1
|
Guo Y, Huang Z, Wang L, Gao X, Chen Y, Lu F, Sun C, Li H, Li H, He Y, Yan W, Liu L, Qu J. Fluorine-Nitrogen Codoped Carbon Dots for Visualization Imaging of Nucleic Acids via Two-Photon Fluorescence Lifetime Microscopy. Anal Chem 2025; 97:5744-5752. [PMID: 40053485 DOI: 10.1021/acs.analchem.4c06843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Fluorescence imaging is a key tool for visualizing the morphology and dynamics of nucleic acids (DNA and RNA) in living cells to understand their role in regulating the growth, development, and reproduction of organisms. However, effective probes capable of simultaneously targeting both DNA and RNA, as well as tools for analyzing their distribution and relative ratios in organisms, are currently lacking. Therefore, fluorine-nitrogen codoped carbon dots with two-photon absorption (F-NCDs) were synthesized by the hydrothermal method and exhibited stable fluorescence, good biocompatibility, and a fluorescence lifetime sensitive to nucleic acids (DNA and RNA). The as-prepared F-NCDs act as a probe to quantify and distinguish the distribution of DNA and RNA in the nucleus via multicolor imaging by two-photon fluorescence lifetime microscopy (TP-FLIM). The method was particularly effective in tracking changes in the DNA/RNA distribution in plant cell nuclei (onion root tips) during different division stages and distinguishing animal tissues (zebrafish). The development of F-NCDs provides insights into the preparation of two-photon carbon dots and offers an effective visualization tool for TP-FLIM to dynamically study the function of genetic material in various life activities.
Collapse
Affiliation(s)
- Yong Guo
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Zhenlong Huang
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Luwei Wang
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xinwei Gao
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Yingying Chen
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Feixiang Lu
- College of Agriculture, Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Smart Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Chengming Sun
- College of Agriculture, Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Smart Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Haitao Li
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hao Li
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
- College of Agriculture, Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Research Institute of Smart Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Yejun He
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wei Yan
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Liwei Liu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Junle Qu
- College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), Shenzhen University, Shenzhen, Guangdong 518060, China
| |
Collapse
|
2
|
Thompson ALC, Wopereis JLM, Tekle YI, Katz LA. Visualizing Epigenetics: A Review of Microscopy Techniques for Investigating DNA Methylation Patterns, Chromatin Structure, and Gene Expression. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozaf017. [PMID: 40156130 PMCID: PMC11953014 DOI: 10.1093/mam/ozaf017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/30/2025] [Accepted: 03/08/2025] [Indexed: 04/01/2025]
Abstract
Microscopy approaches are frequently used to decipher the localization and quantify the abundance of biologically relevant molecular targets within single cells. Recent research has applied many optical imaging techniques to specifically visualize epigenetic modifications, the mechanisms by which organisms control gene expression in response to environmental factors. While many molecular and omics-based approaches are used to understand epigenetic mechanisms, imaging approaches provide spatial information that supplies greater context for discerning function. Thus, labeling approaches have been developed to quantify and visualize epigenetic targets using various fluorescence microscopy, electron microscopy, and super-resolution microscopy techniques. Here, we synthesize information about microscopy methods that enable visualization of epigenetic marks including DNA methylation, histone modifications, and localization of RNAs, which provide insights into mechanisms involved in chromatin remodeling and gene expression. The ability to determine how and where specific epigenetic marks manifest structurally and functionally in cells demonstrates the power of microscopy in aiding our understanding of epigenetic processes.
Collapse
Affiliation(s)
- Anna-Lee C Thompson
- Department of Biological Sciences, Smith College, 44 College Ln, Northampton, MA 01063, USA
| | - Judith L M Wopereis
- Department of Biological Sciences, Smith College, 44 College Ln, Northampton, MA 01063, USA
| | - Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Ln SW, Atlanta, GA 30314, USA
| | - Laura A Katz
- Department of Biological Sciences, Smith College, 44 College Ln, Northampton, MA 01063, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, 300 Massachusetts Ave, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Li H, Lu Q, Wang Z, Zhang W, Wu Y, Sun Y, Hu Y, Xiao L, Zhong D, Deng S, Hou S. Three-dimensional random-access confocal microscopy with 3D remote focusing system. COMMUNICATIONS ENGINEERING 2024; 3:166. [PMID: 39528669 PMCID: PMC11555065 DOI: 10.1038/s44172-024-00320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Understanding biological activities in cells or deep tissues requires high-speed three-dimensional (3D) imaging. Substantial progress has been made with the emergence of 3D random-access microscopy. However, current solutions for fast 3D random-access imaging remain complex and costly. Herein we propose a simple, cost-effective, and fast 3D random-access confocal microscopy with remote focusing system. Our system shows isotropic response times across the x, y, and z axes, with a 34-fold improvement in axial response time over traditional piezo stages. We demonstrate its volumetric imaging performance with fluorescent particles and live cells. Furthermore, we validate the 3D random-access imaging capability of this system by continuously monitoring the signals in three different planes, showing a refresh rate of 500 Hz on two different positions in 3D. The simplicity, versatility, and affordability of our system promise widespread applications in research and industry.
