, are highlighted. The review illustrates the potential of these techniques in the context of active biomedical material design and development by highlighting representative studies from the literature. These studies cover the use of Raman spectroscopy for the characterization of both natural and synthetic biomaterials, including engineered tissue constructs, biopolymer systems, ceramics, and nanoparticle formulations, among others. To increase the accessibility and adoption of these techniques, the present review also provides the reader with practical recommendations on the integration of Raman techniques into the experimental laboratory toolbox. Finally, perspectives on how recent developments in plasmon- and coherently-enhanced Raman spectroscopy can propel Raman from underutilized to critical for biomaterial development are provided.
Collapse
Affiliation(s)
- Álvaro Fernández-Galiana
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Olga Bibikova
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Simon Vilms Pedersen
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, Imperial College London, SW7 2AZ, London, UK
| |
Collapse
|
15
|
Chen L, Zhang G, Zhou G, Xiang C, Miao X, Liu L, An X, Lan H, Liu H. In Situ Visual Observation of Surface Energy-Controlled Heterogeneous Nucleation of Metal Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401674. [PMID: 39077956 DOI: 10.1002/smll.202401674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/05/2024] [Indexed: 07/31/2024]
Abstract
Electrochemical growth of metal nanocrystals is pivotal for material synthesis, processing, and resource recovery. Understanding the heterogeneous interface between electrolyte and electrode is crucial for nanocrystal nucleation, but the influence of this interaction is still poorly understood. This study employs advanced in situ measurements to investigate the heterogeneous nucleation of metals on solid surfaces. By observing the copper nanocrystal electrodeposition, an interphase interaction-induced nucleation mechanism highly dependent on substrate surface energy is uncovered. It shows that a high-energy (HE) electrode tended to form a polycrystalline structure, while a low-energy (LE) electrode induced a monocrystalline structure. Raman and electrochemical characterizations confirmed that HE interface enhances the interphase interaction, reducing the nucleation barrier for the sturdy nanostructures. This leads to a 30.92-52.21% reduction in the crystal layer thickness and a 19.18-31.78% increase in the charge transfer capability, promoting the formation of a uniform and compact film. The structural compactness of the early nucleated crystals enhances the deposit stability for long-duration electrodeposition. This research not only inspires comprehension of physicochemical processes correlated with heterogeneous nucleation, but also paves a new avenue for high-quality synthesis and efficient recovery of metallic nanomaterials.
Collapse
Affiliation(s)
- Li Chen
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Gang Zhou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Chao Xiang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Lin Liu
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, China
| | - Xiaoqiang An
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Zhang T, Dong X, Gao X, Yang Y, Song W, Song J, Bi H, Guo Y, Song J. Applications of Metals and Metal Compounds in Improving the Sensitivity of Microfluidic Biosensors - A Review. Chemistry 2024; 30:e202400578. [PMID: 38801721 DOI: 10.1002/chem.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
The enhancement of detection sensitivity in microfluidic sensors has been a continuously explored field. Initially, many strategies for sensitivity improvement involved introducing enzyme cascade reactions, but enzyme-based reactions posed challenges in terms of cost, stability, and storage. Therefore, there is an urgent need to explore enzyme-free cascade amplification methods, which are crucial for expanding the application range and improving detection stability. Metal or metal compound nanomaterials have gained great attention in the exploitation of microfluidic sensors due to their ease of preparation, storage, and lower cost. The unique physical properties of metallic nanomaterials, including surface plasmon resonance, surface-enhanced Raman scattering, metal-enhanced fluorescence, and surface-enhanced infrared absorption, contribute significantly to enhancing detection capabilities. The metal-based catalytic nanomaterials, exemplified by Fe3O4 nanoparticles and metal-organic frameworks, are considered viable alternatives to biological enzymes due to their excellent performance. Herein, we provide a detailed overview of the applications of metals and metal compounds in improving the sensitivity of microfluidic biosensors. This review not only highlights the current developments but also critically analyzes the challenges encountered in this field. Furthermore, it outlines potential directions for future research, contributing to the ongoing development of microfluidic biosensors with improved detection sensitivity.
Collapse
Affiliation(s)
- Taiyi Zhang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xuezhen Dong
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Xing Gao
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Yujing Yang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Weidu Song
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Jike Song
- School of Ophthalmology and Optometry, Shandong University of Traditional Chinese Medicine, Jinan, 250353, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| | - Yurong Guo
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, 250200, China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 10010, P. R. China
| |
Collapse
|
17
|
Zheng X, Pei Q, Tan J, Bai S, Luo Y, Ye S. Local electric field in nanocavities dictates the vibrational relaxation dynamics of interfacial molecules. Chem Sci 2024; 15:11507-11514. [PMID: 39055024 PMCID: PMC11268483 DOI: 10.1039/d4sc02463j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
Plasmonic nanocavities enable the generation of strong light-matter coupling and exhibit great potential in plasmon-mediated chemical reactions (PMCRs). Although an electric field generated by nanocavities (E n) has recently been reported, its effect on the vibrational energy relaxation (VER) of the molecules in the nanocavities has not been explored. In this study, we reveal the impact of an electric field sensed by molecules (para-substituted thiophenol derivatives) in a nanocavity (E f) on VER processes by employing advanced time-resolved femtosecond sum frequency generation vibrational spectroscopy (SFG-VS) supplemented by electrochemical measurements. The magnitude of E n is almost identical (1.0 ± 0.2 V nm-1) beyond the experimental deviation while E f varies from 0.3 V nm-1 to 1.7 V nm-1 depending on the substituent. An exponential correlation between E f and the complete recovery time of the ground vibrational C[double bond, length as m-dash]C state (T 2) of the phenyl ring is observed. Substances with a smaller T 2 are strongly correlated with the reported macroscopic chemical reactivity. This finding may aid in enriching the current understanding of PMCRs and highlights the possibility of regulating vibrational energy flow into desired reaction coordinates by using a local electric field.
Collapse
Affiliation(s)
- Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shiyu Bai
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China Hefei Anhui 230026 China
- Hefei National Laboratory, University of Science and Technology of China Hefei Anhui 230088 China
| |
Collapse
|
18
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
19
|
Qian S, Zhao W, Guo R, Wang X, Dai H, Lang J, Kadasala NR, Jiang Y, Liu Y. Apt-Conjugated PDMS-ZnO/Ag-Based Multifunctional Integrated Superhydrophobic Biosensor with High SERS Activity and Photocatalytic Sterilization Performance. Int J Mol Sci 2024; 25:7675. [PMID: 39062920 PMCID: PMC11276906 DOI: 10.3390/ijms25147675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Sensitive detection and efficient inactivation of pathogenic bacteria are crucial for halting the spread and reproduction of foodborne pathogenic bacteria. Herein, a novel Apt-modified PDMS-ZnO/Ag multifunctional biosensor has been developed for high-sensitivity surface-enhanced Raman scattering (SERS) detection along with photocatalytic sterilization towards Salmonella typhimurium (S. typhimurium). The distribution of the electric field in PDMS-ZnO/Ag with different Ag sputtering times was analyzed using a finite-difference time-domain (FDTD) algorithm. Due to the combined effect of electromagnetic enhancement and chemical enhancement, PDMS-ZnO/Ag exhibited outstanding SERS sensitivity. The limit of detection (LOD) for 4-MBA on the optimal SERS substrate (PZA-40) could be as little as 10-9 M. After PZA-40 was modified with the aptamer, the LOD of the PZA-40-Apt biosensor for detecting S. typhimurium was only 10 cfu/mL. Additionally, the PZA-40-Apt biosensor could effectively inactivate S. typhimurium under visible light irradiation within 10 min, with a bacterial lethality rate (Lb) of up to 97%. In particular, the PZA-40-Apt biosensor could identify S. typhimurium in food samples in addition to having minimal cytotoxicity and powerful biocompatibility. This work provides a multifunctional nanoplatform with broad prospects for selective SERS detection and photocatalytic sterilization of pathogenic bacteria.
