1
|
Chen J, Xie X, Li S, Liu Z, Wang JT, He J, Liu Y. Strain-Induced Ferromagnetism and Valley Polarization Enhancement in WSe 2/WSe 2/NiPS 3 Moiré Superlattices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2502479. [PMID: 40370294 DOI: 10.1002/smll.202502479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/11/2025] [Indexed: 05/16/2025]
Abstract
Moiré superlattices, formed by stacking layered materials with slight lattice mismatches or rotational misalignment, provide a powerful platform for engineering quantum states at the nanoscale. These systems enable precise control over exciton dynamics and correlated electronic phases through the moiré potential. While significant progress has been made in understanding moiré excitons in twisted bilayer systems, their integration with magnetic materials for tunable excitonic control remains challenging. Here, a heterostructure comprising twisted bilayer WSe2 and the antiferromagnet NiPS3 is investigated, placed on an optical microcavity with silicon holes. Low-temperature photoluminescence (PL) measurements reveal that the microcavity edge enhances both the PL intensity and optical anisotropy of moiré excitons. Additionally, strain modulation at the microcavity edge alters the magnetic ordering of NiPS3 and significantly enhances the valley polarization under an external magnetic field. These findings demonstrate a robust approach for integrating magnetic order with moiré superlattices, offering new avenues for controlling exciton properties in quantum information and photonic applications.
Collapse
Affiliation(s)
- Junying Chen
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision, Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Xing Xie
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision, Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Shaofei Li
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision, Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Jun He
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision, Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Yanping Liu
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
- State Key Laboratory of Precision, Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
- Shenzhen Research Institute of Central South University, Shenzhen, 518000, P. R. China
| |
Collapse
|
2
|
Murase D, Shinokita K, Wakafuji Y, Onodera M, Machida T, Watanabe K, Taniguchi T, Bi J, Zhou Z, Zhao S, Matsuda K. All Dry Transfer Processes Utilizing Au Exfoliation for Predetermined Shapes of Transition Metal Dichalcogenide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10099-10107. [PMID: 40234203 DOI: 10.1021/acs.langmuir.4c04629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Two-dimensional (2D) materials have attracted significant attention owing to their exceptional electrical and optical properties. The high-quality monolayer 2D materials are usually fabricated by mechanical exfoliation from bulk single crystals using a scotch tape method, limiting the flake size and production yield. Extensive efforts have been made to increase the production yield and size by using an Au-assisted process, such as the modified mechanical exfoliation method. However, the wet-etching processes are inevitable in the scalable Au-assisted mechanical exfoliation method, which causes defect formation and unintentional contamination, leading to a quality decrease in the monolayer 2D material flakes. Here, we developed a Au-assisted all dry transfer method without any wet process for fabricating 2D materials and their van der Waals (vdW) heterostructures. The developed dry transfer technique using patterned Au substrates and h-BN on polymer stamps gives us a large area and designed shape of monolayer 2D materials and their vdW heterostructures with clean interfaces. It will be beneficial for building high-quality vdW heterostructures, allowing us to explore and develop more potential applications in electrical and optical devices based on monolayer 2D materials.
Collapse
Affiliation(s)
- Daiki Murase
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
- College of Energy Engineering, Zhejiang University, Hangzhou 310003, China
| | - Keisuke Shinokita
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yusai Wakafuji
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | - Momoko Onodera
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | - Tomoki Machida
- Institute of Industrial Science, University of Tokyo, Tokyo 153-8505, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jianfeng Bi
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Zhou Zhou
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Sihan Zhao
- School of Physics, Interdisciplinary Center for Quantum Information, Zhejiang Key Laboratory of Micro-Nano Quantum Chips and Quantum Control, and State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Kazunari Matsuda
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Karmakar A, Al-Mahboob A, Zawadzka N, Raczyński M, Yang W, Arfaoui M, Gayatri, Kucharek J, Sadowski JT, Shin HS, Babiński A, Pacuski W, Kazimierczuk T, Molas MR. Twisted MoSe 2 Homobilayer Behaving as a Heterobilayer. NANO LETTERS 2024; 24:9459-9467. [PMID: 39042710 PMCID: PMC11311526 DOI: 10.1021/acs.nanolett.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.