Collapse
Affiliation(s)
- Haoyang Li
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Quan Lu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Information Engineering, Nanchang University, Nanchang, China
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
| | - Zhong Wang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenbo Zhang
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Yu Wu
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Yandong Sun
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China
- School of Information Engineering, Nanchang University, Nanchang, China
| | - Yue Hu
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, China
| | - Lehui Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| | - Dongping Zhong
- Center for Ultrafast Science and Technology, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| | - Suhui Deng
- School of Information Engineering, Nanchang University, Nanchang, China.
| | - Shangguo Hou
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
4
|
Kanno H, Hiramatsu K, Mikami H, Nakayashiki A, Yamashita S, Nagai A, Okabe K, Li F, Yin F, Tominaga K, Bicer OF, Noma R, Kiani B, Efa O, Büscher M, Wazawa T, Sonoshita M, Shintaku H, Nagai T, Braun S, Houston JP, Rashad S, Niizuma K, Goda K. High-throughput fluorescence lifetime imaging flow cytometry. Nat Commun 2024; 15:7376. [PMID: 39231964 PMCID: PMC11375057 DOI: 10.1038/s41467-024-51125-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024] Open
Abstract
Flow cytometry is a vital tool in biomedical research and laboratory medicine. However, its accuracy is often compromised by undesired fluctuations in fluorescence intensity. While fluorescence lifetime imaging microscopy (FLIM) bypasses this challenge as fluorescence lifetime remains unaffected by such fluctuations, the full integration of FLIM into flow cytometry has yet to be demonstrated due to speed limitations. Here we overcome the speed limitations in FLIM, thereby enabling high-throughput FLIM flow cytometry at a high rate of over 10,000 cells per second. This is made possible by using dual intensity-modulated continuous-wave beam arrays with complementary modulation frequency pairs for fluorophore excitation and acquiring fluorescence lifetime images of rapidly flowing cells. Moreover, our FLIM system distinguishes subpopulations in male rat glioma and captures dynamic changes in the cell nucleus induced by an anti-cancer drug. FLIM flow cytometry significantly enhances cellular analysis capabilities, providing detailed insights into cellular functions, interactions, and environments.
Collapse
Grants
- R35 GM152076 NIGMS NIH HHS
- This work was supported by JSPS Core-to-Core Program (K. G.), JSPS KAKENHI Grant Numbers 19H05633 and 20H00317 (K. G.), Ogasawara Foundation (K. G.), Nakatani Foundation (K. G.), Konica Minolta Foundation (K. G.), Philipp Franz von Siebold Award (K. G.), Humboldt Association of Japan (K. G.), Precise Measurement Technology Promotion Foundation (H. M.), JST PRESTO (JPMJPR1878) (K. H.), JST FOREST (21470594) (K. H.), JSPS Gran-in-Aid for Scientific Research (B) (22538379) (K. H.), JSPS Grant-in-Aid for Young Scientists (20K15227) (K. H.), Research Foundation for Opto-Science and Technology (K. H.), JSPS KAKENHI Grant Numbers 21J10600 and 24K18149 (H. K.), Konica Minolta Light Future Incentive Award (H. K.). We thank Mayu Sehara for her help with the cell sample preparation. The manuscript underwent editing with the assistance of a large language model (LLM).
Collapse
Affiliation(s)
- Hiroshi Kanno
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| | - Kotaro Hiramatsu
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Department of Chemistry, Kyushu University, Fukuoka, Japan
| | - Hideharu Mikami
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- Research Institute for Electronic Science, Hokkaido University, Hokkaido, Japan
| | - Atsushi Nakayashiki
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Shota Yamashita
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Arata Nagai
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Kohki Okabe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Fan Li
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Fei Yin
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | - Keita Tominaga
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Ryohei Noma
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Bahareh Kiani
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Olga Efa
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Martin Büscher
- Miltenyi Biotec B.V. & Co. KG, Bergisch Gladbach, Germany
| | - Tetsuichi Wazawa
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | | | - Hirofumi Shintaku
- Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takeharu Nagai
- SANKEN (The Institute of Scientific and Industrial Research), Osaka University, Osaka, Japan
| | - Sigurd Braun
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Jessica P Houston
- Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Miyagi, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience Graduate School of Biomedical Engineering, Tohoku University, Miyagi, Japan
| | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan.