Collapse
Affiliation(s)
- Sihan Qian
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Xiaohan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Huasong Dai
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | | | - Yuhong Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (S.Q.); (W.Z.); (R.G.); (X.W.); (H.D.); (J.L.)
| |
Collapse
|
20
|
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, Yan S, Wu DY, Wang X, Liu G, Ren B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS NANO 2024; 18:14000-14019. [PMID: 38764194 DOI: 10.1021/acsnano.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Xiaxia Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
21
|
Pei Q, Zheng X, Tan J, Luo Y, Ye S. Probing the Local Near-Field Intensity of Plasmonic Nanoparticles in the Mid-infrared Spectral Region. J Phys Chem Lett 2024; 15:5390-5396. [PMID: 38739421 DOI: 10.1021/acs.jpclett.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The enhanced local field of gold nanoparticles (AuNPs) in mid-infrared spectral regions is essential for improving the detection sensitivity of vibrational spectroscopy and mediating photochemical reactions. However, it is still challenging to measure its intensity at subnanometer scales. Here, using the NO2 symmetric stretching mode (νNO2) of self-assembled 4-nitrothiophenol (4-NTP) monolayers on AuNPs as a model, we demonstrated that the percentage of excited νNO2 mode, determined by femtosecond time-resolved sum-frequency generation vibrational spectroscopy, allows us to directly detect the local field intensity of the AuNP surface in subnanometer ranges. The local-field intensity is tuned by AuNP diameters. An approximate 17-fold enhancement was observed for the local field on 80 nm AuNPs compared to the Au film. Additionally, the local field can regulate the anharmonicity of the νNO2 mode by synergistic effect with molecular orientation. This work offers a promising approach to probe the local field intensity distribution around plasmonic NP surfaces at subnanometer scales.
Collapse
Affiliation(s)
- Quanbing Pei
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoxuan Zheng
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Junjun Tan
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Shuji Ye
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
22
|
Duan S, Tian G, Luo Y. Theoretical and computational methods for tip- and surface-enhanced Raman scattering. Chem Soc Rev 2024; 53:5083-5117. [PMID: 38596836 DOI: 10.1039/d3cs01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Raman spectroscopy is a versatile tool for acquiring molecular structure information. The incorporation of plasmonic fields has significantly enhanced the sensitivity and resolution of surface-enhanced Raman scattering (SERS) and tip-enhanced Raman spectroscopy (TERS). The strong spatial confinement effect of plasmonic fields has challenged the conventional Raman theory, in which a plane wave approximation for the light has been adopted. In this review, we comprehensively survey the progress of a generalized theory for SERS and TERS in the framework of effective field Hamiltonian (EFH). With this approach, all characteristics of localized plasmonic fields can be well taken into account. By employing EFH, quantitative simulations at the first-principles level for state-of-the-art experimental observations have been achieved, revealing the underlying intrinsic physics in the measurements. The predictive power of EFH is demonstrated by several new phenomena generated from the intrinsic spatial, momentum, time, and energy structures of the localized plasmonic field. The corresponding experimental verifications are also carried out briefly. A comprehensive computational package for modeling of SERS and TERS at the first-principles level is introduced. Finally, we provide an outlook on the future developments of theory and experiments for SERS and TERS.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Guangjun Tian
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Yi Luo
- Hefei National Research Center for Physical Science at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
- Hefei National Laboratory, University of Science and Technology of China, Hefei, 230088, China
| |
Collapse
|
23
|
Esfidani SM, Tadjer MJ, Folland TG. Lifetime and Molecular Coupling in Surface Phonon Polariton Resonators. ACS OMEGA 2024; 9:21136-21143. [PMID: 38764696 PMCID: PMC11097381 DOI: 10.1021/acsomega.4c01009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
Surface phonon polariton (SPhP) modes in polar semiconductors offer a low-loss platform for infrared nanophotonics and sensing. However, the efficient design of polariton-enhanced sensors requires a quantitative understanding of how to engineer the frequency and lifetime of SPhPs in nanophotonic structures. Here, we study organ-pipe resonances in 4H-SiC trenches as a prototype system for infrared sensing. We use a transmission line framework that accounts for the field distribution within the trench, accurately predicting mode frequency and lifetime when compared against finite element method (FEM) electromagnetic calculations. Accounting for the electric field profile across the gap is critical in our model to accurately predict mode frequencies, quality factor (Q factor), and reflectance, outperforming previous circuit models developed in the literature. Beyond structural simulation, our model can provide insights into the frequency ranges in the Reststrahlen band where enhanced sensor activity should be present. The radiative lifetime is significantly enlarged close to the longitudinal optic phonon, restricting sensor efficiency at this wavelength range. This pushes the optimal frequency for sensing closer to the center of the Reststrahlen band than might be naively expected. This model ultimately demonstrates the primary challenge of designing SPhP-based sensors: only a relatively narrow region of the Reststrahlen band offers efficient sensing, guiding future designs for infrared spectroscopy.
Collapse
Affiliation(s)
| | - Marko J. Tadjer
- U.S.
Naval Research Laboratory,4555 Overlook Ave SW, Washington, District of Columbia20375,United States
| | - Thomas G. Folland
- Department
of Physics and Astronomy, The University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
24
|
Xu Y, Wu Y, Wei J, Zhao Y, Xue P. Three-dimensional hotspot structures constructed from nanoporous gold with a V-cavity and gold nanoparticles for surface-enhanced Raman scattering. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2888-2896. [PMID: 38646710 DOI: 10.1039/d4ay00348a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The intensity and sensitivity of surface-enhanced Raman scattering (SERS) spectra are highly dependent on the consistency and homogeneity of the nanomaterials. In this study, we developed a large-area three-dimensional (3D) hotspot substrate with good homogeneity and reproducibility in SERS signals. The substrate is based on the synergistic structures of nanoporous gold (NPG) and gold nanoparticles (AuNPs). NPG was combined with a periodic V-shaped nanocavity array to create nanoporous gold with a V-cavity (NPGVC) array featuring uniform hotspots. A nanoporous gold V-shaped resonant cavity (NPGVRC) structure was developed by incorporating AuNPs into the NPGVC array. The coupling action between the AuNPs and NPGVC resulted in a SERS-enhanced electromagnetic field with 3D hotspot distribution. The strategic incorporation of NPG and V-cavity array significantly expanded the surface area available for analyte adsorption and interaction with AuNPs. Using rhodamine 6G (R6G) and malachite green (MG) as probe molecules, the SERS performance was investigated, and the NPGVRC substrate not only showed excellent enhancement with the limit of detection as low as 10-11 M, but also presented good homogeneity. NPGVRC was then used for biological detection of the influenza A virus, where we acquired and examined the characteristic SERS spectra of two spike proteins. It is demonstrated that there is significant potential for our proposed SERS platform to be used in biosensors.