Collapse
Affiliation(s)
- Arka Karmakar
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Abdullah Al-Mahboob
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Natalia Zawadzka
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mateusz Raczyński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Weiguang Yang
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Mehdi Arfaoui
- Département
de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia
| | - Gayatri
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Julia Kucharek
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jerzy T. Sadowski
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Hyeon Suk Shin
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
- Center
for 2D Quantum Heterostructures, Institute
for Basic Science (IBS), Suwon 16419, Republic
of Korea
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Adam Babiński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Wojciech Pacuski
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Tomasz Kazimierczuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej R. Molas
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
4
|
Ninhos P, Tserkezis C, Mortensen NA, Peres NMR. Tunable Exciton Polaritons in Band-Gap Engineered Hexagonal Boron Nitride. ACS NANO 2024. [PMID: 39041180 DOI: 10.1021/acsnano.4c07003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
We show that hexagonal boron nitride (hBN), a two-dimensional insulator, when subjected to an external superlattice potential forms a paradigm for electrostatically tunable excitons in the near- and mid-ultraviolet (UV). With a combination of analytical and numerical methods, we see that the imposed potential has three consequences: (i) It renormalizes the effective mass tensor, leading to anisotropic effective masses. (ii) It renormalizes the band gap, eventually reducing it. (iii) It reduces the exciton binding energies. All these consequences depend on a single dimensionless parameter, which includes the product of strength of the external potential with its period. In addition to the excitonic energy levels, we compute the optical conductivity along two orthogonal directions and from it the absorption spectrum. The results for the latter show that our system is able to mimic a grid polarizer. These characteristics make one-dimensional hBN superlattices a viable and meaningful platform for fine-tuned polaritonics in the UV to visible spectral range.
Collapse
Affiliation(s)
- Pedro Ninhos
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Christos Tserkezis
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - N Asger Mortensen
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- D-IAS─Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Nuno M R Peres
- POLIMA─Center for Polariton-driven Light-Matter Interactions, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
- Centro de Física (CF-UM-UP) and Departamento de Física, Universidade do Minho, P-4710-057 Braga, Portugal
- International Iberian Nanotechnology Laboratory (INL), Av Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
5
|
Xie X, Wu B, Ding J, Li S, Chen J, He J, Liu Z, Wang JT, Liu Y. Emergence of Optical Anisotropy in Moiré Superlattice via Heterointerface Engineering. NANO LETTERS 2024. [PMID: 39012034 DOI: 10.1021/acs.nanolett.4c01327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The interaction between light and moiré superlattices presents a platform for exploring unique light-matter phenomena. Tailoring these optical properties holds immense potential for advancing the utilization of moiré superlattices in photonics, optoelectronics, and valleytronics. However, the control of the optical polarization state in moiré superlattices, particularly in the presence of moiré effects, remains elusive. Here, we unveil the emergence of optical anisotropy in moiré superlattices by constructing twisted WSe2/WSe2/SiP heterostructures. We report a linear polarization degree of ∼70% for moiré excitons, attributed to the spatially nonuniform charge distribution, corroborated by first-principles calculations. Furthermore, we demonstrate the modulation of this linear polarization state via the application of a magnetic field, resulting in polarization angle rotation and a magnetic-field-dependent linear polarization degree, influenced by valley coherence and moiré potential effects. Our findings demonstrate an efficient strategy for tuning the optical polarization state of moiré superlattices using heterointerface engineering.
Collapse
Affiliation(s)
- Xing Xie
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Biao Wu
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junnan Ding
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Shaofei Li
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junying Chen
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Jun He
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Yanping Liu
- Institute of Quantum Physics, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
6
|
Geng H, Tang J, Wu Y, Yu Y, Guest JR, Zhang R. Imaging Valley Excitons in a 2D Semiconductor with Scanning Tunneling Microscope-Induced Luminescence. ACS NANO 2024; 18:8961-8970. [PMID: 38470346 DOI: 10.1021/acsnano.3c12555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Valley excitons dominate the optoelectronic response of transition-metal dichalcogenides and are drastically affected by structural and environmental inhomogeneities localized in these materials. Critical to understanding and controlling these nanoscale excitonic changes is the ability to correlate the imaging of excitonic states with crystalline structures on the atomic scale. Here, we apply scanning tunneling microscope-induced luminescence microscopy to image valley excitons in a semiconducting transition-metal dichalcogenide monolayer decoupled by a 10 nanometer-thick hexagonal-boron-nitride flake incorporated in a lateral homojunction on an Au electrode surface. This design enables the observation of chiral excitonic emission arising from neutral and charged valley excitons of the monolayer semiconductor at ambipolar voltages with a quantum efficiency up to ∼10-5 photon/electron. The measured light helicity demonstrates considerable circular polarization dependent on the sample voltage, reaching as much as 40%. The real-space luminescence imaging maps─at subnanometer resolution─of the valley excitons reveal striking spatial variations associated with localized inhomogeneities, including surface impurities and possibly nanoscale dielectric and/or potential disorders in the monolayer. Our study introduces a promising format for 2D materials to explore and tailor their optoelectronic processes at the atomic scale.
