1
|
Wang T, Liu Y, Dong Y, Yin X, Lei D, Dai J. Colored Radiative Cooling: from Photonic Approaches to Fluorescent Colors and Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414300. [PMID: 40040298 PMCID: PMC12004913 DOI: 10.1002/adma.202414300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 02/12/2025] [Indexed: 03/06/2025]
Abstract
Radiative cooling technology is gaining prominence as a sustainable solution for improving thermal comfort and reducing energy consumption associated with cooling demands. To meet diverse functional requirements such as aesthetics, switchable cooling, camouflage, and colored smart windows, color is often preferred over a white opaque appearance in the design of radiative cooling materials. Colored radiative cooling (CRC) has emerged as a prevailing technology not only for achieving a colorful appearance but also for increasing the effective solar reflectance to enhance cooling performance (through the incorporation of fluorescent materials). This paper reviews recent advancements in CRC and its profound impact on energy savings and real-world applications. After introducing the fundamentals of CRC and color characterization, various photonic approaches are explored that leverage resonant structures to achieve coloration in radiative cooling, comparing them with conventional coloration methods based on optical materials like fluorescent pigments that can convert absorbed ultraviolet light into visible-light emission. Furthermore, the review delves into self-adaptive CRC materials featuring dynamic optical modulation that responds to temperature fluctuations. Lastly, the potential application of CRC materials is assessed, a comprehensive outlook on their future development is offered, and the critical challenges in practical applications are discussed.
Collapse
Affiliation(s)
- Tao Wang
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Ying Liu
- Department of Materials Science and EngineeringDepartment of PhysicsCenter for Functional PhotonicsHong Kong Branch of National Precious Metals Material Engineering Research Centre, and Hong Kong Institute of Clean EnergyCity University of Hong KongHong Kong999077China
| | - You Dong
- Department of Civil and Environmental EngineeringThe Hong Kong Polytechnic UniversityHong Kong999077China
| | - Xiaobo Yin
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Dangyuan Lei
- Department of Materials Science and EngineeringDepartment of PhysicsCenter for Functional PhotonicsHong Kong Branch of National Precious Metals Material Engineering Research Centre, and Hong Kong Institute of Clean EnergyCity University of Hong KongHong Kong999077China
| | - Jian‐Guo Dai
- Department of Architecture and Civil EngineeringCity University of Hong KongHong Kong999077China
| |
Collapse
|
2
|
Liu R, Wang S, Zhou Z, Zhang K, Wang G, Chen C, Long Y. Materials in Radiative Cooling Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2401577. [PMID: 38497602 PMCID: PMC11733833 DOI: 10.1002/adma.202401577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Radiative cooling (RC) is a carbon-neutral cooling technology that utilizes thermal radiation to dissipate heat from the Earth's surface to the cold outer space. Research in the field of RC has garnered increasing interest from both academia and industry due to its potential to drive sustainable economic and environmental benefits to human society by reducing energy consumption and greenhouse gas emissions from conventional cooling systems. Materials innovation is the key to fully exploit the potential of RC. This review aims to elucidate the materials development with a focus on the design strategy including their intrinsic properties, structural formations, and performance improvement. The main types of RC materials, i.e., static-homogeneous, static-composite, dynamic, and multifunctional materials, are systematically overviewed. Future trends, possible challenges, and potential solutions are presented with perspectives in the concluding part, aiming to provide a roadmap for the future development of advanced RC materials.
Collapse
Affiliation(s)
- Rong Liu
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Shancheng Wang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Zhengui Zhou
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Keyi Zhang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Guanya Wang
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Changyuan Chen
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| | - Yi Long
- Department of Electronic EngineeringThe Chinese University of Hong KongNew TerritoriesHong Kong SAR999077China
| |
Collapse
|
3
|
Huang J, Yuan L, Liao J, Liu Y, Li D, Wang Y, Lin H, Ji C, Ma X, Huang C, Luo X. A Janus Spectrally Selective Glazing Toward All-Season Energy-Efficient Windows. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407204. [PMID: 39434480 DOI: 10.1002/smll.202407204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/26/2024] [Indexed: 10/23/2024]
Abstract
Windows offer the most promising avenue for mitigating energy consumption and reducing greenhouse gas emissions. However, the balance between comfortable natural lighting and all-season energy savings is often neglected in extensive explorations of energy-efficient windows. Herein, a Janus glazing is proposed that enables the switch of passive radiative cooling and heating under the precondition of conveying sufficient natural light. Measurement results indicate that the Janus window maintains a visible transmittance of 0.47, while possesses a near-infrared (NIR) reflectivity/absorptivity of 0.75/0.71 and a mid-infrared (MIR) emissivity of 0.94/0.13 for the cooling and heating modes, respectively. As demonstrated by the outdoor test, the Janus window realizes a reduction of 7.1 °C for room cooling and an increase of 0.4 °C for room heating compared with commercial low-e window, potentially conserving 13%-53% of the total building energy consumption across China. Meanwhile, attributed to the photothermal effect, the Janus window can elevate the surface temperature by 6.1 °C compared with the low-e window, which can effectively reduce fogging occurrences on the window surface for ensuring sunlight entrance in the cold-weather conditions. This strategy offers novel prospects for enhancing energy efficiency in diverse applications, including architectural windows, greenhouse cultivation, photovoltaic generation, etc.
Collapse
Affiliation(s)
- Jingkai Huang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liming Yuan
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Jianming Liao
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Yang Liu
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Dongxian Li
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuetang Wang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - He Lin
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen Ji
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
| | - Xiaoliang Ma
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Huang
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangang Luo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, 610209, China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Science, P.O. Box 350, Chengdu, 610209, China
- College of Materials Sciences and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Fu Y, Chen L, Guo Y, Shi Y, Liu Y, Zeng Y, Lin Y, Luo D. Pyramid Textured Photonic Films with High-Refractive Index Fillers for Efficient Radiative Cooling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404900. [PMID: 39159127 PMCID: PMC11497053 DOI: 10.1002/advs.202404900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Indexed: 08/21/2024]
Abstract
Sub-ambient cooling technologies relying on passive radiation have garnered escalating research attention owing to the challenges posed by global warming and substantial energy consumption inherent in active cooling systems. However, achieving highly efficient radiative cooling devices capable of effective heat dissipation remains a challenge. Herein, by synergic optimization of the micro-pyramid surface structures and 2D hexagonal boron nitride nanoplates (h-BNNs) scattering fillers, pyramid textured photonic films with remarkable solar reflectivity of 98.5% and a mid-infrared (MIR) emittance of 97.2% are presented. The h-BNNs scattering filler with high thermal conductivity contributed to the enhanced through-plane thermal conductivity up to 0.496 W m-1 K-1 and the in-plane thermal conductivity of 3.175 W m-1 K-1. The photonic films exhibit an optimized effective radiative cooling power of 201.2 W m-2 at 40 °C under a solar irradiance of 900 W m-2 and a daily sub-ambient cooling effect up to 11 °C. Even with simultaneous internal heat generation by a 10 W ceramic heater and external solar irradiance of 500 W m-2, a sub-ambient cooling of 5 °C can be realized. The synergic matching strategy of high thermal conductivity scattering fillers and microstructured photonic surfaces holds promise for scalable sub-ambient radiative cooling technologies.