Collapse
Affiliation(s)
- Yang Xu
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yan Wu
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Jianjun Wei
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.
| | - Yuanyu Zhao
- Sichuan Science City Hospital, Mianyang 621000, China
| | - Peili Xue
- Sichuan Science City Hospital, Mianyang 621000, China
| |
Collapse
|
25
|
Li L, Zhang J, Jiao Z, Zhou X, Ren L, Wang M. Seamless Integration of Rapid Separation and Ultrasensitive Detection for Complex Biological Samples Using Multistage Annular Functionalized Carbon Nanotube Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312518. [PMID: 38354403 DOI: 10.1002/adma.202312518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/13/2024] [Indexed: 02/16/2024]
Abstract
Efficient separation, enrichment, and detection of bacteria in diverse media are pivotal for identifying bacterial diseases and their transmission pathways. However, conventional bacterial detection methods that split the separation and detection steps are plagued by prolonged processing times. Herein, a multistage annular functionalized carbon nanotube array device designed for the seamless integration of complex biological sample separation and multimarker detection is introduced. This device resorts to the supersmooth fluidity of the liquid sample in the carbon nanotubes interstice through rotation assistance, achieving the ability to quickly separate impurities and capture biomarkers (1 mL sample cost time of 2.5 s). Fluid dynamics simulations show that the reduction of near-surface hydrodynamic resistance drives the capture of bacteria and related biomarkers on the functionalized surface of carbon nanotube in sufficient time. When further assembled as an even detection device, it exhibited fast detection (<30 min), robust linear correlation (101-107 colony-forming units [CFU] mL-1, R2 = 0.997), ultrasensitivity (limit of detection = 1.7 CFU mL-1), and multitarget detection (Staphylococcus aureus, extracellular vesicles, and enterotoxin proteins). Collectively, the material and system offer an expanded platform for real-time diagnostics, enabling integrated rapid separation and detection of various disease biomarkers.
Collapse
Affiliation(s)
- Lihuang Li
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Jialing Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Zhengqi Jiao
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Xi Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| | - Lei Ren
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
- State Key Lab of Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen, 361005, P. R. China
| | - Miao Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province, Research Center of Biomedical Engineering of Xiamen, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
26
|
Jiang N, Darù A, Kunstelj Š, Vitillo JG, Czaikowski ME, Filatov AS, Wuttig A, Gagliardi L, Anderson JS. Catalytic, Spectroscopic, and Theoretical Studies of Fe 4S 4-Based Coordination Polymers as Heterogenous Coupled Proton-Electron Transfer Mediators for Electrocatalysis. J Am Chem Soc 2024; 146:12243-12252. [PMID: 38651361 DOI: 10.1021/jacs.4c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Iron-sulfur clusters play essential roles in biological systems, and thus synthetic [Fe4S4] clusters have been an area of active research. Recent studies have demonstrated that soluble [Fe4S4] clusters can serve as net H atom transfer mediators, improving the activity and selectivity of a homogeneous Mn CO2 reduction catalyst. Here, we demonstrate that incorporating these [Fe4S4] clusters into a coordination polymer enables heterogeneous H atom transfer from an electrode surface to a Mn complex dissolved in solution. A previously reported solution-processable Fe4S4-based coordination polymer was successfully deposited on the surfaces of different electrodes. The coated electrodes serve as H atom transfer mediators to a soluble Mn CO2 reduction catalyst displaying good product selectivity for formic acid. Furthermore, these electrodes are recyclable with a minimal decrease in activity after multiple catalytic cycles. The heterogenization of the mediator also enables the characterization of solution-phase and electrode surface species separately. Surface enhanced infrared absorption spectroscopy (SEIRAS) reveals spectroscopic signatures for an in situ generated active Mn-H species, providing a more complete mechanistic picture for this system. The active species, reaction mechanism, and the protonation sites on the [Fe4S4] clusters were further confirmed by density functional theory calculations. The observed H atom transfer reactivity of these coordination polymer-coated electrodes motivates additional applications of this composite material in reductive H atom transfer electrocatalysis.
Collapse
Affiliation(s)
- Ningxin Jiang
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Andrea Darù
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Špela Kunstelj
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Jenny G Vitillo
- Department of Science and High Technology and INSTM, Università degli Studi dell'Insubria, Como 22100, Italy
| | - Maia E Czaikowski
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Anna Wuttig
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| | - Laura Gagliardi
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
- Pritzker School of Molecular Engineering, James Franck Institute, University of Chicago, Chicago,Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago,Illinois 60637, United States
| |
Collapse
|
27
|
Xi D, Chen R, Ren S, Jia Z, Gao Z. Carboxyl-functionalized two-dimensional MXene-Au nanocomposites were prepared as SERS substrates for the detection of melamine in dairy products. RSC Adv 2024; 14:14041-14050. [PMID: 38686296 PMCID: PMC11056776 DOI: 10.1039/d4ra02249a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
In the present study, we address the limitations of conventional surface-enhanced Raman scattering (SERS) techniques for sensitive and stable detection of melamine in food products, especially dairy. To overcome these challenges, we developed a novel SERS-active substrate by incorporating gold nanoparticles (AuNPs) onto carboxyl-functionalized two-dimensional (2D) MXene material doped with nitrides, specifically Au-Ti2N-COOH. Our strategy leverages the unique physicochemical properties of MXene, a class of atomically thin, 2D transition metal carbides/nitrides, with tunable surface functionalities. By modifying the MXene surface with AuNPs and introducing carboxyl groups (-COOH), we successfully enhanced the interaction between the substrate and melamine molecules. The carboxyl groups form hydrogen bonds with the amino groups on the melamine's triazine ring, facilitating the adsorption of melamine molecules within the 'hotspot' regions responsible for SERS signal amplification. A series of characterization methods were used to confirm the successful synthesis of Au-Ti2N-COOH composites.Using Au-Ti2N-COOH as the SERS substrate, we detected melamine in spiked dairy product samples with significantly enhanced sensitivity and stability compared to nitride-doped MXene alone. The detection limit in liquid milk stands at 3.7008 μg kg-1, with spike recovery rates ranging from 99.84% to 107.55% and an approximate RSD of 5%. This work demonstrates the effectiveness of our approach in designing a label-free, rapid, and robust SERS platform for the accurate quantitation of melamine contamination in food, thereby mitigating health risks associated with melamine adulteration.
Collapse
Affiliation(s)
- Dongbo Xi
- School of Information Science and Engineering, Xinjiang University Urumqi 830000 China
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Ruipeng Chen
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Shuyue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| | - Zhenhong Jia
- School of Information Science and Engineering, Xinjiang University Urumqi 830000 China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine Tianjin 300050 China
| |
Collapse
|
28
|
Li CY, Tian ZQ. Sixty years of electrochemical optical spectroscopy: a retrospective. Chem Soc Rev 2024; 53:3579-3605. [PMID: 38421335 DOI: 10.1039/d3cs00734k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Sixty years ago, Reddy, Devanatan, and Bockris performed the first in situ electrochemical ellipsometry experiment, which ushered in a new era in the study of electrochemistry, using optical spectroscopy. After six decades of development, electrochemical optical spectroscopy, particularly electrochemical vibrational spectroscopy, has advanced from a phase of immaturity with few methods and limited applications to a phase of maturity with excellent substrate generality and significantly improved resolutions. Here, we divide the development of electrochemical optical spectroscopy into four phases, focusing on the proof-of-concept of different electrochemical optical spectroscopy studies, the emergence of plasmonic enhancement-based electrochemical optical spectroscopic (in particular vibrational spectroscopic) methods, the realization of electrochemical vibrational spectroscopy on well-defined surfaces, and the efforts to achieve operando spectroelectrochemical applications. Finally, we discuss the future development trend of electrochemical optical spectroscopy, as well as examples of new methodology and research paradigms for operando spectroelectrochemistry.