Collapse
Affiliation(s)
- Hairui Geng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei Anhui 230601, China
| | - Jie Tang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei Anhui 230601, China
| | - Yanwei Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei Anhui 230601, China
| | - Yuanqin Yu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei Anhui 230601, China
| | - Jeffrey R Guest
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Rui Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Optoelectronic Information Acquisition and Manipulation, Ministry of Education, School of Physics and Optoelectronics Engineering, Anhui University, Hefei Anhui 230601, China
| |
Collapse
|
7
|
Wang J, Cheng F, Sun Y, Xu H, Cao L. Stacking engineering in layered homostructures: transitioning from 2D to 3D architectures. Phys Chem Chem Phys 2024; 26:7988-8012. [PMID: 38380525 DOI: 10.1039/d3cp04656g] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Artificial materials, characterized by their distinctive properties and customized functionalities, occupy a central role in a wide range of applications including electronics, spintronics, optoelectronics, catalysis, and energy storage. The emergence of atomically thin two-dimensional (2D) materials has driven the creation of artificial heterostructures, harnessing the potential of combining various 2D building blocks with complementary properties through the art of stacking engineering. The promising outcomes achieved for heterostructures have spurred an inquisitive exploration of homostructures, where identical 2D layers are precisely stacked. This perspective primarily focuses on the field of stacking engineering within layered homostructures, where precise control over translational or rotational degrees of freedom between vertically stacked planes or layers is paramount. In particular, we provide an overview of recent advancements in the stacking engineering applied to 2D homostructures. Additionally, we will shed light on research endeavors venturing into three-dimensional (3D) structures, which allow us to proactively address the limitations associated with artificial 2D homostructures. We anticipate that the breakthroughs in stacking engineering in 3D materials will provide valuable insights into the mechanisms governing stacking effects. Such advancements have the potential to unlock the full capability of artificial layered homostructures, propelling the future development of materials, physics, and device applications.
Collapse
Affiliation(s)
- Jiamin Wang
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, P. R. China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fang Cheng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, P. R. China
| | - Yan Sun
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China.
| | - Hai Xu
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, P. R. China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liang Cao
- Anhui Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
8
|
Sun X, Suriyage M, Khan AR, Gao M, Zhao J, Liu B, Hasan MM, Rahman S, Chen RS, Lam PK, Lu Y. Twisted van der Waals Quantum Materials: Fundamentals, Tunability, and Applications. Chem Rev 2024; 124:1992-2079. [PMID: 38335114 DOI: 10.1021/acs.chemrev.3c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Twisted van der Waals (vdW) quantum materials have emerged as a rapidly developing field of two-dimensional (2D) semiconductors. These materials establish a new central research area and provide a promising platform for studying quantum phenomena and investigating the engineering of novel optoelectronic properties such as single photon emission, nonlinear optical response, magnon physics, and topological superconductivity. These captivating electronic and optical properties result from, and can be tailored by, the interlayer coupling using moiré patterns formed by vertically stacking atomic layers with controlled angle misorientation or lattice mismatch. Their outstanding properties and the high degree of tunability position them as compelling building blocks for both compact quantum-enabled devices and classical optoelectronics. This paper offers a comprehensive review of recent advancements in the understanding and manipulation of twisted van der Waals structures and presents a survey of the state-of-the-art research on moiré superlattices, encompassing interdisciplinary interests. It delves into fundamental theories, synthesis and fabrication, and visualization techniques, and the wide range of novel physical phenomena exhibited by these structures, with a focus on their potential for practical device integration in applications ranging from quantum information to biosensors, and including classical optoelectronics such as modulators, light emitting diodes, lasers, and photodetectors. It highlights the unique ability of moiré superlattices to connect multiple disciplines, covering chemistry, electronics, optics, photonics, magnetism, topological and quantum physics. This comprehensive review provides a valuable resource for researchers interested in moiré superlattices, shedding light on their fundamental characteristics and their potential for transformative applications in various fields.
Collapse
Affiliation(s)
- Xueqian Sun
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Manuka Suriyage
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ahmed Raza Khan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Department of Industrial and Manufacturing Engineering, University of Engineering and Technology (Rachna College Campus), Gujranwala, Lahore 54700, Pakistan
| | - Mingyuan Gao
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Jie Zhao
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Boqing Liu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Md Mehedi Hasan
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Sharidya Rahman
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria 3800, Australia
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
| | - Ruo-Si Chen
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Ping Koy Lam
- Department of Quantum Science & Technology, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yuerui Lu
- School of Engineering, College of Engineering and Computer Science, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
- Australian Research Council Centre of Excellence for Quantum Computation and Communication Technology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
9
|
Ge A, Ge X, Sun L, Lu X, Ma L, Zhao X, Yao B, Zhang X, Zhang T, Jing W, Zhou X, Shen X, Lu W. Unraveling the strain tuning mechanism of interlayer excitons in WSe 2/MoSe 2heterostructure. NANOTECHNOLOGY 2024; 35:175207. [PMID: 38266306 DOI: 10.1088/1361-6528/ad2232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/23/2024] [Indexed: 01/26/2024]
Abstract
Atomically thin transition metal dichalcogenides (TMDs) exhibit rich excitonic physics, due to reduced dielectric screening and strong Coulomb interactions. Especially, some attractive topics in modern condensed matter physics, such as correlated insulator, superconductivity, topological excitons bands, are recently reported in stacking two monolayer (ML) TMDs. Here, we clearly reveal the tuning mechanism of tensile strain on interlayer excitons (IEXs) and intralayer excitons (IAXs) in WSe2/MoSe2heterostructure (HS) at low temperature. We utilize the cryogenic tensile strain platform to stretch the HS, and measure by micro-photoluminescence (μ-PL). The PL peaks redshifts of IEXs and IAXs in WSe2/MoSe2HS under tensile strain are well observed. The first-principles calculations by using density functional theory reveals the PL peaks redshifts of IEXs and IAXs origin from bandgap shrinkage. The calculation results also show the Mo-4d states dominating conduction band minimum shifts of the ML MoSe2plays a dominant role in the redshifts of IEXs. This work provides new insights into understanding the tuning mechanism of tensile strain on IEXs and IAXs in two-dimensional (2D) HS, and paves a way to the development of flexible optoelectronic devices based on 2D materials.