Collapse
Affiliation(s)
- Yuting Fu
- Department of Electrical & Electronic EngineeringSouthern University of Science and TechnologyXueyuan Road 1088, Nanshan DistrictShenzhen518055China
| | - Le Chen
- School of MicroelectronicsSouthern University of Science and TechnologyShenzhen518055China
| | - Yuao Guo
- Department of Electrical & Electronic EngineeringSouthern University of Science and TechnologyXueyuan Road 1088, Nanshan DistrictShenzhen518055China
| | - Yuqing Shi
- School of MicroelectronicsSouthern University of Science and TechnologyShenzhen518055China
| | - Yanjun Liu
- Department of Electrical & Electronic EngineeringSouthern University of Science and TechnologyXueyuan Road 1088, Nanshan DistrictShenzhen518055China
| | - Yuqiang Zeng
- School of MicroelectronicsSouthern University of Science and TechnologyShenzhen518055China
| | - Yuanjing Lin
- School of MicroelectronicsSouthern University of Science and TechnologyShenzhen518055China
| | - Dan Luo
- Department of Electrical & Electronic EngineeringSouthern University of Science and TechnologyXueyuan Road 1088, Nanshan DistrictShenzhen518055China
- State Key Laboratory of Optical Fiber and Cable Manufacture TechnologySouthern University of Science and TechnologyShenzhen518055China
- Guangdong Provisional Key Laboratory of Functional Oxide Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
5
|
Du Y, Li A, Zhang F, Gao H, Zhou X, Zhu J, Ye Z. Anti-UV Passive Radiative Cooling Chiral Nematic Liquid Crystal Films for Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400578. [PMID: 38805746 DOI: 10.1002/smll.202400578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Passive radiative cooling (PRC) can spontaneously dissipate heat to outer space through atmospheric transparent windows, providing a promising path to meet sustainable development goals. However, achieving simultaneously high transparency, color-customizable, and thermal management of PRC anti ultraviolet (anti-UV) films remains a challenge. Herein, a simple strategy is proposed to utilize liquid crystalline polymer, with high mid-infrared emissive, forming customizable structural color film by molecular self-assembly and polymerization-induced pitch gradient, which guarantees the balance of transparency in visible spectrum and sunlight reflection, rendering anti-UV colored window for thermal management. By performing tests, temperature fall of 5.4 and 7.9 °C are demonstrated at noon with solar intensity of 717 W m-2 and night, respectively. Vivid red-, green-, blue-structured colors, and colorless films are designed and implemented to suppress the solar input and control the effective visible light transmissivity considering the efficiency function of human vision. In addition, temperature rise of 11.1 °C is achieved by applying an alternating current field on the PRC film. This study provides a new perspective on the thermal management and aesthetic functionalities of smart windows and wearables.
Collapse
Affiliation(s)
- Yike Du
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Aotian Li
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Fan Zhang
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Han Gao
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Xuan Zhou
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
| | - Jiliang Zhu
- Department of Applied Physics, Hebei University of Technology, Tianjin, 300401, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| | - Zhicheng Ye
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, P. R. China
| |
Collapse
|
6
|
Jiang C, He L, Xuan Q, Liao Y, Dai JG, Lei D. Phase-change VO 2-based thermochromic smart windows. LIGHT, SCIENCE & APPLICATIONS 2024; 13:255. [PMID: 39294120 PMCID: PMC11410829 DOI: 10.1038/s41377-024-01560-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/30/2024] [Accepted: 07/31/2024] [Indexed: 09/20/2024]
Abstract
Thermochromic coatings hold promise in reducing building energy consumption by dynamically regulating the heat gain of windows, which are often regarded as less energy-efficient components, across different seasons. Vanadium dioxide (VO2) stands out as a versatile thermochromic material for smart windows owing to its reversible metal-to-insulator transition (MIT) alongside correlated structural and optical properties. In this review, we delve into recent advancements in the phase-change VO2-based thermochromic coatings for smart windows, spanning from the macroscopic crystal level to the microscopic structural level (including elemental doping and micro/nano-engineering), as well as advances in controllable fabrication. It is notable that hybridizing functional elements/materials (e.g., W, Mo/SiO2, TiN) with VO2 in delicate structural designs (e.g., core-shell, optical cavity) brings new degrees of freedom for controlling the thermochromic properties, including the MIT temperature, luminous transmittance, solar-energy modulation ability and building-relevant multi-functionality. Additionally, we provide an overview of alternative chromogenic materials that could potentially complement or surpass the intrinsic limitations of VO2. By examining the landscape of emerging materials, we aim to broaden the scope of possibilities for smart window technologies. We also offer insights into the current challenges and prospects of VO2-based thermochromic smart windows, presenting a roadmap for advancing this field towards enhanced energy efficiency and sustainable building design. In summary, this review innovatively categorizes doping strategies and corresponding effects of VO2, underscores their crucial NIR-energy modulation ability for smart windows, pioneers a theoretical analysis of inverse core-shell structures, prioritizes practical engineering strategies for solar modulation in VO2 films, and summarizes complementary chromogenic materials, thus ultimately advancing VO2-based smart window technologies with a fresh perspective.
Collapse
Affiliation(s)
- Cancheng Jiang
- Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Lanyue He
- Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Qingdong Xuan
- Department of Refrigeration and Cryogenics Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Yuan Liao
- Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Jian-Guo Dai
- Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, Centre for Functional Photonics, and Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
7
|
Li Z, Long L, Tang Z, Chen X, Huang Z, Ren Y, Liu Y, Ye H. Stretchable Metamaterials with Tunable Infrared Emissivity for Dynamic Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2024; 16:47639-47645. [PMID: 39223078 DOI: 10.1021/acsami.4c09758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Manipulation of infrared emissivity, which is closely related to surface structure and optical parameters of materials, is a crucial approach for realizing dynamic thermal management. In this study, we design a metamaterial consisting of an array of aluminum disks embedded on a surface of a stretchable elastomeric substrate. Mechanical stretching-induced deformation allows dynamic modification of the surface structure and equivalent optical parameters, thus enabling dynamic control of the emissivity. By utilizing the elastomer polydimethylsiloxane (PDMS) as the substrate, the microstructure interdisk gap can be altered by stretching the PDMS. Through theoretical calculations, the plausibility of this approach is explained by the excitation of plasmon resonance and the variation in the exposed area of highly absorbent PDMS, and the optimal structures for tuning the infrared emissivity are revealed to be 6 μm in diameter and 100 nm in height. Based on this design, we prepare samples with periods of 7 and 7.9 μm and experimentally demonstrate that a change in the period can cause a change in the emissivity and thus tunability in thermal control performance. The temperature difference between the two samples reaches 44.1 °C at a heating power of 0.28 W/cm2 for both samples. Furthermore, we construct a stretching platform that enables in situ mechanical stretching to realize dynamic changes in emissivity. The integral infrared emissivity of the sample increases from 0.32 to 0.5 at a biaxial tensile strain of 13%, achieving a 56% modulation rate of the integral infrared emissivity. The material is expected to enable dynamic thermal management.