Collapse
Affiliation(s)
- Chao-Yu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
29
|
Pastor E, Lian Z, Xia L, Ecija D, Galán-Mascarós JR, Barja S, Giménez S, Arbiol J, López N, García de Arquer FP. Complementary probes for the electrochemical interface. Nat Rev Chem 2024; 8:159-178. [PMID: 38388837 DOI: 10.1038/s41570-024-00575-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.
Collapse
Affiliation(s)
- Ernest Pastor
- CNRS, IPR (Institut de Physique de Rennes), University of Rennes, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, Tokyo, Japan.
| | - Zan Lian
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Ecija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Ramón Galán-Mascarós
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Sara Barja
- Department of Polymers and Advanced Materials, Centro de Física de Materiales (CFM), University of the Basque Country UPV/EHU, San Sebastián, Spain
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, Castelló, Spain
| | - Jordi Arbiol
- ICREA, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Núria López
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
30
|
Hu J, Chen GJ, Xue C, Liang P, Xiang Y, Zhang C, Chi X, Liu G, Ye Y, Cui D, Zhang D, Yu X, Dang H, Zhang W, Chen J, Tang Q, Guo P, Ho HP, Li Y, Cong L, Shum PP. RSPSSL: A novel high-fidelity Raman spectral preprocessing scheme to enhance biomedical applications and chemical resolution visualization. LIGHT, SCIENCE & APPLICATIONS 2024; 13:52. [PMID: 38374161 PMCID: PMC10876988 DOI: 10.1038/s41377-024-01394-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/02/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Raman spectroscopy has tremendous potential for material analysis with its molecular fingerprinting capability in many branches of science and technology. It is also an emerging omics technique for metabolic profiling to shape precision medicine. However, precisely attributing vibration peaks coupled with specific environmental, instrumental, and specimen noise is problematic. Intelligent Raman spectral preprocessing to remove statistical bias noise and sample-related errors should provide a powerful tool for valuable information extraction. Here, we propose a novel Raman spectral preprocessing scheme based on self-supervised learning (RSPSSL) with high capacity and spectral fidelity. It can preprocess arbitrary Raman spectra without further training at a speed of ~1 900 spectra per second without human interference. The experimental data preprocessing trial demonstrated its excellent capacity and signal fidelity with an 88% reduction in root mean square error and a 60% reduction in infinite norm ([Formula: see text]) compared to established techniques. With this advantage, it remarkably enhanced various biomedical applications with a 400% accuracy elevation (ΔAUC) in cancer diagnosis, an average 38% (few-shot) and 242% accuracy improvement in paraquat concentration prediction, and unsealed the chemical resolution of biomedical hyperspectral images, especially in the spectral fingerprint region. It precisely preprocessed various Raman spectra from different spectroscopy devices, laboratories, and diverse applications. This scheme will enable biomedical mechanism screening with the label-free volumetric molecular imaging tool on organism and disease metabolomics profiling with a scenario of high throughput, cross-device, various analyte complexity, and diverse applications.
Collapse
Affiliation(s)
- Jiaqi Hu
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Gina Jinna Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Chenlong Xue
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Yanqun Xiang
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Chuanlun Zhang
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaokeng Chi
- Department of Nephrology, Chaozhou People's Hospital, Chaozhou, 521011, China
| | - Guoying Liu
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Yanfang Ye
- Clinical Research Design Division, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, 510120, China
| | - Dongyu Cui
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - De Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
| | - Xiaojun Yu
- School of Automation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hong Dang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wen Zhang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Junfan Chen
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Quan Tang
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Penglai Guo
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ho-Pui Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong, China
| | - Yuchao Li
- Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Institute of Nanophotonics, Jinan University, Guangzhou, 511443, China
| | - Longqing Cong
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Perry Ping Shum
- State Key Laboratory of Optical Fiber and Cable Manufacture Technology, Guangdong Key Laboratory of Integrated Optoelectronics Intellisense, Department of EEE, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
31
|
Hu B, Zhao W, Chen L, Liu Y, Ma Z, Yan Y, Meng M. Enhanced Molecularly Imprinted Fluorescent Test Strip for Rapid and Visual Detection of Norfloxacin via a Smartphone. Molecules 2024; 29:661. [PMID: 38338405 PMCID: PMC10856333 DOI: 10.3390/molecules29030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Paper-based test strips with on-site visual detection have become a hot spot in the field of target detection. Yet, low specific surface area and uneven deposition limit the further application of test strips. Herein, a novel "turn-on" ratio of molecularly imprinted membranes (Eu@CDs-MIMs) was successfully prepared based on a Eu complex-doped polyvinylidene fluoride membrane for the selective, rapid and on-site visual detection of norfloxacin (NOR). The formation of surface-imprinted polymer-containing carbon dots (CDs) improves the roughness and hydrophilicity of Eu@CDs-MIMs. Fluorescence lifetimes and UV absorption spectra verified that the fluorescence enhancement of CDs is based on the synergistic effect of charge transfer and hydrogen bonding between CDs and NOR. The fluorescent test strip showed a linear fluorescent response within the concentration range of 5-50 nM with a limit of detection of 1.35 nM and a short response time of 1 min. In comparison with filter paper-based test strips, Eu@CDs-MIMs exhibit a brighter and more uniform fluorescent color change from red to blue that is visible to the naked eye. Additionally, the applied ratio fluorescent test strip was combined with a smartphone to translate RGB values into concentrations for the visual and quantitative detection of NOR and verified the detection results using high-performance liquid chromatography. The portable fluorescent test strip provides a reliable approach for the rapid, visual, and on-site detection of NOR and quinolones.
Collapse
Affiliation(s)
- Bo Hu
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (B.H.); (Z.M.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (W.Z.); (Y.L.)
| | - Li Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.C.); (Y.Y.)
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (W.Z.); (Y.L.)
| | - Zhongfei Ma
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (B.H.); (Z.M.)
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.C.); (Y.Y.)
| | - Minjia Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China; (L.C.); (Y.Y.)
| |
Collapse
|
32
|
Wang J, Yang W, He Y. Plasmon-induced magnetic anapole mode assisted strong field enhancement. J Chem Phys 2023; 159:244701. [PMID: 38146831 DOI: 10.1063/5.0180255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023] Open
Abstract
Optical metamaterials, sensing, nonlinear optics, and surface-enhanced spectroscopies have witnessed the remarkable potential of the anapole mode. While dielectric particles with a high refractive index have garnered significant attention in recent years, the exploration of plasmonic anapole modes with intense localized electric field enhancements in the visible frequency range remains limited. In this study, we present a theoretical investigation on the relationship between the strongest near-field response and magnetic anapole modes, along with their substantial enhancement of Raman signals from probing molecules. These captivating findings arise from the design of a practical metallic oblate spheroid-film plasmonic system that generates magnetic anapole resonances at frequencies within the visible-near-infrared range. This research not only sheds light on the underlying mechanisms in a wide range of plasmon-enhanced spectroscopies but also paves the way for innovative nano-device designs.
Collapse
Affiliation(s)
- Jingyu Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030000, China
| | - Weimin Yang
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Yonglin He
- School of Electronic Information, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| |
Collapse
|
33
|
Neal SN, Stacchiola D, Tenney SA. Spatially resolved multimodal vibrational spectroscopy under high pressures. Phys Chem Chem Phys 2023; 25:31578-31582. [PMID: 37966851 DOI: 10.1039/d3cp03958g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
In this perspective, we discuss the potential impact on in situ studies under controlled environments of a novel multimodal spectroscopic technique, optical photothermal infrared + Raman spectroscopy, which enables the simultaneous collection of infrared and Raman scattering spectra, along with hyperspectral imaging and chemical imaging with wavelength-independent sub-500 nm spatial resolution. A brief review of the current literature regarding the O-PTIR technique is presented along with recent work from our own lab on determining the crystallinity of soft and inorganic materials. The results highlight the possibility of resolving differences in the crystallinity of soft materials associated with changes in material processing. We also demonstrate the first reported use of a diamond anvil cell with simultaneous infrared and Raman measurements that showcases, using a high energy material as an example, the potential use of O-PTIR spectroscopy in diamond anvil cell techniques.