Collapse
Affiliation(s)
- Anping Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xun Ge
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Liaoxin Sun
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinle Lu
- Key Laboratory of Polar Materials and Devices, Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Lei Ma
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, People's Republic of China
| | - Xinchao Zhao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Bimu Yao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- Department of Physics, Shanghai Normal University, Shanghai, 200234, People's Republic of China
| | - Tao Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wenji Jing
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaohao Zhou
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Xuechu Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| | - Wei Lu
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, People's Republic of China
| |
Collapse
|
10
|
Dai Y, Zhang Z, Zhao P, Cheng Y. Interlayer-coupling-engineerable flat bands in twisted MoSi 2N 4bilayers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:165501. [PMID: 38211330 DOI: 10.1088/1361-648x/ad1d86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
The two-dimensional layered semiconductor MoSi2N4, which has several advantages including high strength, excellent stability, high hole mobility, and high thermal conductivity, was recently successfully synthesized using chemical vapor deposition. Based on first-principles calculations, we investigate the effects of the twist angle and interlayer distance variation on the electronic properties of twisted bilayer MoSi2N4. The flat bands are absent for twisted bilayer MoSi2N4when the twist angleθis reduced to 3.89°. Taking twisted bilayer MoSi2N4withθof 5.09° as an example, we find that flat bands emerge as the interlayer distance decreases. As the interlayer distance can be effectively modulated by hydrostatic pressure, we propose hydrostatic pressure as a knob for tailoring the flat bands in twisted bilayer MoSi2N4. Our findings provide theoretical support for extending the applications of MoSi2N4in strong correlation physics and superconductivity.
Collapse
Affiliation(s)
- Yang Dai
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhineng Zhang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Puqin Zhao
- School of Physical and Mathematical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Yingchun Cheng
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
11
|
Qian W, Qi P, Dai Y, Shi B, Tao G, Liu H, Zhang X, Xiang D, Fang Z, Liu W. Strongly Localized Moiré Exciton in Twisted Homobilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305200. [PMID: 37649150 DOI: 10.1002/smll.202305200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Indexed: 09/01/2023]
Abstract
Artificially molding exciton flux is the cornerstone for developing promising excitonic devices. In the emerging hetero/homobilayers, the spatial separated charges prolong exciton lifetimes and create out-plane dipoles, facilitating electrically control exciton flux on a large scale, and the nanoscale periodic moiré potentials arising from twist-angle or/and lattice mismatch can substantially alter exciton dynamics, which are mainly proved in the heterostructures. However, the spatially indirect excitons dynamics in homobilayers without lattice mismatch remain elusive. Here the nonequilibrium dynamics of indirect exciton in homobilayers are systematically investigated. The homobilayers with slightly twist-angle can induce a deep moiré potential (>50 meV) in the energy landscape of indirect excitons, resulting in a strongly localized moiré excitons insulating the transport dynamics from phonons and disorder. These findings provide insights into the exciton dynamics and many-body physics in moiré superlattices modulated energy landscape, with implications for designing excitonic devices operating at room temperature.
Collapse
Affiliation(s)
- Wenqi Qian
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Pengfei Qi
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Beibei Shi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Haiyi Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Xubin Zhang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Dong Xiang
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing, 100871, China
| | - Weiwei Liu
- Institute of Modern Optics, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, Tianjin, 300350, China
| |
Collapse
|
12
|
Wu B, Xie X, Zheng H, Li S, Ding J, He J, Liu Z, Liu Y. Engineering anisotropy in 2D transition metal dichalcogenides via heterostructures. OPTICS LETTERS 2023; 48:5867-5870. [PMID: 37966739 DOI: 10.1364/ol.503999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023]
Abstract
Two-dimensional (2D) semiconductors featuring low-symmetry crystal structures hold an immense potential for the design of advanced optoelectronic devices, leveraging their inherent anisotropic attributes. While the synthesis techniques for transition metal dichalcogenides (TMDs) have matured, a promising avenue emerges: the induction of anisotropy within symmetric TMDs through interlayer van der Waals coupling engineering. Here, we unveil the creation of heterostructures (HSs) by stacking highly symmetric MoSe2 with low-symmetry ReS2, introducing artificial anisotropy into monolayer MoSe2. Through a meticulous analysis of angle-dependent photoluminescence (PL) spectra, we discern a remarkable anisotropic intensity ratio of approximately 1.34. Bolstering this observation, the angle-resolved Raman spectra provide unequivocal validation of the anisotropic optical properties inherent to MoSe2. This intriguing behavior can be attributed to the in-plane polarization of MoSe2, incited by the deliberate disruption of lattice symmetry within the monolayer MoSe2 structure. Collectively, our findings furnish a conceptual blueprint for engineering both isotropic and anisotropic HSs, thereby unlocking an expansive spectrum of applications in the realm of high-performance optoelectronic devices.