- Institute of Technological Sciences, Wuhan University, Hubei, China.
- Department of Bioengineering, University of California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Ma J, Luo F, Hsiung CH, Dai J, Tan Z, Ye S, Ding L, Shen B, Zhang X. Chemical Control of Fluorescence Lifetime towards Multiplexing Imaging. Angew Chem Int Ed Engl 2024; 63:e202403029. [PMID: 38641550 DOI: 10.1002/anie.202403029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Fluorescence lifetime imaging has been a powerful tool for biomedical research. Recently, fluorescence lifetime-based multiplexing imaging has expanded imaging channels by using probes that harbor the same spectral channels and distinct excited state lifetime. While it is desirable to control the excited state lifetime of any given fluorescent probes, the rational control of fluorescence lifetimes remains a challenge. Herein, we chose boron dipyrromethene (BODIPY) as a model system and provided chemical strategies to regulate the fluorescence lifetime of its derivatives with varying spectral features. We find electronegativity of structural substituents at the 8' and 5' positions is important to control the lifetime for the green-emitting and red-emitting BODIPY scaffolds. Mechanistically, such influences are exerted via the photo-induced electron transfer and the intramolecular charge transfer processes for the 8' and 5' positions of BODIPY, respectively. Based on these principles, we have generated a group of BODIPY probes that enable imaging experiments to separate multiple targets using fluorescence lifetime as a signal. In addition to BODIPY, we envision modulation of electronegativity of chemical substituents could serve as a feasible strategy to achieve rational control of fluorescence lifetime for a variety of small molecule fluorophores.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Feng Luo
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Chia-Heng Hsiung
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Jianan Dai
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
| | - Zizhu Tan
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Songtao Ye
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| | - Lina Ding
- School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, Henan, China
| | - Baoxing Shen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Xin Zhang
- Department of Chemistry, Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Westlake University, 18 Shilongshan Road, Hangzhou, 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Pierzynska-Mach A, Diaspro A, Cella Zanacchi F. Super-resolution microscopy reveals the nanoscale cluster architecture of the DEK protein cancer biomarker. iScience 2023; 26:108277. [PMID: 38026229 PMCID: PMC10660485 DOI: 10.1016/j.isci.2023.108277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/02/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
DEK protein, a key chromatin regulator, is strongly overexpressed in various forms of cancer. While conventional microscopy revealed DEK as uniformly distributed within the cell nucleus, advanced super-resolution techniques uncovered cluster-like structures. However, a comprehensive understanding of DEK's cellular distribution and its implications in cancer and cell growth remained elusive. To bridge this gap, we employed single-molecule localization microscopy (SMLM) to dissect DEK's nanoscale organization in both normal-like and aggressive breast cancer cell lines. Our investigation included characteristics such as localizations per cluster, cluster areas, and intra-cluster localization densities (ICLDs). We elucidated how cluster features align with different breast cell types and how chromatin decompaction influences DEK clusters in these contexts. Our results indicate that DEK's intra-cluster localization density and nano-organization remain preserved and not significantly influenced by protein overexpression or chromatin compaction changes. This study advances the understanding of DEK's role in cancer and underscores its stable nanoscale behavior.