Collapse
Affiliation(s)
- Sabine N Neal
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Dario Stacchiola
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| | - Samuel A Tenney
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA.
| |
Collapse
|
34
|
Pei H, Zhao J, Peng W, Dai Q, Wei Y. Enhancement and quenching of plasmon-enhanced spectroscopy of single molecule confined in metallic nanoparticle dimers. NANOTECHNOLOGY 2023; 35:015001. [PMID: 37769644 DOI: 10.1088/1361-6528/acfe15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/27/2023] [Indexed: 10/03/2023]
Abstract
We present a theoretical analysis of plasmon-enhanced fluorescence (PEF) and Raman scattering (PERS) spectroscopy of a single molecule confined in the laser-irradiated metallic nanoparticles (NPs) dimer, focusing on the origin of the spectral enhancement and quenching effects. The theoretical method ofD-parameters has been used to calculate the dimer distance-dependent nonlocal dielectric effect in Ag and Au NPs. Meanwhile, other damping rates and electric field enhancements are quantitatively computed by finite element method. Moreover, PEF and PERS spectra of rhodamine 6G are obtained within the density-functional theory. Our calculated results show that the PERS mainly depend on the excitation and emission field enhancements, and thus it occurs at the narrower dimer gap due to the stronger localized plasmon coupling. The PEF is related to fluorescence rate caused by the competition between excitation electric field and quantum efficiency, and the increase of former may enhance the fluorescence intensity while the lower latter lead to reduce the intensity as decreasing the dimer distance. The contribution of nonlocal dielectric effect can significantly reduce the quantum efficiency at smaller distance so that it overcomes the excitation field enhancement, leading to the fluorescence quenching for Au NPs dimer. Furthermore, by optimizing the dimer distance and NPs size, the maximum PERS and PEF cross sections reach 10-14and 10-15under 2.45 eV laser excitation for Ag NPs dimer, and 10-18for Au NPs. Our study finely explains the experiment results showed either fluorescence enhancement or quenching with the change of molecule-NPs distance, and better guidance for optimizing the experiments.
Collapse
Affiliation(s)
- Huan Pei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Jiaxin Zhao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Weifeng Peng
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Qiyuan Dai
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| | - Yong Wei
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, People's Republic of China
| |
Collapse
|
35
|
Luo B, Wang W, Zhao Y, Zhao Y. Hot-Electron Dynamics Mediated Medical Diagnosis and Therapy. Chem Rev 2023; 123:10808-10833. [PMID: 37603096 DOI: 10.1021/acs.chemrev.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Surface plasmon resonance excitation significantly enhances the absorption of light and increases the generation of "hot" electrons, i.e., conducting electrons that are raised from their steady states to excited states. These excited electrons rapidly decay and equilibrate via radiative and nonradiative damping over several hundred femtoseconds. During the hot-electron dynamics, from their generation to the ultimate nonradiative decay, the electromagnetic field enhancement, hot electron density increase, and local heating effect are sequentially induced. Over the past decade, these physical phenomena have attracted considerable attention in the biomedical field, e.g., the rapid and accurate identification of biomolecules, precise synthesis and release of drugs, and elimination of tumors. This review highlights the recent developments in the application of hot-electron dynamics in medical diagnosis and therapy, particularly fully integrated device techniques with good application prospects. In addition, we discuss the latest experimental and theoretical studies of underlying mechanisms. From a practical standpoint, the pioneering modeling analyses and quantitative measurements in the extreme near field are summarized to illustrate the quantification of hot-electron dynamics. Finally, the prospects and remaining challenges associated with biomedical engineering based on hot-electron dynamics are presented.
Collapse
Affiliation(s)
- Bing Luo
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Wei Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Yuxin Zhao
- The State Key Laboratory of Service Behavior and Structural Safety of Petroleum Pipe and Equipment Materials, CNPC Tubular Goods Research Institute (TGRI), Xi'an 710077, People's Republic of China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
36
|
Kasztelan M, Zoladek S, Wieczorek W, Palys B. Template-Free Synthesized Gold Nanobowls Composed with Graphene Oxide for Ultrasensitive SERS Platforms. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16960-16969. [PMID: 37674654 PMCID: PMC10478765 DOI: 10.1021/acs.jpcc.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/29/2023] [Indexed: 09/08/2023]
Abstract
Engineering of plasmonic properties of gold nanostructures expands the field of their applications from photocatalysis and photothermal effects to ultrasensitive surface-enhanced Raman spectroscopy (SERS). The known methods of preparation of gold nanobowls involve the deposition of gold layer on polymers or silicon nanotemplates and the removal of the top layer of gold together with the template. Such gold nanobowls are characterized by very broad plasmonic bands due to the plasmon hybridization. The sharp edges on the top of nanobowls are potential sources of the strong electromagnetic field beneficial for SERS. We present a novel template-free synthesis of gold nanobowls (AuNBs). The AuNB layers are deposited on graphene oxide (GO) layers. We compare AuNBs with gold nanospheres (AuNSs) and gold nanourchins (AuNUs) having similar size. The gold nanoparticles are combined with pristine GO or graphene oxide conditioned in ammonia (GONH3) or graphene oxide conditioned in sodium hydroxide (GONaOH). The SERS properties of the hybrid supports were studied using rhodamine 6G (R6G) as the SERS probe. The 633 nm laser line was used, which falls out of the molecular resonance with R6G. The results indicate that AuNBs show largely higher enhancement factors when compared to AuNUs and AuNSs. Furthermore, the GO materials are able to modify the SERS enhancement by 1 order of magnitude. We explain the influence of the GO material by three factors: (1) enabling or disabling the charge transfer between gold and R6G, which is crucial for the chemical part of SERS enhancement; (2) causing the aggregation of gold nanoparticles and formation of hot spots; (3) dipole contribution to the electromagnetic enhancement through the abundance of polar groups on the surface.
Collapse
Affiliation(s)
- Mateusz Kasztelan
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Sylwia Zoladek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| | - Władysław Wieczorek
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, Warsaw 00-664, Poland
| | - Barbara Palys
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, Warsaw 02-093, Poland
| |
Collapse
|
37
|
Bai R, Tolman NL, Peng Z, Liu H. Influence of Atmospheric Contaminants on the Work Function of Graphite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12159-12165. [PMID: 37581604 PMCID: PMC10469443 DOI: 10.1021/acs.langmuir.3c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Indexed: 08/16/2023]
Abstract
Airborne hydrocarbon contamination occurs rapidly on graphitic surfaces and negatively impact many of their material properties, yet much of the molecular details of the contamination remains unknown. We use Kelvin probe force microscopy (KPFM) to study the time evolution of the surface potential of graphite exposed to ambient. After exfoliation in air, the surface potential of graphite is not homogeneous and contains features that are absent in the topography image. In addition, the heterogeneity of the surface potential images increased in the first few days followed by a decrease at longer exposure times. These observations are strong support of slow conformation change, phase separation, and/or dynamic displacement of the adsorbed airborne contaminants.