Collapse
|
13
|
Wu B, Zheng H, Li S, Wang CT, Ding J, He J, Liu Z, Wang JT, Liu Y. Enhanced Homogeneity of Moiré Superlattices in Double-Bilayer WSe 2 Homostructure. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48475-48484. [PMID: 37796741 DOI: 10.1021/acsami.3c06949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Moiré superlattices have emerged as a promising platform for investigating and designing optically generated excitonic properties. The electronic band structure of these systems can be qualitatively modulated by interactions between the top and bottom layers, leading to the emergence of new quantum phenomena. However, the inhomogeneities present in atomically thin bilayer moiré superlattices created by artificial stacking have hindered a deeper understanding of strongly correlated electron properties. In this work, we report the fabrication of homogeneous moiré superlattices with controllable twist angles using a 2L-WSe2/2L-WSe2 homostructure. By adding extra layers, we provide additional degrees of freedom to tune the optical properties of the moiré superlattices while mitigating the nonuniformity problem. The presence of an additional bottom layer acts as a buffer, reducing the inhomogeneity of the moiré superlattice, while the encapsulation effect of the additional top and bottom WSe2 monolayers further enhances the localized moiré excitons. Our observations of alternating circularly polarized photoluminescence confirm the existence of moiré excitons, and their characteristics were further confirmed by theoretical calculations. These findings provide a fundamental basis for studying moiré potential correlated quantum phenomena and pave the way for their application in quantum optical devices.
Collapse
Affiliation(s)
- Biao Wu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Haihong Zheng
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Shaofei Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Chang-Tian Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Junnan Ding
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Jun He
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006 ,Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
14
|
Xie X, Ding J, Wu B, Zheng H, Li S, Wang CT, He J, Liu Z, Wang JT, Liu Y. Pressure-Induced Dynamic Tuning of Interlayer Coupling in Twisted WSe 2/WSe 2 Homobilayers. NANO LETTERS 2023; 23:8833-8841. [PMID: 37726204 DOI: 10.1021/acs.nanolett.3c01640] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Moiré superlattices induced by twisted van der Waals (vdW) heterostructures or homostructures have recently gained significant attention due to their potential to generate exotic strong-correlation electronic and phonon phenomena. However, the lack of dynamic tuning for interlayer coupling of moiré superlattices hinders a thorough understanding and development of the moiré correlation state. Here, we present a dynamic tuning method for twisted WSe2/WSe2 homobilayers using a diamond anvil cell (DAC). We demonstrate the powerful tuning of interlayer coupling and observe an enhanced response to pressure for interlayer breathing modes and the rapid descent of indirect excitons in twisted WSe2/WSe2 homobilayers. Our findings indicate that the introduction of a moiré superlattice for WSe2 bilayers gives rise to hybridized excitons, which lead to the different pressure-evolution exciton behaviors compared to natural WSe2 bilayers. Our results provide a novel understanding of moiré physics and offer an effective method to tune interlayer coupling of moiré superlattices.
Collapse
Affiliation(s)
- Xing Xie
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junnan Ding
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Biao Wu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Haihong Zheng
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Shaofei Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Chang-Tian Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun He
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Camperdown, New South Wales 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Camperdown, New South Wales 2006 Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, Shenzhen 518000, People's Republic of China
| |
Collapse
|
15
|
Xie X, Ding J, Wu B, Zheng H, Li S, Wang CT, He J, Liu Z, Wang JT, Duan JA, Liu Y. Observation of optical anisotropy and a linear dichroism transition in layered silicon phosphide. NANOSCALE 2023. [PMID: 37455620 DOI: 10.1039/d3nr01765f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The investigation of in-plane two-dimensional (2D) anisotropic materials has garnered significant attention due to their exceptional electronic, optical, and mechanical characteristics. The anisotropic optical properties and angle-dependent photodetectors based on 2D anisotropic materials have been extensively studied. However, novel in-plane anisotropic materials still need to be explored to satisfy for distinct environments and devices. Here, we report the remarkable anisotropic behavior of excitons and demonstrate a unique linear-dichroism transition of absorption between ultraviolet and visible light in layered silicon phosphide (SiP) through the analysis of polarization photoluminescence (PL) and absorbance spectra. Its high absorption linear dichroism ratio of 1.16 at 388 nm, 1.15 at 532 nm, and 1.19 at 733 nm is revealed, suggesting the brilliant non-isotropic responses. The robust periodic variation of the A1 and A2 Raman modes in 2D SiP materials allows for the determination of their crystal orientation. Furthermore, the presence of indirect excitons with phonon sidebands in the temperature-dependent PL spectra exhibits non-monotonic energy shifts with increasing temperature, which is attributed to an enhanced electron-phonon interaction and thermal expansion. Our findings provide valuable insights into the fundamental physical properties of layered SiP and offer guidelines for designing polarization-sensitive photodetectors and angle-dependent devices based on 2D anisotropic materials.