Collapse
Affiliation(s)
- Zhaoran Li
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Linshuang Long
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Zhipeng Tang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Xiaopeng Chen
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Zizhen Huang
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuan Ren
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Yuchi Liu
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Hong Ye
- Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, PR China
| |
Collapse
|
8
|
Hu L, Wang C, Zhu H, Zhou Y, Li H, Liu L, Ma L. Adaptive Thermal Management Radiative Cooling Smart Window with Perfect Near-Infrared Shielding. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306823. [PMID: 38403873 DOI: 10.1002/smll.202306823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/02/2024] [Indexed: 02/27/2024]
Abstract
The architectural window with spectrally selective features and radiative cooling is an effective way to save building energy consumption. However, architectural windows that combine both functions are currently based on micro-nano photonic structures, which undoubtedly hinder their commercial application due to the complexity of manufacture. Herein, a novel tunable visible light transmittance radiative cooling smart window (TTRC smart window) with perfect near-infrared (NIR) shielding ability is manufactured via a mass-producible scraping method. TTRC smart window presents high luminous transmittance (Tlum = 56.8%), perfect NIR shielding (TNIR = 3.4%), bidirectional transparency adjustment ability unavailable in other transparent radiative coolers based on photonic structures (ΔTlum = 54.2%), and high emittance in the atmospheric window (over 94%). Outdoor measurements confirm that smart window can reduce 8.2 and 6.6 °C, respectively, compared to ordinary glass and indium tin oxide (ITO) glass. Moreover, TTRC smart window can save over 20% of annual energy in the tropics compared to ITO and ordinary glass. The simple preparation method employed in this work and the superior optical properties of the smart window have significantly broadened the scope of application of architectural windows and advanced the commercialization of architectural windows.
Collapse
Affiliation(s)
- Lechuan Hu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Chengchao Wang
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Haojun Zhu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Yan Zhou
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Haizeng Li
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Linhua Liu
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| | - Lanxin Ma
- School of Energy and Power Engineering, Shandong University, Jinan, Shandong, 250061, China
- Optics & Thermal Radiation Research Center, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
9
|
Yu J, Kwon D, Jeon H, Yoo Y. Assembly of Hollow Yttrium Oxide Spheres from Nano-Sized Yttrium Oxide for Advanced Passive Radiative Cooling Materials. Polymers (Basel) 2024; 16:1636. [PMID: 38931985 PMCID: PMC11207504 DOI: 10.3390/polym16121636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
This study presents significant advancements in passive radiative cooling (PRC), achieved using assembled hollow yttrium oxide spherical particles (AHYOSPs). We developed PRC films with enhanced optical properties by synthesizing micro-sized hollow Y2O3 particles and integrating them into a polydimethylsiloxane (PDMS) matrix. The findings revealed that AHYOSPs achieved a remarkable solar reflectance of 73.72% and an emissivity of 91.75%, significantly outperforming nano-sized yttrium oxide (NYO) and baseline PDMS. Field tests demonstrated that the AHYOSPs maintained their lowest temperature during daylight, confirming their superior cooling efficiency. Additionally, theoretical calculations using MATLAB indicated that the cooling capacity of AHYOSPs reached 103.77 W/m2, representing a substantial improvement over NYO and robustly validating the proposed nanoparticle assembly strategy. These results highlight the potential of structurally controlled particles to revolutionize PRC technologies, thereby offering a path toward more energy-efficient and environmentally friendly cooling solutions.
Collapse
Affiliation(s)
| | | | | | - Youngjae Yoo
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong 17546, Republic of Korea; (J.Y.); (D.K.)
| |
Collapse
|
10
|
Yuan Q, Zhang M, Wang D, Lv Y, Liu S, Mi HY, Han J, Liu C, Shen C. Solution-Processed One-Dimensional Photonic Crystals Based on Hollow Silica Exhibiting High Refractive Index Contrast. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29141-29152. [PMID: 38773701 DOI: 10.1021/acsami.4c02196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Poor interfacial quality and low refractive index contrast (Δn) are critical challenges for the development of high-performance one-dimensional photonic crystals (1DPhCs) via solution methods that impede their optical efficiency. Herein, we introduce an innovative approach by hybridizing hollow SiO2 with poly(vinyl alcohol), referred to as PHS, followed by alternate assembly with TiO2 via spin-coating, achieving a 1DPhC with Δn = 0.76 at the wavelength of 550 nm. This method circumvents the need for high-temperature treatment and complex curing conditions, resulting in a 1DPhC with superior interfacial and optical characteristics. By adjusting the thickness of the PHS layers, we can finely tune the reflectance spectrum, attaining over 99% reflectance at the photonic band gap. Furthermore, 1DPhC demonstrates excellent adhesion to polycarbonate substrates and retains its optimal optical performance even after rigorous environmental testing, including hygrothermal cycles, exposure to hot water, friction, and solvent sonication. This research paves the way for the facile fabrication of high-performance 1DPhCs under mild conditions, offering new perspectives for photonic material processing.
Collapse
Affiliation(s)
- Qi Yuan
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Minglu Zhang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Dongyu Wang
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Yan Lv
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Shuqi Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Hao-Yang Mi
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Jian Han
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technology, Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
11
|
Jaiswal AK, Hokkanen A, Khakalo S, Mäkelä T, Savolainen A, Kumar V. Thermochromic Nanocellulose Films for Temperature-Adaptive Passive Cooling. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15262-15272. [PMID: 38484044 PMCID: PMC10982930 DOI: 10.1021/acsami.3c18689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Energy efficiency in habitation spaces is a pivotal topic for maintaining energy sufficiency, cutting climate impact, and facilitating economic savings; thus, there is a critical need for solutions aimed at tackling this problem. One viable approach involves complementing active cooling methods with powerless or passive cooling ones. Moreover, considerable scope remains for the development of passive radiative cooling solutions based on sustainable materials. Cellulose, characterized by its abundance, renewability, and biodegradability, emerges as a promising material for this purpose due to its notable radiative cooling potential exploiting the mid-infrared (MIR) atmospheric transmission window (8-13 μm). In this work, we propose the utilization of thermochromic (TC) materials in conjunction with cellulose nanofibrils (CNF) to confer temperature-dependent adaptivity to hybrid CNF films. We employ a concept where high reflection, coupled with MIR emission in the heated state, facilitates cooling, while high visible light absorption in the cold state allows heating, thus enabling adaptive thermal regulation. CNF films were doped with black-to-leuco TC particles, and a thin silver layer was optionally applied to the films. The films exhibited a rapid transition (within 1 s) in their optical properties at ∼22 °C, becoming transparent above the transition temperature. Visible range transmittance of all samples ranged from 60 to 90%, with pronounced absorption in the 8-13 μm range. The cooling potential of the films was measured at 1-4 °C without any Ag layer and ∼10 °C with a Ag layer. In outdoor field testing, a peak cooling value of 12 °C was achieved during bright sunshine, which is comparable to a commercial solar film. A simulation model was also built based on the experimental results. The concept presented in this study extends beyond applications as standalone films but has applicability also in glass coatings. Overall, this work opens the door for a novel application opportunity for green cellulose-based materials.