Collapse
Affiliation(s)
- Ruobing Bai
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathan L. Tolman
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhenbo Peng
- Chemical
Engineering College, Ningbo Polytechnic, Ningbo, Zhejiang 315806, P. R. China
| | - Haitao Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
38
|
Nguyen DD, Lee S, Kim I. Recent Advances in Metaphotonic Biosensors. BIOSENSORS 2023; 13:631. [PMID: 37366996 PMCID: PMC10296124 DOI: 10.3390/bios13060631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/28/2023]
Abstract
Metaphotonic devices, which enable light manipulation at a subwavelength scale and enhance light-matter interactions, have been emerging as a critical pillar in biosensing. Researchers have been attracted to metaphotonic biosensors, as they solve the limitations of the existing bioanalytical techniques, including the sensitivity, selectivity, and detection limit. Here, we briefly introduce types of metasurfaces utilized in various metaphotonic biomolecular sensing domains such as refractometry, surface-enhanced fluorescence, vibrational spectroscopy, and chiral sensing. Further, we list the prevalent working mechanisms of those metaphotonic bio-detection schemes. Furthermore, we summarize the recent progress in chip integration for metaphotonic biosensing to enable innovative point-of-care devices in healthcare. Finally, we discuss the impediments in metaphotonic biosensing, such as its cost effectiveness and treatment for intricate biospecimens, and present a prospect for potential directions for materializing these device strategies, significantly influencing clinical diagnostics in health and safety.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seho Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
39
|
Najem M, Carcenac F, Coutaud L, Mouhibi M, Taliercio T, Gonzalez-Posada F. Honeycomb-like aluminum antennas for surface-enhanced infrared absorption sensing. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:2199-2212. [PMID: 39634040 PMCID: PMC11501651 DOI: 10.1515/nanoph-2023-0131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 12/07/2024]
Abstract
Surface-enhanced infrared absorption (SEIRA) spectroscopy is a competent method to detect trace quantity of molecules and even protein conformational flexibility by enhancing their vibrational modes. To improve the spectroscopy features, we propose a surface with honeycomb-like (HC) arrangement of aluminum equilateral triangles within a metal-insulator-metal configuration. With adjustable geometric parameters, the HC nanoantennas allow a tunable and wide spectral coverage in the IR. The reflectance measurements correlate extremely well with the numerical simulations. Being compact and insensitive to the light polarization, the HC are appealing for boosting the signal-to-noise ratio and increasing the number of hotspots as required for sensing applications. These nanoantennas are thus suitable for accurate and broadband SEIRA sensing via a spectral overlap between the large plasmonic resonances and the narrow IR vibrational modes of our analyte (vanillin). In line with our previously studied bowties nanoantennas, we demonstrate, using HC, SEIRA enhancement factors greater than 107 achieved at a tuning ratio below 1 stating the best spectral overlap. Around 104 molecules are sensed per HC tip. The investigation results are matching the best-reported SEIRA studies. These findings pave the way toward sensitive, adaptable, and miniaturized IR spectroscopy devices for vital applications like biosensing and environmental monitoring.
Collapse
Affiliation(s)
- Melissa Najem
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Franck Carcenac
- CNRS Laboratory for Systems Analysis and Architecture, Toulouse, Occitanie, France
| | - Luka Coutaud
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Mohamed Mouhibi
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Thierry Taliercio
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| | - Fernando Gonzalez-Posada
- University of Montpellier, Institut d’Electronique et des Systèmes, Montpellier, Occitanie, France
| |
Collapse
|
40
|
Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Zhang X, Liu Y, Yang J. Multi-dimensional plasmonic coupling system for efficient enrichment and ultrasensitive label-free SERS detection of bilirubin based on graphene oxide-Au nanostars and Au@Ag nanoparticles. J Colloid Interface Sci 2023; 646:872-882. [PMID: 37235933 DOI: 10.1016/j.jcis.2023.05.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/06/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
Rapid and sensitive detection of free bilirubin (BR) is essential for early diagnosis of jaundice and other hepatobiliary diseases. Inspired by sandwich immunoassay strategy, a multi-dimensional plasmonic coupling SERS platform composed of graphene oxide-Au nanostars nanocomposites (GANS NCs) and Au@Ag nanoparticles (NPs) was designed for label-free detection of BR. Specifically, GANS NCs were first prepared, and their excellent SERS activity was ascribed to synergistic enhancement effect of electromagnetic enhancement and chemical enhancement. Furthermore, SERS spectroscopy was used to monitor the adsorption process of BR. Subsequently, secondary reinforcing Au@Ag NPs were directly added, ultimately resulting in a multi-dimensional plasmonic coupling effect. The SERS enhancing mechanism of coupled system was discussed through electromagnetic field simulations. Interestingly, the high-density hotspots generated by strong plasmonic coupling in GANS-Au@Ag substrate could lead to more extraordinary SERS enhancing behavior compared to GANS NCs. Sensing efficiency of the SERS platform was examined by BR with a detection limit down to 10-11 M. Besides, GANS-Au@Ag NCs performed high uniformity and reproducibility. This work not only opens up a new avenue for construction of multi-dimensional plasmonic coupling system, but also offers a new biosensing technology for label-free diagnosis of BR-related diseases, thereby expecting to be applied in clinical diagnosis.
Collapse
Affiliation(s)
- Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuo Yang
- College of Science, Changchun University, Changchun 130022, PR China
| | - Daxin Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China; Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ming Gao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
41
|
Yang N, Ryan MJ, Son M, Mavrič A, Zanni MT. Voltage-Dependent FTIR and 2D Infrared Spectroscopies within the Electric Double Layer Using a Plasmonic and Conductive Electrode. J Phys Chem B 2023; 127:2083-2091. [PMID: 36821845 DOI: 10.1021/acs.jpcb.2c08431] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Strong electric fields exist between the electric double layer and charged surfaces. These fields impact molecular structures and chemistry at interfaces. We have developed a transparent electrode with infrared plasmonic enhancement sufficient to measure FTIR and two-dimensional infrared spectra at submonolayer coverages on the surface to which a voltage can be applied. Our device consists of an infrared transparent substrate, a 10-20 nm layer of conductive indium tin oxide (ITO), an electrically resistive layer of 3-5 nm Al2O3, and a 3 nm layer of nonconductive plasmonic gold. The materials and thicknesses are set to maximize the surface number density of the monolayer molecules, electrical conductivity, and plasmonic enhancement while minimizing background signals and avoiding Fano line shape distortions. The design was optimized by iteratively characterizing the material roughness and thickness with atomic force microscopy and electron microscopy and by monitoring the plasmon resonance enhancement with spectroscopy. The design is robust to repeated fabrication. This new electrode is tested on nitrile functional groups using a monolayer of 4-mercaptobenzonitrile as well as on CO and CC stretching modes using 4-mercaptobenzoic acid methyl ester. A voltage-dependent Stark shift is observed on both monolayers. We also observe that the transition dipole strength of the CN mode scales linearly with the applied voltage, providing a second way of measuring the surface electric field strength. We anticipate that this cell will enable many new voltage-dependent infrared experiments under applied voltages.