Collapse
Affiliation(s)
- Xing Xie
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Junnan Ding
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Biao Wu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Haihong Zheng
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Shaofei Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
| | - Chang-Tian Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jun He
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| | - Ji-An Duan
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, Shenzhen 518057, People's Republic of China
| |
Collapse
|
16
|
Zheng H, Wu B, Li S, Ding J, He J, Liu Z, Wang CT, Wang JT, Pan A, Liu Y. Localization-enhanced moiré exciton in twisted transition metal dichalcogenide heterotrilayer superlattices. LIGHT, SCIENCE & APPLICATIONS 2023; 12:117. [PMID: 37173297 PMCID: PMC10182042 DOI: 10.1038/s41377-023-01171-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The stacking of twisted two-dimensional (2D) layered materials has led to the creation of moiré superlattices, which have become a new platform for the study of quantum optics. The strong coupling of moiré superlattices can result in flat minibands that boost electronic interactions and generate interesting strongly correlated states, including unconventional superconductivity, Mott insulating states, and moiré excitons. However, the impact of adjusting and localizing moiré excitons in Van der Waals heterostructures has yet to be explored experimentally. Here, we present experimental evidence of the localization-enhanced moiré excitons in the twisted WSe2/WS2/WSe2 heterotrilayer with type-II band alignments. At low temperatures, we observed multiple excitons splitting in the twisted WSe2/WS2/WSe2 heterotrilayer, which is manifested as multiple sharp emission lines, in stark contrast to the moiré excitonic behavior of the twisted WSe2/WS2 heterobilayer (which has a linewidth 4 times wider). This is due to the enhancement of the two moiré potentials in the twisted heterotrilayer, enabling highly localized moiré excitons at the interface. The confinement effect of moiré potential on moiré excitons is further demonstrated by changes in temperature, laser power, and valley polarization. Our findings offer a new approach for localizing moiré excitons in twist-angle heterostructures, which has the potential for the development of coherent quantum light emitters.
Collapse
Affiliation(s)
- Haihong Zheng
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China
| | - Biao Wu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China
| | - Shaofei Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China
| | - Junnan Ding
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China
| | - Jun He
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Chang-Tian Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| | - Jian-Tao Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, 523808, Dongguan, Guangdong, China
| | - Anlian Pan
- Hunan Institute of Optoelectronic Integration, College of Materials Science and Engineering, Hunan University, 410082, Changsha, Hunan, China.
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, 410083, Changsha, Hunan, China.
- Shenzhen Research Institute of Central South University, 518000, Shenzhen, China.
| |
Collapse
|
17
|
Zheng H, Wu B, Li S, He J, Liu Z, Wang CT, Wang JT, Duan JA, Liu Y. Strain-tunable valley polarization and localized excitons in monolayer WSe 2. OPTICS LETTERS 2023; 48:2393-2396. [PMID: 37126281 DOI: 10.1364/ol.487201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Monolayer transition metal dichalcogenides (TMDs) have a crystalline structure with broken spatial inversion symmetry, making them promising candidates for valleytronic applications. However, the degree of valley polarization is usually not high due to the presence of intervalley scattering. Here, we use the nanoindentation technique to fabricate strained structures of WSe2 on Au arrays, thus demonstrating the generation and detection of strained localized excitons in monolayer WSe2. Enhanced emission of strain-localized excitons was observed as two sharp photoluminescence (PL) peaks measured using low-temperature PL spectroscopy. We attribute these emerging sharp peaks to excitons trapped in potential wells formed by local strains. Furthermore, the valley polarization of monolayer WSe2 is modulated by a magnetic field, and the valley polarization of strained localized excitons is increased, with a high value of up to approximately 79.6%. Our results show that tunable valley polarization and localized excitons can be realized in WSe2 monolayers, which may be useful for valleytronic applications.