Collapse
Affiliation(s)
| | - Alberto Diaspro
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
- Department of Physics (DIFILAB), Department of Physics, University of Genoa, 16146 Genoa, Italy
| | - Francesca Cella Zanacchi
- Nanoscopy and NIC@IIT, Istituto Italiano di Tecnologia, 16152 Genoa, Italy
- Physics Department E. Fermi, University of Pisa, 56127 Pisa, Italy
- Centro per l’Integrazione della Strumentazione dell’Università di Pisa (CISUP), University of Pisa, 56127 Pisa, Italy
| |
Collapse
|
7
|
Nix JL, Schettini GP, Speckhart SL, Ealy AD, Biase FH. Ablation of OCT4 function in cattle embryos by double electroporation of CRISPR-Cas for DNA and RNA targeting (CRISPR-DART). PNAS NEXUS 2023; 2:pgad343. [PMID: 37954164 PMCID: PMC10637268 DOI: 10.1093/pnasnexus/pgad343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/11/2023] [Indexed: 11/14/2023]
Abstract
CRISPR-Cas ribonucleoproteins (RNPs) are important tools for gene editing in preimplantation embryos. However, the inefficient production of biallelic deletions in cattle zygotes has hindered mechanistic studies of gene function. In addition, the presence of maternal RNAs that support embryo development until embryonic genome activation may cause confounding phenotypes. Here, we aimed to improve the efficiency of biallelic deletions and deplete specific maternal RNAs in cattle zygotes using CRISPR-Cas editing technology. Two electroporation sessions with Cas9D10A RNPs targeting exon 1 and the promoter of OCT4 produced biallelic deletions in 91% of the embryos tested. In most cases, the deletions were longer than 1,000 nucleotides long. Electroporation of Cas13a RNPs prevents the production of the corresponding proteins. We electroporated Cas9D10A RNPs targeting exon 1, including the promoter region, of OCT4 in two sessions with inclusion of Cas13a RNPs targeting OCT4 mRNAs in the second session to ablate OCT4 function in cattle embryos. A lack of OCT4 resulted in embryos arresting development prior to blastocyst formation at a greater proportion (13%) than controls (31.6%, P < 0.001). The few embryos that developed past the morula stage did not form a normal inner cell mass. Transcriptome analysis of single blastocysts, confirmed to lack exon 1 and promoter region of OCT4, revealed a significant (False Discovery Rate, FDR < 0.1) reduction in transcript abundance of many genes functionally connected to stemness, including markers of pluripotency (CADHD1, DPPA4, GNL3, RRM2). The results confirm that OCT4 is a key regulator of genes that modulate pluripotency and is required to form a functional blastocyst in cattle.
Collapse
Affiliation(s)
- Jada L Nix
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Gustavo P Schettini
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Savannah L Speckhart
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Alan D Ealy
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| | - Fernando H Biase
- School of Animal Sciences, Virginia Polytechnic Institute and State University, 175 W Campus dr, Blacksburg, VA 24061, USA
| |
Collapse
|
8
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
9
|
Halder S, Paul M, Dyagala S, Aggrawal R, Aswal VK, Biswas S, Saha SK. Role of Gemini Surfactants with Variable Spacers and SiO 2 Nanoparticles in ct-DNA Compaction and Applications toward In Vitro/ In Vivo Gene Delivery. ACS APPLIED BIO MATERIALS 2023. [PMID: 37277159 DOI: 10.1021/acsabm.3c00256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Compaction of calf thymus DNA (ct-DNA) by two cationic gemini surfactants, 12-4-12 and 12-8-12, in the absence and presence of negatively charged SiO2 nanoparticles (NPs) (∼100 nm) has been explored using various techniques. 12-8-12 having a longer hydrophobic spacer induces a greater extent of ct-DNA compaction than 12-4-12, which becomes more efficient with SiO2 NPs. While 50% ct-DNA compaction in the presence of SiO2 NPs occurs at ∼77 nM of 12-8-12 and ∼130 nM of 12-4-12, but a conventional counterpart surfactant, DTAB, does it at its concentration as high as ∼7 μM. Time-resolved fluorescence anisotropy measurements show changes in the rotational dynamics of a fluorescent probe, DAPI, and helix segments in the condensed DNA. Fluorescence lifetime data and ethidium bromide exclusion assays reveal the binding sites of surfactants to ct-DNA. 12-8-12 with SiO2 NPs has shown the highest cell viability (≥90%) and least cell death in the human embryonic kidney (HEK) 293 cell lines in contrast to the cell viability of ≤80% for DTAB. These results show that 12-8-12 with SiO2 NPs has the highest time and dose-dependent cytotoxicity compared to 12-8-12 and 12-4-12 in the murine breast cancer 4T1 cell line. Fluorescence microscopy and flow cytometry are performed for in vitro cellular uptake of YOYO-1-labeled ct-DNA with surfactants and SiO2 NPs using 4T1 cells after 3 and 6 h incubations. The in vivo tumor accumulation studies are carried out using a real-time in vivo imaging system after intravenous injection of the samples into 4T1 tumor-bearing mice. 12-8-12 with SiO2 has delivered the highest amount of ct-DNA in cells and tumors in a time-dependent manner. Thus, the application of a gemini surfactant with a hydrophobic spacer and SiO2 NPs in compacting and delivering ct-DNA to the tumor is proven, warranting its further exploration in nucleic acid therapy for cancer treatment.