Collapse
Affiliation(s)
- Aayush Kumar Jaiswal
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Ari Hokkanen
- Microelectronics, VTT Technical Research Centre of Finland Ltd., Tietotie 3, 02044 Espoo, Finland
| | - Sergei Khakalo
- Integrated
Computational Materials Engineering, VTT
Technical Research Centre of Finland Ltd., Vuorimiehentie 2, 02044 Espoo, Finland
- Department
of Civil Engineering, Aalto University, Rakentajanaukio 4, 02150 Espoo, Finland
| | - Tapio Mäkelä
- Sensing
Solutions, VTT Technical Research Centre
of Finland Ltd., Tietotie
3, 02044 Espoo, Finland
| | - Anniina Savolainen
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| | - Vinay Kumar
- Biomaterial
Processing and Products, VTT Technical Research
Centre of Finland Ltd., Tietotie 4E, 02044 Espoo, Finland
| |
Collapse
|
12
|
Yang M, Zeng Y, Du Q, Sun H, Yin Y, Yan X, Jiang M, Pan C, Sun D, Wang Z. Enhanced radiative cooling with Janus optical properties for low-temperature space cooling. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:629-637. [PMID: 39635101 PMCID: PMC11501828 DOI: 10.1515/nanoph-2023-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/17/2023] [Indexed: 12/07/2024]
Abstract
Passive daytime radiative cooling that could provide sub-ambient cooling emerges as a promising technology to reduce household energy consumption. Nonetheless, prevailing studies are predominantly focused on surface cooling, often overlooking its adaptability to enclosed spaces with active cooling technologies. Here we present a multilayer radiative cooling film (J-MRC) with Janus optical properties in the mid-infrared region, consisting of the nanoporous polyethylene films, the polyethylene oxide film, and silver nanowires. The top side of the J-MRC functions as a conventional radiative cooling material to supply sub-ambient surface cooling, while the bottom side with low mid-infrared emissivity transfers limited heat via thermal radiation to the low-temperature enclosures. Our experiments validate that the J-MRC possesses an enhanced space cooling performance in comparison to the conventional radiative cooling film. This work provides a valuable design concept for radiative cooling materials, thereby expanding their practical scenarios and contributing to reduce the carbon emission.
Collapse
Affiliation(s)
- Meng Yang
- City University of Hong Kong, Hong Kong SAR, China
- Southern University of Science and Technology, Shenzhen, China
| | - Yijun Zeng
- City University of Hong Kong, Hong Kong SAR, China
- The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qingyuan Du
- Southern University of Science and Technology, Shenzhen, China
| | - Haoyang Sun
- Southern University of Science and Technology, Shenzhen, China
| | - Yingying Yin
- City University of Hong Kong, Hong Kong SAR, China
| | - Xiantong Yan
- City University of Hong Kong, Hong Kong SAR, China
| | - Mengnan Jiang
- The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chin Pan
- City University of Hong Kong, Hong Kong SAR, China
| | - Dazhi Sun
- Southern University of Science and Technology, Shenzhen, China
| | - Zuankai Wang
- The Hong Kong Polytechnic University, Hong Kong SAR, China
| |
Collapse
|
13
|
Zhang Q, Rao Z, Ma R. Radiative cooling: arising from practice and in turn serving practice. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:563-582. [PMID: 39635105 PMCID: PMC11501159 DOI: 10.1515/nanoph-2023-0678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/22/2023] [Indexed: 12/07/2024]
Abstract
Radiative cooling, as a renewable cooling technology, is expected to mitigate growing global warming. However, the barrier when promoting radiative cooling from the laboratory to practice is still a blind spot and needs to be discussed right now. Here, on the basis of review for brief history, we propose a developing thread that the studies on radiative cooling arise from practice and in turn serves practice at the end. This perspective orderly elaborates fundamental limit in theory, realization of spectral-selective materials, practice on criteria for cooling performance, challenges and corresponding possible solutions in practice, and focusing on serving practice. We hope that the criticism for our own opinion could trigger researchers to deeply consider how to make achievement of radiative cooling better serving practice in the future.
Collapse
Affiliation(s)
- Quan Zhang
- Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Zhonghao Rao
- Hebei Engineering Research Center of Advanced Energy Storage Technology and Equipment, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Rujun Ma
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin300350, China
| |
Collapse
|
14
|
Wu T, Zou Q, Li Z, Chen B, Gao W, Sun Q, Zhao S. BaSO 4-Epoxy Resin Composite Film for Efficient Daytime Radiative Cooling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:638-646. [PMID: 38103026 DOI: 10.1021/acs.langmuir.3c02827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Conventional cooling methods are based on active cooling technology by air conditioning, which consumes a large amount of energy and emits greenhouse gases. Radiative cooling is a novel promising passive cooling technology that uses external space as the cooling source and requires no additional energy consumption. Herein, we propose an approach to prepare highly dispersed BaSO4 nanoparticles (NPs) using a direct precipitation method combined with the in situ surface modification technology. The as-prepared PVP-modified BaSO4 NPs with an average size of 20 nm can be stably dispersed in ethanol for more than 6 months and then were used as building blocks to prepare spherical BaSO4 clusters with an average size of 0.9 μm using a scalable spray drying technique. The BaSO4 NPs/clusters (mass ratio 1:1) were used for preparing radiative cooling epoxy resin film, showing a high solar reflectance of 71% and a high sky window emissivity of 0.94. More importantly, this composite film displays superior radiative cooling performance, which can reduce the ambient temperature by 13.5 °C for the indoor test and 7 °C for the outdoor test. Compared with the commercial BaSO4 filled film, our BaSO4-epoxy resin composite film offers advantages not only in radiative cooling but also in mechanical properties with a 16.6% increase of tensile strength and 40.1% increase of elongation at break, demonstrating its great application potential in the field of building air conditioning.