Collapse
|
18
|
Singh S, Gong W, Stevens CE, Hou J, Singh A, Zhang H, Anantharaman SB, Mohite AD, Hendrickson JR, Yan Q, Jariwala D. Valley-Polarized Interlayer Excitons in 2D Chalcogenide-Halide Perovskite-van der Waals Heterostructures. ACS NANO 2023; 17:7487-7497. [PMID: 37010369 DOI: 10.1021/acsnano.2c12546] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Interlayer excitons (IXs) in two-dimensional (2D) heterostructures provide an exciting avenue for exploring optoelectronic and valleytronic phenomena. Presently, valleytronic research is limited to transition metal dichalcogenide (TMD) based 2D heterostructure samples, which require strict lattice (mis) match and interlayer twist angle requirements. Here, we explore a 2D heterostructure system with experimental observation of spin-valley layer coupling to realize helicity-resolved IXs, without the requirement of a specific geometric arrangement, i.e., twist angle or specific thermal annealing treatment of the samples in 2D Ruddlesden-Popper (2DRP) halide perovskite/2D TMD heterostructures. Using first-principle calculations, time-resolved and circularly polarized luminescence measurements, we demonstrate that Rashba spin-splitting in 2D perovskites and strongly coupled spin-valley physics in monolayer TMDs render spin-valley-dependent optical selection rules to the IXs. Consequently, a robust valley polarization of ∼14% with a long exciton lifetime of ∼22 ns is obtained in type-II band aligned 2DRP/TMD heterostructure at ∼1.54 eV measured at 80 K. Our work expands the scope for studying spin-valley physics in heterostructures of disparate classes of 2D semiconductors.
Collapse
Affiliation(s)
- Simrjit Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Applied Physics and Eindhoven Hendrik Casimir Institute, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Weiyi Gong
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Christopher E Stevens
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
- KBR Inc., Beavercreek, Ohio 45431, United States
| | - Jin Hou
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Aditya Singh
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Huiqin Zhang
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Surendra B Anantharaman
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Aditya D Mohite
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas 77005, United States
| | - Joshua R Hendrickson
- Sensors Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Qimin Yan
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
19
|
Zhao LY, Wang H, Liu TY, Li FF, Zhou Q, Wang HY. Tailoring photoluminescence of WS 2-microcavity coupling devices in broad visible range. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:753-760. [PMID: 39679339 PMCID: PMC11636489 DOI: 10.1515/nanoph-2022-0705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/08/2023] [Accepted: 01/14/2023] [Indexed: 12/17/2024]
Abstract
Most of the previous TMDC-photon coupling devices were mainly based on A exciton due to its high oscillator strength and large exciton binding energy. Less effort has been focused on the modulation of the emission of B exciton and Rydberg states in TMDCs, especially in monolayer WS2. Here, we demonstrate that the photoluminescence (PL) emission of WS2-microcavity coupling devices can be tailored in a broad visible wavelength range (490 nm-720 nm). In contrast to the intrinsic PL emission of monolayer WS2, 25-fold enhanced B exciton emission and significant PL emission from the 2s Rydberg state can be observed. From the transient absorption (TA) measurements, the strongly coupled hybrid states based on B exciton can be remarkably fingerprinted. Furthermore, the strongly enhanced PL emission from the coupled B exciton has been demonstrated due to the strongly increased lower polariton (LP) state population and the internal conversion pathway being blocked in the strong coupling regime. Besides, the remarkable PL emission from the 2s Rydberg state is also revealed and confirmed by the additional ground state bleaching signal in TA spectra. These physical mechanisms about tailoring the PL emission in low dimensional TMDCs can provide significant references for constructing highly efficient optoelectronic devices.
Collapse
Affiliation(s)
- Le-Yi Zhao
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Hai Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| | - Tian-Yu Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| | - Fang-Fei Li
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Qiang Zhou
- Synergetic Extreme Condition High-Pressure Science Center, State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Hai-Yu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun130012, China
| |
Collapse
|
20
|
Liu W, Luo S, Qi X, Guo G, Li J, Tang H, Li X, Huang X, Tang Z, Zhong J. Inversion Symmetry and Exotic Interlayer Exciton Behavior in Twisted Trilayer MoS 2 Produced by Vapor Deposition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:4724-4732. [PMID: 36629832 DOI: 10.1021/acsami.2c18687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional materials (2DMs) that are stacked vertically with a certain twist angle provide new degrees of freedom for designing novel physical properties. Twist-related properties of homogeneous bilayer and heterogeneous bilayer 2DMs, such as excitons and phonons, have been described in many pioneering works. However, twist-related properties of homogeneous trilayer 2DMs have been rarely reported. In this work, trilayer MoS2 with the twisted angle of 12° by optimized vapor deposition rather than the conventional mechanical stacking method was successfully fabricated. The inversion symmetry of trilayer MoS2 is changed by twist. Phonons and excitons produced by twist have an enormous influence on the interlayer interaction of trilayer MoS2, making trilayer MoS2 appear to have exotic optical properties. Compared with monolayer MoS2, the phonon vibration and photoluminescence intensity of trilayer MoS2 with one-interlayer-twisted are significantly improved, and the second harmonic generation response in the non-twist region of trilayer MoS2 is ∼3 times that of monolayer MoS2. In addition, interlayer coupling, inversion symmetry, and exciton behavior of the twist region show regional differences. This work provides a new way for designing twist and exploring the influence of twist on the structures of 2DMs with few layers.