Collapse
Affiliation(s)
- Nan Yang
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Matthew J Ryan
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Minjung Son
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Andraž Mavrič
- University of Nova Gorica, Materials Research Laboratory, Vipavska 13, SI-5000 Nova Gorica, Slovenia
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
42
|
Tseng C, Pennathur AK, Blauth D, Salazar N, Dawlaty JM. Direct Determination of Plasmon Enhancement Factor and Penetration Depths in Surface Enhanced IR Absorption Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3179-3184. [PMID: 36812524 DOI: 10.1021/acs.langmuir.2c02254] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Surface Enhanced Infrared Absorption Spectroscopy (SEIRAS) is a powerful tool for studying a wide range of surface and electrochemical phenomena. For most electrochemical experiments the evanescent field of an IR beam partially penetrates through a thin metal electrode deposited on top of an attenuated total reflection (ATR) crystal to interact with molecules of interest. Despite its success, a major problem that complicates quantitative interpretation of the spectra from this method is the ambiguity of the enhancement factor due to plasmon effects in metals. We developed a systematic method for measuring this, which relies upon independent determination of surface coverage by Coulometry of a surface-bound redox-active species. Following that, we measure the SEIRAS spectrum of the surface bound species, and from the knowledge of surface coverage, retrieve the effective molar absorptivity, εSEIRAS. Comparing this to the independently determined bulk molar absorptivity leads us to the enhancement factor f = εSEIRAS/εbulk. We report enhancement factors in excess of 1000 for the C-H stretches of surface bound ferrocene molecules. We additionally developed a methodical approach to measure the penetration depth of the evanescent field from the metal electrode into a thin film. Such systematic measure of the enhancement factor and penetration depth will help SEIRAS advance from a qualitative to a more quantitative method.
Collapse
Affiliation(s)
- Cindy Tseng
- Department of Chemistry, University of Southern California, California, Los Angeles 90089, United States
| | - Anuj K Pennathur
- Department of Chemistry, University of Southern California, California, Los Angeles 90089, United States
| | - Drew Blauth
- Department of Chemistry, Lewis & Clark College, Portland, Oregon 97219, United States
| | - Noemi Salazar
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, California, Los Angeles 90089, United States
| |
Collapse
|
43
|
Ogawa S, Fukushima S, Shimatani M. Hexagonal Boron Nitride for Photonic Device Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2005. [PMID: 36903116 PMCID: PMC10004243 DOI: 10.3390/ma16052005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Hexagonal boron nitride (hBN) has emerged as a key two-dimensional material. Its importance is linked to that of graphene because it provides an ideal substrate for graphene with minimal lattice mismatch and maintains its high carrier mobility. Moreover, hBN has unique properties in the deep ultraviolet (DUV) and infrared (IR) wavelength bands owing to its indirect bandgap structure and hyperbolic phonon polaritons (HPPs). This review examines the physical properties and applications of hBN-based photonic devices that operate in these bands. A brief background on BN is provided, and the theoretical background of the intrinsic nature of the indirect bandgap structure and HPPs is discussed. Subsequently, the development of DUV-based light-emitting diodes and photodetectors based on hBN's bandgap in the DUV wavelength band is reviewed. Thereafter, IR absorbers/emitters, hyperlenses, and surface-enhanced IR absorption microscopy applications using HPPs in the IR wavelength band are examined. Finally, future challenges related to hBN fabrication using chemical vapor deposition and techniques for transferring hBN to a substrate are discussed. Emerging techniques to control HPPs are also examined. This review is intended to assist researchers in both industry and academia in the design and development of unique hBN-based photonic devices operating in the DUV and IR wavelength regions.
Collapse
Affiliation(s)
- Shinpei Ogawa
- Advanced Technology R&D Center, Mitsubishi Electric Corporation, 8-1-1 Tsukaguchi-Honmachi, Amagasaki 661-8661, Hyogo, Japan
| | | | | |
Collapse
|
44
|
Yang F, Wen P, Tang L, Wang R, Wang Y, Li D, Xu Y, Chen L. A flexible surface-enhanced Raman Spectroscopy chip integrated with microlens. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 287:122129. [PMID: 36413826 DOI: 10.1016/j.saa.2022.122129] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/28/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
A novel flexible Surface-enhanced Raman Spectroscopy (SERS) chip integrated with microlens was proposed and designed, which consisted of PDMS film, planoconvex microlens, and silver nanoparticles (AgNPs) monolayer, and was of high signal collection efficiency. The flexible PDMS film integrated with microlens was designed by optical simulation, and fabricated by optimized micromachining process. AgNPs monolayer were uniformly assembled on the other side of the PDMS film through a liquid-liquid interface self-assembly method to form SERS chip. The prepared chip revealed excellent SERS performance with a Raman enhancement factor of about 107 and a signal variation of <11.5 %. The SERS chip was successfully utilized for in-situ detection of thiram residues on tomato skins, and its characteristic peaks could still be clearly distinguished when the concentration was down to 2.5 μM. It was shown that the proposed SERS chip was suitable for in-situ detection of a real sample on complex surface morphology and shown potential prospect in the fields of chemical and biomedical detections.
Collapse
Affiliation(s)
- Feng Yang
- School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China.
| | - Ping Wen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China; School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Lianggui Tang
- School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Rongxiu Wang
- School of Artificial Intelligence, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiyan Wang
- School of Intelligent Manufacturing, Sichuan University of Arts and Science, Dazhou 635000, China
| | - Dongling Li
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Yi Xu
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China
| | - Li Chen
- College of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
45
|
Chen J, Liu X, Zheng G, Feng W, Wang P, Gao J, Liu J, Wang M, Wang Q. Detection of Glucose Based on Noble Metal Nanozymes: Mechanism, Activity Regulation, and Enantioselective Recognition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205924. [PMID: 36509680 DOI: 10.1002/smll.202205924] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Glucose monitoring is essential to evaluate the degree of glucose metabolism disorders. The enzymatic determination has been the most widely used method in glucose detection because of its high efficiency, accuracy, and sensitivity. Noble metal nanomaterials (NMs, i.e., Au, Ag, Pt, and Pd), inheriting their excellent electronic, optical, and enzyme-like properties, are classified as noble metal nanozymes (NMNZs). As the NMNZs are often involved in two series of reactions, the oxidation of glucose and the chromogenic reaction of peroxide, here the chemical mechanism by employing NMNZs with glucose oxidase (GOx) and peroxidase (POD) mimicking activities is briefly summarized first. Subsequently, the regulation strategies of the GOx-like, POD-like and tandem enzyme-like activities of NMNZs are presented in detail, including the materials, size, morphology, composition, and the reaction condition of the representative NMs. In addition, in order to further mimic the enantioselectivity of enzyme, the design of NMNZs with enantioselective recognition of d-glucose and l-glucose by using different chiral compounds (DNA, amino acids, and cyclodextrins) and molecular imprinting is further described in this review. Finally, the feasible solutions to the existing challenges and a vision for future development possibilities are discussed.
Collapse
Affiliation(s)
- Jiaqi Chen
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Xiaoyang Liu
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Guangchao Zheng
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Wei Feng
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Pan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jian Gao
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| | - Jianbo Liu
- College of Opto-electronic Engineering, Zaozhuang University, Zaozhuang, 277160, China
| | - Mingzhe Wang
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Qingyuan Wang
- School of Mechanical Engineering, Chengdu University, Chengdu, 610000, China
| |
Collapse
|
46
|
Pennathur AK, Tseng C, Salazar N, Dawlaty JM. Controlling Water Delivery to an Electrochemical Interface with Surfactants. J Am Chem Soc 2023; 145:2421-2429. [PMID: 36688713 DOI: 10.1021/jacs.2c11503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Most electrochemical reactions require delivery of protons, often from water, to surface-adsorbed species. However, water also acts as a competitor to many such processes by directly reacting with the electrode, which necessitates using water in small amounts. Controlling the water content and structure near the surface is an important frontier in directing the reactivity and selectivity of electrochemical reactions. Surfactants accumulate near surfaces, and therefore, they can be used as agents to control interfacial water. Using mid-IR spectro-electrochemistry, we show that a modest concentration (1 mM) of the cationic surfactant CTAB in mixtures of 10 M water in an organic solvent (dDMSO) has a large effect on the interfacial water concentration, changing it by up to ∼35% in the presence of an applied potential. The major cause of water content change is displacement due to the accumulation or depletion of surfactants driven by potential. Two forces drive the surfactants to the electrode: the applied potential and the hydrophobic interactions with the water in the bulk. We have quantified their competition by varying the water content in the bulk. To our knowledge, for the first time, we have identified the electrochemical equivalent of the hydrophobic drive. For our system, a change in applied potential of 1 V has the same effect as adding a 0.55 mole fraction of water to the bulk. This work illustrates the significance of surfactants in the partitioning of water between the bulk and the surface and paves the way toward engineering interfacial water structures for controlling electrochemical reactions.