Collapse
Affiliation(s)
- Tengfei Wu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Quan Zou
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
| | - Zequan Li
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Bo Chen
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Wei Gao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Qian Sun
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| | - Shuangliang Zhao
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, PR China
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
| |
Collapse
|
15
|
Zhao Y, Liang Q, Li S, Chen Y, Liu X, Sun H, Wang C, Ji CY, Li J, Wang Y. Thermal Emission Manipulation Enabled by Nano-Kirigami Structures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305171. [PMID: 37705130 DOI: 10.1002/smll.202305171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/19/2023] [Indexed: 09/15/2023]
Abstract
The nano-kirigami metasurfaces have controllable 3D geometric parameters and dynamic transformation functions and therefore provide a strong spectral regulation capability of thermal emission. Here, the authors propose and demonstrate a dynamic and multifunctional thermal emitter based on deformable nano-kirigami structures, which can be actuated by electronic bias or mechanical compression. Selective emittance and the variation of radiation intensity/wavelength are achieved by adjusting the geometric shape and the transformation of the structures. Particularly, a thermal management device based on a composite structure of nano-kirigami and polydimethylsiloxane (PDMS) thin film is developed, which can dynamically switch the state of cooling and heating by simply pressing the device. The proposed thermal emitter designs with strong regulation capability and multiple dynamic adjustment strategies are desirable for energy and sensing applications and inspire further development of infrared emitters.
Collapse
Affiliation(s)
- Yinghao Zhao
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Qinghua Liang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Sufan Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yingying Chen
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Xing Liu
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Haozhe Sun
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Chong Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Chang-Yin Ji
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiafang Li
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Wang
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems and School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
16
|
So S, Yun J, Ko B, Lee D, Kim M, Noh J, Park C, Park J, Rho J. Radiative Cooling for Energy Sustainability: From Fundamentals to Fabrication Methods Toward Commercialization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305067. [PMID: 37949679 PMCID: PMC10787071 DOI: 10.1002/advs.202305067] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/18/2023] [Indexed: 11/12/2023]
Abstract
Radiative cooling, a technology that lowers the temperature of terrestrial objects by dissipating heat into outer space, presents a promising ecologically-benign solution for sustainable cooling. Recent years witness substantial progress in radiative cooling technologies, bringing them closer to commercialization. This comprehensive review provides a structured overview of radiative cooling technologies, encompassing essential principles, fabrication techniques, and practical applications, with the goal of guiding researchers toward successful commercialization. The review begins by introducing the fundamentals of radiative cooling and the associated design strategies to achieve it. Then, various fabrication methods utilized for the realization of radiative cooling devices are thoroughly discussed. This discussion includes detailed assessments of scalability, fabrication costs, and performance considerations, encompassing both structural designs and fabrication techniques. Building upon these insights, potential fabrication approaches suitable for practical applications and commercialization are proposed. Further, the recent efforts made toward the practical applications of radiative cooling technology, including its visual appearance, switching capability, and compatibility are examined. By encompassing a broad range of topics, from fundamental principles to fabrication and applications, this review aims to bridge the gap between theoretical research and real-world implementation, fostering the advancement and widespread adoption of radiative cooling technology.
Collapse
Affiliation(s)
- Sunae So
- Graduate School of Artificial Intelligence, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Electro-Mechanical Systems Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Jooyeong Yun
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Byoungsu Ko
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dasol Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Biomedical Engineering, Yonsei University, Wonju, 26493, Republic of Korea
| | - Minkyung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jaebum Noh
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Cherry Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junkyeong Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Junsuk Rho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- POSCO-POSTECH-RIST Convergence Research Center for Flat Optics and Metaphotonics, Pohang, 37673, Republic of Korea
| |
Collapse
|
17
|
Chae D, Lee SY, Lim H, Son S, Ha J, Park J, Park JH, Oh SJ, Lee H. Vivid Colored Cooling Structure Managing Full Solar Spectrum via Near-Infrared Reflection and Photoluminescence. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58274-58285. [PMID: 38051105 DOI: 10.1021/acsami.3c08790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Colored radiative cooling (CRC) offers an attractive alternative for surface and space cooling, while preserving the aesthetics of an object. However, there has been no study on the CRC using phosphors in regard to vivid coloration, sophisticated performance investigation, retention of properties, functionality, and structural flexibility all at once. Thus, to manage the entire solar spectrum, a colored cooling structure comprising a near-infrared (NIR)-reflective bottom layer and a top colored layer with a phosphor-embedded polymer matrix is proposed. The structure is paintable, vividly colored, hydrophobic, and ultraviolet (UV) and water resistant. In the daytime outdoor measurement, the structure with red, orange, and yellow colors exhibited lower temperature than a control group using commercial white paint by 4.7 °C, 7.2 °C, and 7.4 °C, respectively. After precise theoretical and experimental time-tracing temperature validation, the CRC performance enhancement from NIR reflection and photoluminescence effects was thoroughly analyzed, and a temperature reduction of up to 16.1 °C was achieved for the orange-colored structure. Furthermore, experiments of hydrophobicity infusion and exposure to UV and deionized water verified the durability of the colored cooling structure. In addition, flexible-film-type colored cooling structures were demonstrated using different bottom reflective layers, such as a silver thin film and porous aluminum oxide particle-embedded poly(vinylidene fluoride-co-hexafluoropropylene), suggesting the potential applicability of these colored cooling structures for vivid-colored, functional, and durable CRC.
Collapse
Affiliation(s)
- Dongwoo Chae
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sang Yeop Lee
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hangyu Lim
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soomin Son
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jisung Ha
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jaein Park
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jun Hyeok Park
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Heon Lee
- Department of Materials Science and Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
- ZERC, 620, New Engineering building, 73-15, Anam-ro, Seongbuk-gu, Seoul Republic of Korea
| |
Collapse
|
18
|
Yu S, Zhou P, Xi W, Chen Z, Deng Y, Luo X, Li W, Shiomi J, Hu R. General deep learning framework for emissivity engineering. LIGHT, SCIENCE & APPLICATIONS 2023; 12:291. [PMID: 38052800 DOI: 10.1038/s41377-023-01341-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/07/2023]
Abstract
Wavelength-selective thermal emitters (WS-TEs) have been frequently designed to achieve desired target emissivity spectra, as a typical emissivity engineering, for broad applications such as thermal camouflage, radiative cooling, and gas sensing, etc. However, previous designs require prior knowledge of materials or structures for different applications and the designed WS-TEs usually vary from applications to applications in terms of materials and structures, thus lacking of a general design framework for emissivity engineering across different applications. Moreover, previous designs fail to tackle the simultaneous design of both materials and structures, as they either fix materials to design structures or fix structures to select suitable materials. Herein, we employ the deep Q-learning network algorithm, a reinforcement learning method based on deep learning framework, to design multilayer WS-TEs. To demonstrate the general validity, three WS-TEs are designed for various applications, including thermal camouflage, radiative cooling and gas sensing, which are then fabricated and measured. The merits of the deep Q-learning algorithm include that it can (1) offer a general design framework for WS-TEs beyond one-dimensional multilayer structures; (2) autonomously select suitable materials from a self-built material library and (3) autonomously optimize structural parameters for the target emissivity spectra. The present framework is demonstrated to be feasible and efficient in designing WS-TEs across different applications, and the design parameters are highly scalable in materials, structures, dimensions, and the target functions, offering a general framework for emissivity engineering and paving the way for efficient design of nonlinear optimization problems beyond thermal metamaterials.