Collapse
Affiliation(s)
- Sayantan Halder
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Shalini Dyagala
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Rishika Aggrawal
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai, Maharashtra 400085, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Subit K Saha
- Department of Chemistry, Birla Institute of Technology & Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| |
Collapse
|
10
|
Maloshenok LG, Abushinova GA, Ryazanova AY, Bruskin SA, Zherdeva VV. Visualizing the Nucleome Using the CRISPR–Cas9 System: From in vitro to in vivo. BIOCHEMISTRY (MOSCOW) 2023; 88:S123-S149. [PMID: 37069118 PMCID: PMC9940691 DOI: 10.1134/s0006297923140080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
One of the latest methods in modern molecular biology is labeling genomic loci in living cells using fluorescently labeled Cas protein. The NIH Foundation has made the mapping of the 4D nucleome (the three-dimensional nucleome on a timescale) a priority in the studies aimed to improve our understanding of chromatin organization. Fluorescent methods based on CRISPR-Cas are a significant step forward in visualization of genomic loci in living cells. This approach can be used for studying epigenetics, cell cycle, cellular response to external stimuli, rearrangements during malignant cell transformation, such as chromosomal translocations or damage, as well as for genome editing. In this review, we focused on the application of CRISPR-Cas fluorescence technologies as components of multimodal imaging methods for in vivo mapping of chromosomal loci, in particular, attribution of fluorescence signal to morphological and anatomical structures in a living organism. The review discusses the approaches to the highly sensitive, high-precision labeling of CRISPR-Cas components, delivery of genetically engineered constructs into cells and tissues, and promising methods for molecular imaging.
Collapse
Affiliation(s)
- Liliya G Maloshenok
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Gerel A Abushinova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alexandra Yu Ryazanova
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
| | - Sergey A Bruskin
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victoria V Zherdeva
- Bach Institute of Biochemistry, Federal Research Center for Biotechnology of the Russian Academy of Sciences, Moscow, 119071, Russia.
| |
Collapse
|
11
|
Xi P, Wei X, Qu J, Tuchin VV. Shedding light on biology and healthcare-preface to the special issue on Biomedical Optics. LIGHT, SCIENCE & APPLICATIONS 2022; 11:156. [PMID: 35650200 PMCID: PMC9160079 DOI: 10.1038/s41377-022-00804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 05/11/2023]
Abstract
This special issue collects 20 excellent papers, spanning NIR II imaging, high-speed imaging, adaptive wavefront shaping, label-free imaging, ultrasensitive detection, polarization optics, photodynamic therapy, and preclinical applications. [Image: see text]
Collapse
Affiliation(s)
- Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, 100871, Beijing, China.
| | - Xunbin Wei
- Department of Biomedical Engineering, Peking University, 100081, Beijing, China
| | - Junle Qu
- Center for Biomedical Optics and Photonics (CBOP) & College of Physics and Optoelectronic Engineering, Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province and Ministry of Education, Shenzhen University, 518060, Shenzhen, China
| | - Valery V Tuchin
- Saratov State University, 83 Astrakhanskaya str., Saratov, 410012, Russia
| |
Collapse
|
12
|
Lin F, Zhang C, Zhao Y, Shen B, Hu R, Liu L, Qu J. In vivo two-photon fluorescence lifetime imaging microendoscopy based on fiber-bundle. OPTICS LETTERS 2022; 47:2137-2140. [PMID: 35486743 DOI: 10.1364/ol.453102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
Fluorescence lifetime imaging microendoscopy (FLIME) has been reported to investigate the physicochemical microenvironment in biological tissue. In this work, we designed a two-photon (TP) FLIME system based on a fiber-bundle glued with an achromatic mini-objective with 1.4-mm diameter, which was coupled to a standard TP microscope containing a dispersion precompensation module in the laser source. With 840 nm excitation, the field of view and lateral resolution of our system are 390 µm and 1.55 µm, respectively. To examine the capability of imaging in vivo, we obtained Z-stack (0-130 µm) TP-FLIME images from the intestine's surface of a mouse injected with squaraine dye. Further, we utilized the TP-FLIME system to image the kidney, liver, and xenografted tumor at 100-µm depth in vivo with cellular resolution, which features the distribution of cells and tissue structures with better contrast than intensity images. These results demonstrated that the proposed system is capable of measuring fluorescence lifetime in situ and provides a powerful tool to research the deep tissue microenvironment naturally.
Collapse
|
13
|
Wang XF, Sun J, Wang XL, Tian JK, Tian ZW, Zhang JL, Jia R. MD investigation on the binding of microphthalmia-associated transcription factor with DNA. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|