Collapse
Affiliation(s)
- Anuj K Pennathur
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Cindy Tseng
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Noemi Salazar
- Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jahan M Dawlaty
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
47
|
Xia-Hou YJ, Yu Y, Zheng JR, Yi J, Zhou J, Qin TX, You EM, Chen HL, Ding SY, Zhang L, Chang KL, Chen K, Moskovits M, Tian ZQ. Graphene Coated Dielectric Hierarchical Nanostructures for Highly Sensitive Broadband Infrared Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206167. [PMID: 36504426 DOI: 10.1002/smll.202206167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Broadband infrared (IR) absorption is sought after for wide range of applications. Graphene can support IR plasmonic waves tightly bound to its surface, leading to an intensified near-field. However, the excitation of graphene plasmonic waves usually relies on resonances. Thus, it is still difficult to directly obtain both high near-field intensity and high absorption rate in ultra-broad IR band. Herein, a novel method is proposed to directly realize high near-field intensity in broadband IR band by graphene coated manganous oxide microwires featured hierarchical nanostructures (HNSs-MnO@Gr MWs) both experimentally and theoretically. Both near-field intensity and IR absorption of HNSs-MnO@Gr MWs are enhanced by at least one order of magnitude compared to microwires with smooth surfaces. The results demonstrate that the HNSs-MnO@Gr MWs support vibrational sensing of small organic molecules, covering the whole fingerprint region and function group region. Compared with the graphene-flake-based enhancers, the signal enhancement factors reach a record high of 103 . Furthermore, just a single HNSs-MnO@Gr MW can be constructed to realize sensitively photoresponse with high responsivity (over 3000 V W-1 ) from near-IR to mid-IR. The graphene coated dielectric hierarchical micro/nanoplatform with enhanced near-field intensity is scalable and can harness for potential applications including spectroscopy, optoelectronics, and sensing.
Collapse
Affiliation(s)
- Yu-Jiao Xia-Hou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Yu Yu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Jun-Rong Zheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Jun Yi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Jing Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Ting-Xiao Qin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - En-Ming You
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Hai-Long Chen
- The Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Song-Yuan Ding
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Li Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| | - Kai-Li Chang
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Ke Chen
- Center for the Physics of Low-Dimensional Materials, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China
| | - Martin Moskovits
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
- Department of Chemistry, University of California, Santa Barbara, CA, 93106, USA
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, School of Electronic Science and Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, 361005, P. R. China
| |
Collapse
|
48
|
Zhou H, Xu L, Ren Z, Zhu J, Lee C. Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics. NANOSCALE ADVANCES 2023; 5:538-570. [PMID: 36756499 PMCID: PMC9890940 DOI: 10.1039/d2na00608a] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
The world today is witnessing the significant role and huge demand for molecular detection and screening in healthcare and medical diagnosis, especially during the outbreak of COVID-19. Surface-enhanced spectroscopy techniques, including Surface-Enhanced Raman Scattering (SERS) and Infrared Absorption (SEIRA), provide lattice and molecular vibrational fingerprint information which is directly linked to the molecular constituents, chemical bonds, and configuration. These properties make them an unambiguous, nondestructive, and label-free toolkit for molecular diagnostics and screening. However, new issues in molecular diagnostics, such as increasing molecular species, faster spread of viruses, and higher requirements for detection accuracy and sensitivity, have brought great challenges to detection technology. Advancements in artificial intelligence and machine learning (ML) techniques show promising potential in empowering SERS and SEIRA with rapid analysis and automatic data processing to jointly tackle the challenge. This review introduces the combination of ML and SERS/SEIRA by investigating how ML algorithms can be beneficial to SERS/SEIRA, discussing the general process of combining ML and SEIRA/SERS, highlighting the molecular diagnostics and screening applications based on ML-combined SEIRA/SERS, and providing perspectives on the future development of ML-integrated SEIRA/SERS. In general, this review offers comprehensive knowledge about the recent advances and the future outlook regarding ML-integrated SEIRA/SERS for molecular diagnostics and screening.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
| | - Liangge Xu
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
- National Key Laboratory of Special Environment Composite Technology, Harbin Institute of Technology Harbin 150001 China
| | - Zhihao Ren
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
| | - Jiaqi Zhu
- National Key Laboratory of Special Environment Composite Technology, Harbin Institute of Technology Harbin 150001 China
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore Singapore 117583
- Center for Intelligent Sensors and MEMS (CISM), National University of Singapore Singapore 117608
- NUS Suzhou Research Institute (NUSRI) Suzhou 215123 China
| |
Collapse
|
49
|
Lenk T, Schröder U. An experimental guide to in operando electrochemical Raman spectroscopy. J Solid State Electrochem 2023. [DOI: 10.1007/s10008-023-05381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
AbstractElectrochemical Raman spectroscopy can provide valuable insights into electrochemical reaction mechanisms. However, it also shows various pitfalls and challenges. This paper gives an overview of the necessary theoretical background, crucial practical considerations for successful measurement, and guidance for in situ/in operando electrochemical Raman spectroscopy. Several parameters must be optimized for suitable reaction and measurement conditions. From the experimental side, considerations for the setup, suitable signal enhancement methods, choice of material, laser, and objective lens are discussed. Different interface phenomena are reviewed in the context of data interpretation and evaluation.
Graphical Abstract
Collapse
|
50
|
Dey S, Dolci M, Zijlstra P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS PHYSICAL CHEMISTRY AU 2023; 3:143-156. [PMID: 36968450 PMCID: PMC10037498 DOI: 10.1021/acsphyschemau.2c00061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023]
Abstract
In recent years, the sensitivity and specificity of optical sensors has improved tremendously due to improvements in biochemical functionalization protocols and optical detection systems. As a result, single-molecule sensitivity has been reported in a range of biosensing assay formats. In this Perspective, we summarize optical sensors that achieve single-molecule sensitivity in direct label-free assays, sandwich assays, and competitive assays. We describe the advantages and disadvantages of single-molecule assays and summarize future challenges in the field including their optical miniaturization and integration, multimodal sensing capabilities, accessible time scales, and compatibility with real-life matrices such as biological fluids. We conclude by highlighting the possible application areas of optical single-molecule sensors that include not only healthcare but also the monitoring of the environment and industrial processes.
Collapse
Affiliation(s)
- Swayandipta Dey
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Mathias Dolci
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| | - Peter Zijlstra
- Eindhoven University of Technology, Department of Applied Physics, Eindhoven 5600 MB, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven, 5600 MB, The Netherlands
- Eindhoven Hendrik Casimir Institute, Eindhoven, 5600 MB, The Netherlands
| |
Collapse
|