Collapse
Affiliation(s)
- Shilv Yu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Peng Zhou
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, Hubei, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, China
| | - Wang Xi
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zihe Chen
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuheng Deng
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, Hubei, China
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, China
| | - Xiaobing Luo
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wangnan Li
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, Hubei, China.
- Hubei Longzhong Laboratory, Wuhan University of Technology (Xiangyang Demonstration Zone), Xiangyang, 441000, Hubei, China.
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan.
| | - Run Hu
- School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
19
|
Zhu Y, Zhou Y, Qin B, Qin R, Qiu M, Li Q. Night-time radiative warming using the atmosphere. LIGHT, SCIENCE & APPLICATIONS 2023; 12:268. [PMID: 37949868 PMCID: PMC10638402 DOI: 10.1038/s41377-023-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023]
Abstract
Night-time warming is vital for human production and daily life. Conventional methods like active heaters are energy-intensive, while passive insulating films possess restrictions regarding space consumption and the lack of heat gain. In this work, a nanophotonic-based night-time warming strategy that passively inhibits thermal radiation of objects while actively harnessing that of atmosphere is proposed. By using a photonic-engineered thin film that exhibits high reflectivity (~0.91) in the atmospheric transparent band (8-14 μm) and high absorptivity (~0.7) in the atmospheric radiative band (5-8 and 14-16 μm), temperature rise of 2.1 °C/4.4 °C compared to typical low-e film and broadband absorber is achieved. Moreover, net heat loss as low as 9 W m-2 is experimentally observed, compared to 16 and 39 W m-2 for low-e film and broadband absorber, respectively. This strategy suggests an innovative way for sustainable warming, thus contributes to addressing the challenges of climate change and promoting global carbon neutrality.
Collapse
Affiliation(s)
- Yining Zhu
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yiwei Zhou
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bing Qin
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Rui Qin
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Min Qiu
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, 310024, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Qiang Li
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
20
|
Chen J, Song G, Cong S, Zhao Z. Resonant-Cavity-Enhanced Electrochromic Materials and Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300179. [PMID: 36929668 DOI: 10.1002/adma.202300179] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Indexed: 06/18/2023]
Abstract
With rapid advances in optoelectronics, electrochromic materials and devices have received tremendous attentions from both industry and academia for their strong potentials in wearable and portable electronics, displays/billboards, adaptive camouflage, tunable optics, and intelligent devices, etc. However, conventional electrochromic materials and devices typically present some serious limitations such as undesirable dull colors, and long switching time, hindering their deeper development. Optical resonators have been proven to be the most powerful platform for providing strong optical confinement and controllable lightmatter interactions. They generate locally enhanced electromagnetic near-fields that can convert small refractive index changes in electrochromic materials into high-contrast color variations, enabling multicolor or even panchromatic tuning of electrochromic materials. Here, resonant-cavity-enhanced electrochromic materials and devices, an advanced and emerging trend in electrochromics, are reviewed. In this review, w e will focus on the progress in multicolor electrochromic materials and devices based on different types of optical resonators and their advanced and emerging applications, including multichromatic displays, adaptive visible camouflage, visualized energy storage, and applications of multispectral tunability. Among these topics, principles of optical resonators, related materials/devices and multicolor electrochromic properties are comprehensively discussed and summarized. Finally, the challenges and prospects for resonant-cavity-enhanced electrochromic materials and devices are presented.
Collapse
Affiliation(s)
- Jian Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ge Song
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shan Cong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
21
|
Zhu L, Tian L, Jiang S, Han L, Liang Y, Li Q, Chen S. Advances in photothermal regulation strategies: from efficient solar heating to daytime passive cooling. Chem Soc Rev 2023; 52:7389-7460. [PMID: 37743823 DOI: 10.1039/d3cs00500c] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.
Collapse
Affiliation(s)
- Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Liang Tian
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Siyi Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Lihua Han
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Yunzheng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China.
| |
Collapse
|
22
|
Rouquette P, Amra C, Zerrad M, Grèzes-Besset C, Krol H. Photo-induced thermal radiation of optical interference coatings submitted to a spatio-temporal illumination. OPTICS EXPRESS 2023; 31:35431-35452. [PMID: 38017714 DOI: 10.1364/oe.495500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/05/2023] [Indexed: 11/30/2023]
Abstract
We present an electromagnetic model for photo-induced thermal radiation in multi-layer interference filters subjected to arbitrary pulsed illumination with limited beam size. Numerical calculation is used to analyze various structures affecting thermal radiation, such as multi-dielectric mirrors in the mid-infrared range. Other zero-admittance structures are shown to strongly confine and enhance the thermal radiation with an emissivity close to unity at pre-defined frequencies (wavelength and angles). Calculation tools are chosen that encourage the use of techniques for synthesizing thin-film multilayers able to control thermal radiation.
Collapse
|
23
|
Feng S, Yao L, Chen X, Liu C, Bu X, Huang Y, He M, Zhou Y. Dual-asymmetrically selective interfaces-enhanced poly(lactic acid)-based nanofabric with sweat management and switchable radiative cooling and thermal insulation. J Colloid Interface Sci 2023; 648:117-128. [PMID: 37295363 DOI: 10.1016/j.jcis.2023.05.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/29/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
All-weather personal thermal regulation has far been challenged by variable environments especially the regulatory failure caused by highly-dense solar radiation, low environmental radiation and the fluctuated epidermal moisture in different seasons. Herein, from the design of interface selectivity, dual-asymmetrically optical and wetting selective polylactic acid-based (PLA) Janus-type nanofabric is proposed to achieve on-demand radiative cooling and heating as well as sweat transportation. Hollow TiO2 particles are introduced in PLA nanofabric causing high interface scattering (∼99%) and infrared emission (∼91.2%) as well as surface hydrophobicity (CA > 140°). The strictly optical and wetting selectivity help achieve ∼12.8℃ of net cooling effect under > 1500 W/m2 of solar power and ∼5℃ of cooling advantage higher than cotton fabric and sweat resistance simultaneously. Contrarily, the semi-embedded Ag nanowires (AgNWs) with high conductivity (0.245 Ω/sq) endows the nanofabric with visible water permeability and excellent interface reflection for thermal radiation from body (>65%) thus causing ∼7℃ of thermal shielding. Through simple interface flipping, synergistical cooling-sweat reducing and warming-sweat resisting can be achieved to satisfy the thermal regulation in all weather. Compared with conventional fabrics, multi-functional Janus-type passive personal thermal management nanofabrics would be of great significance to achieve the personal health maintenance and energy sustainability.