Collapse
Affiliation(s)
- Weiyang Liu
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Siwei Luo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Xiang Qi
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Gencai Guo
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Jun Li
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Han Tang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Xu Li
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Xixi Huang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Zhiyuan Tang
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| | - Jianxin Zhong
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, and School of Physics and Optoelectronics, Xiangtan University, Hunan411105, People's Republic of China
| |
Collapse
|
21
|
Peng J, Ren C, Zhang W, Chen H, Pan X, Bai H, Jing F, Qiu H, Liu H, Hu Z. Spatially Dependent Electronic Structures and Excitons in a Marginally Twisted Moiré Superlattice of Spiral WS 2. ACS NANO 2022; 16:21600-21608. [PMID: 36475630 DOI: 10.1021/acsnano.2c10562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Twisted two-dimensional transition metal dichalcogenide (TMD) moiré superlattices provide an additional degree of freedom to engineer electronic and optical properties. Nevertheless, controllable synthesis of marginally twisted homo TMD moiré superlattices is still a challenge. Here, physical vapor deposition grown spiral WS2 nanosheets are demonstrated to be a marginally twisted moiré superlattice using scanning tunneling microscopy and spectroscopy. Periodic moiré superlattices are found on the third layer (3L) and 4L of the spiral WS2 nanosheet owing to the marginally twisted alignment between two neighboring layers, resulting in a highly localized flat band near the valence band maximum. Their bandgap depends on atomic stacking configurations, which gives a good interpretation for split moiré excitons using photoluminescence at 77 K. This work can benefit the development of twisted homo TMD moiré superlattices and could promote the profound research of twisted TMDs in the prospective field, such as strongly correlated physics and twistronics.
Collapse
Affiliation(s)
- Jiangbo Peng
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Caixia Ren
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Weili Zhang
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Hu Chen
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Xiaoguang Pan
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Hangxin Bai
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Fangli Jing
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Hailong Qiu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Hongjun Liu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhanggui Hu
- Tianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystals, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
22
|
Wen Z, Wan X, He Y, Wang Y, Wen Z, Gao Y, Zhang W, Qi X. Light localization in defective periodic photonic moiré-like lattices. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2022; 39:2291-2297. [PMID: 36520748 DOI: 10.1364/josaa.473693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Photonic moiré-like lattices, a readily accessible platform for realizing the spatial localization of light, attract intensive attention due to their unique flatband characteristics. In this paper, a periodic moiré-like lattice with embedded defects is proposed theoretically, and the linear propagation of the probe beam in such a system is investigated intensively. The results show that the positions of defects in periodic moiré-like lattices depend on the sublattice rotation angle. Further studies show that the localization of light could be improved by adjusting the apodization function of defects. In addition, the experimental observation of the moiré-like lattice with apodized defects also confirms the theoretical analysis. Our study enriches the physical connotation of photonic moiré lattices and guides the design of novel photonic crystal fibers.
Collapse
|
23
|
Wu B, Zheng H, Li S, Ding J, Zeng Y, Liu Z, Liu Y. Observation of moiré excitons in the twisted WS 2/WS 2 homostructure. NANOSCALE 2022; 14:12447-12454. [PMID: 35979926 DOI: 10.1039/d2nr02450k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Moiré superlattices offer a fascinating platform for designing the properties of optical excitons. The moiré pattern can generate an ordered exciton array in space, making it possible for topological excitons and quantum emitters. Recently, evidence of moiré excitons in the twisted heterostructures of TMDs has been widely reported. However, to date, the capture and investigation of moiré excitons in the twisted homostructure (T-HS) remain elusive. Here, we report the observation of moiré excitons in the WS2/WS2 T-HS with a twist angle of about 1.5°. The PL spectrum of the T-HS region shows many small peaks with nearly constant peak spacing, which is attributed to the reconstructed moiré potential generated by the reconstructed moiré pattern to confine the intralayer excitons, thereby forming an ordered moiré exciton array. Furthermore, we have studied the influence of temperature and laser power on the moiré excitons as well as the valley polarization of the moiré excitons. Our results provide a promising prospect for further exploration of artificial excitonic crystals and quantum emitters of TMD moiré patterns.
Collapse
Affiliation(s)
- Biao Wu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Haihong Zheng
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Shaofei Li
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
| | - Junnan Ding
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
| | - Yujia Zeng
- Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Zongwen Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
- The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
| | - Yanping Liu
- School of Physics and Electronics, Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China.
- State Key Laboratory of High-Performance Complex Manufacturing, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Shenzhen Research Institute of Central South University, A510a, Virtual University Building, Southern District, High-Tech Industrial Park, Yuehai Street, Nanshan District, Shenzhen, People's Republic of China
| |
Collapse
|