Collapse
Affiliation(s)
- Shuangjiang Feng
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211100, Jiangsu Province, China
| | - Lei Yao
- School of Physics, Southeast University, Nanjing 211100, Jiangsu Province, China
| | - Xi Chen
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211100, Jiangsu Province, China
| | - Chenghuan Liu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211100, Jiangsu Province, China
| | - Xiaohai Bu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211100, Jiangsu Province, China; School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing 211167, Jiangsu Province, China
| | - Yuzhong Huang
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211100, Jiangsu Province, China; ZYfire Hose Co., Ltd, Taizhou 225599, Jiangsu Province, China
| | - Man He
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211100, Jiangsu Province, China.
| | - Yuming Zhou
- School of Chemistry and Chemical Engineering, Southeast University, Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, Nanjing 211100, Jiangsu Province, China.
| |
Collapse
|
24
|
Lee M, Kim G, Jung Y, Pyun KR, Lee J, Kim BW, Ko SH. Photonic structures in radiative cooling. LIGHT, SCIENCE & APPLICATIONS 2023; 12:134. [PMID: 37264035 PMCID: PMC10235094 DOI: 10.1038/s41377-023-01119-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 06/03/2023]
Abstract
Radiative cooling is a passive cooling technology without any energy consumption, compared to conventional cooling technologies that require power sources and dump waste heat into the surroundings. For decades, many radiative cooling studies have been introduced but its applications are mostly restricted to nighttime use only. Recently, the emergence of photonic technologies to achieves daytime radiative cooling overcome the performance limitations. For example, broadband and selective emissions in mid-IR and high reflectance in the solar spectral range have already been demonstrated. This review article discusses the fundamentals of thermodynamic heat transfer that motivates radiative cooling. Several photonic structures such as multilayer, periodical, random; derived from nature, and associated design procedures were thoroughly discussed. Photonic integration with new functionality significantly enhances the efficiency of radiative cooling technologies such as colored, transparent, and switchable radiative cooling applications has been developed. The commercial applications such as reducing cooling loads in vehicles, increasing the power generation of solar cells, generating electricity, saving water, and personal thermal regulation are also summarized. Lastly, perspectives on radiative cooling and emerging issues with potential solution strategies are discussed.
Collapse
Affiliation(s)
- Minjae Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Electronic Device Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea
| | - Gwansik Kim
- E-drive Materials Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyung Rok Pyun
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical Robotics, and Energy Engineering, Dongguk University, 30 pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Byung-Wook Kim
- E-drive Materials Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea.
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, 10027, USA.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD)/Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
25
|
Gao W, Chen Y. Emerging Materials and Strategies for Passive Daytime Radiative Cooling. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206145. [PMID: 36604963 DOI: 10.1002/smll.202206145] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/04/2022] [Indexed: 05/04/2023]
Abstract
In recent decades, the growing demands for energy saving and accompanying heat mitigation concerns, together with the vital goal for carbon neutrality, have drawn human attention to the zero-energy-consumption cooling technique. Recent breakthroughs in passive daytime radiative cooling (PDRC) might be a potent approach to combat the energy crisis and environmental challenges by directly dissipating ambient heat from the Earth to the cold outer space instead of only moving the heat across the Earth's surface. Despite significant progress in cooling mechanisms, materials design, and application exploration, PDRC faces potential functionalization, durability, and commercialization challenges. Herein, emerging materials and rational strategies for PDRC devices are reviewed. First, the fundamental physics and thermodynamic concepts of PDRC are examined, followed by a discussion on several categories of PDRC devices developed to date according to their implementation mechanism and material properties. Emerging strategies for performance enhancement and specific functions of PDRC are discussed in detail. Potential applications and possible directions for designing next-generation high-efficiency PDRC are also discussed. It is hoped that this review will contribute to exciting advances in PDRC and aid its potential applications in various fields.
Collapse
Affiliation(s)
- Wei Gao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Yongping Chen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, P. R. China
| |
Collapse
|
26
|
Huang T, Chen Q, Huang J, Lu Y, Xu H, Zhao M, Xu Y, Song W. Scalable Colored Subambient Radiative Coolers Based on a Polymer-Tamm Photonic Structure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16277-16287. [PMID: 36930799 DOI: 10.1021/acsami.2c23270] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Daytime radiative coolers cool objects below the air temperature without any electricity input, while most of them are limited by a silvery or whitish appearance. Colored daytime radiative coolers (CDRCs) with diverse colors, scalable manufacture, and subambient cooling have not been achieved. We introduce a polymer-Tamm photonic structure to enable a high infrared emittance and an engineered absorbed solar irradiance, governed by the quality factor (Q-factor). We theoretically determine the theoretical thresholds for subambient cooling through yellow, magenta, and cyan CDRCs. We experimentally fabricate and observe a temperature drop of 2.6-8.8 °C on average during the daytime and 4.0-4.4 °C during the nighttime. Furthermore, we demonstrate a scalable-manufactured magenta CDRC with a width of 60 cm and a length of 500 cm by a roll-to-roll deposition technique. This work provides guidelines for large-scale CDRCs and offers unprecedented opportunities for potential applications with energy-saving, aesthetic, and visual comfort demands.
Collapse
Affiliation(s)
- Tianzhe Huang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123, People's Republic of China
| | - Qixiang Chen
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jinhua Huang
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yuehui Lu
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Hua Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Yao Xu
- Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, People's Republic of China
| | - Weijie Song
- Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
27
|
Li Y, Chen X, Yu L, Pang D, Yan H, Chen M. Janus Interface Engineering Boosting Visibly Transparent Radiative Cooling for Energy Saving. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4122-4131. [PMID: 36642885 DOI: 10.1021/acsami.2c20462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Visibly transparent radiative cooling (VTRC) shows great potential in energy-saving buildings or car glasses for lighting and cooling. How to balance the lighting and cooling performance is of significance to VTRC. In addition, the thermal radiative performance on the inner side should also be determined for cooling. Here, we designed a Janus VTRC coating consisting of a thermal emitter, PDMS, and a transparent near-infrared reflector, TiO2/Ag/TiO2. On the outer side, the visible transmittance T̅vis = 0.70, while the solar reflectance R̅solar = 0.40, and the thermal emittance in the atmospheric window ε̅LWIR = 0.94 can be achieved experimentally. On the inner side, the thermal emittance ε̅IR can be 0.90 or 0.01 depending on the substrate (glass or near-infrared reflector), which acts as the radiative conductor or barrier for energy saving in hot or cold internal situations. Compared with glass, the designed PDMS/NIR/glass achieves an average temperature drop of 14.6 °C experimentally. The energy-saving calculation based on seven cities in China shows that the VTRC coating can save 34-44% of the annual cooling energy consumption. This Janus visibly transparent radiative cooling technology with internal and external regulation provides a potential strategy for energy saving under the requirement of simultaneous lighting and cooling.
Collapse
Affiliation(s)
- Yanan Li
- School of Energy Science and Engineering, Central South University, Changsha410083, China
| | - Xingyu Chen
- School of Energy Science and Engineering, Central South University, Changsha410083, China
| | - Li Yu
- School of Energy Science and Engineering, Central South University, Changsha410083, China
| | - Dan Pang
- School of Energy Science and Engineering, Central South University, Changsha410083, China
| | - Hongjie Yan
- School of Energy Science and Engineering, Central South University, Changsha410083, China
| | - Meijie Chen
- School of Energy Science and Engineering, Central South University, Changsha410083, China
| |
Collapse
|
28
|
Ma D, Chen L, Fan F, Wang Q, Duan G, Bi L, Mei L, Bi K, Chen Y, Duan H. Solar Light Management Enabled by Dual-Responsive Smart Window. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56065-56073. [PMID: 36508176 DOI: 10.1021/acsami.2c15767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Smart windows with tunable optical properties for energy-saving and privacy protection applications are receiving increasing attention. However, current studies of smart windows either involve the use of complex material preparation processes and complex device systems for window switching or continue to face several challenges, including low luminous transmittance, low luminous and solar modulation, and narrow wavelength range management problems. Here, we report a dual-responsive smart window that achieves solar light management in the range of 200-2500 nm. This smart window is fabricated by combining a reversible thermoresponsive hydrogel that acts as a thermochromic material with a ZnO/Ag/ZnO multilayer film that acts as a transparent heater. The as-prepared smart window can modulate solar light over a range from ultraviolet to infrared and achieves active responses to high-temperature weather, with passive responses being produced through electrical heating. The smart window shows high luminous transmittance (81.7%) and high luminous modulation (81.6%), together with an outstanding solar modulation performance (62.9%). In outdoor demonstrations, the as-prepared smart window exhibited a promising temperature regulation ability under strong solar irradiation. Therefore, the proposed smart window promises to provide a simple and effective energy management technology for buildings.
Collapse
Affiliation(s)
- Dongxu Ma
- College of Mechanical and Vehicle Engineering, National Engineering Research Center for High-Efficiency Grinding, Hunan University, Changsha410082, China
| | - Lei Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Center for High-Efficiency Grinding, Hunan University, Changsha410082, China
| | - Fu Fan
- College of Mechanical and Vehicle Engineering, National Engineering Research Center for High-Efficiency Grinding, Hunan University, Changsha410082, China
| | - Qingyu Wang
- College of Mechanical and Vehicle Engineering, National Engineering Research Center for High-Efficiency Grinding, Hunan University, Changsha410082, China
| | - Guihui Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Center for High-Efficiency Grinding, Hunan University, Changsha410082, China
| | - Lei Bi
- National Engineering Research Center of Electromagnetic Radiation Control Materials, State Key Laboratory of Electronic Thin-Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu610054, China
| | - Linyu Mei
- School of Mechanical Engineering, North University of China, Taiyuan030051, China
| | - Kaixi Bi
- School of Instrument and Electronics, North University of China, Taiyuan030051, China
| | - Yiqin Chen
- College of Mechanical and Vehicle Engineering, National Engineering Research Center for High-Efficiency Grinding, Hunan University, Changsha410082, China
| | - Huigao Duan
- College of Mechanical and Vehicle Engineering, National Engineering Research Center for High-Efficiency Grinding, Hunan University, Changsha410082, China
| |
Collapse
|
29
|
Quasi-BIC-Based High-Q Perfect Absorber with Decoupled Resonant Wavelength and Q Factor. ELECTRONICS 2022. [DOI: 10.3390/electronics11152313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Q factor in a quasi-BIC-based optical device can approach infinity and has therefore been attracting the attention of many researchers in recent years. However, this mode is barely applied to absorbers since it mainly tunes the radiative loss. The resonant wavelength of quasi-BICs normally couples with the Q factor, and it is difficult to independently tune one of them while maintaining the other, which weakens the flexibility of tuning. In this work, a quasi-BIC-based high-Q perfect absorber with some unique features is proposed. It shows a decoupled relationship between the resonant wavelength and the Q factor such that these two properties can be independently tuned by changing different structure parameters. In addition, both radiative and resistive losses are tunable. An easy method is proposed to design a perfect absorber with different resonant wavelengths and different Q factors, and a near-infrared perfect absorber with a Q factor as high as 5.13 × 105 is designed. This work proposes a method to tune the quasi-BIC mode, thereby introducing a new paradigm for the design of a high-Q perfect absorber.
Collapse
|
30
|
Liu G, Liu M, Fu G, Liu X, Liu Z. Kerr nonlinear medium assisted double-face absorbers for differential manipulation via an all-optical operation. OPTICS EXPRESS 2022; 30:26597-26608. [PMID: 36236847 DOI: 10.1364/oe.464878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/29/2022] [Indexed: 06/16/2023]
Abstract
Recently, light absorbers have attracted great attentions due to their promising in applications in functional optoelectronic devices. Herein, we theoretically propose and numerically demonstrate a new absorber platform, which consists of a 280-nm-thick photonic nonlinear waveguide film covering on the metal grating structure. Strong reflection inhibition and absorption enhancement is achieved in both the forward and backward directions, which indicates potential novel performances since the previous reports only achieved absorption in one side due to the using of opaque metal film substrate or the reflective mirror. The anti-reflection bands or the absorption peaks at the shorter and longer wavelength ranges are related to the excitation of the propagating surface plasmon resonance by the slit-assisted grating and the cavity mode by the slit in the metal film. Strong differential manipulation is realized for the double-face absorbers via the all-optical operation. Moreover, the operation wavelengths for the double-face light absorber can be modified strongly via using an asymmetric dielectric medium for the coating films. These new findings pave approaches for subtractive lightwave modulation technology, selective filtering, multiplex sensing and detection, etc.
Collapse
|
31
|
Dereń PJ. Passive radiant cooling without sacrificing the aesthetics of objects. LIGHT, SCIENCE & APPLICATIONS 2022; 11:192. [PMID: 35760788 PMCID: PMC9237084 DOI: 10.1038/s41377-022-00895-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photonic-engineered passive radiative cooling built into decorative climate-controlled enclosures reduces the active power consumption of the existing enclosure without sacrificing its aesthetics.
Collapse
|