1
|
Zheng Z, Tao G, Chen Y, Dai Y, Zhang H, Peng P, Sun H, Wu F, Zhang ZK, Fang Z. Deep-Subwavelength Conversion of Localized Excitons to Trions in 2D Semiconductor Heterostructures Observed by Cathodoluminescence Nanoscopy. ACS NANO 2025; 19:14053-14062. [PMID: 40172139 DOI: 10.1021/acsnano.4c18467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Localized excitons in 2D semiconductors are pivotal for advancements in quantum information science. Despite their importance, conventional optical excitation methods, bounded by diffraction limits, inadequately investigate exciton states at the deep-subwavelength scale. In this work, we employ the cathodoluminescence (CL) technique, known as electron beam excitation with spatial resolution that far exceeds the diffraction limit of light, to uncover the localized excitons in h-BN/WS2/h-BN heterostructures, facilitating a deep-subwavelength conversion of two distinct excitonic states and amplifying the excitonic emission intensity by a factor of 11 within plasmonic hybrid configurations. These enhancements and precise excitations yield a detailed imaging of the transformation from localized excitons to trions at the nanometer scale. Based on density functional theory (DFT) and the finite-element method (FEM), we identify a funneling effect prompted by localized alterations in the valence and conduction bands of WS2 as the mechanism behind the exciton-state transformations. The findings address major challenges in near-field imaging and transformation of localized excitonic states, enhancing methodologies for probing excitonic behaviors in confined geometries. This advancement enables potential applications in the development of deep-subwavelength excitonic lasers, optoelectronic circuits, and next-generation quantum information technologies.
Collapse
Affiliation(s)
- Zhipeng Zheng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yuxiang Chen
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Han Zhang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Pu Peng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Haonan Sun
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Feng Wu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zong-Kun Zhang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics, Peking University, Beijing 100871, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Xu M, Yang X, Guo X, Jiang J, Chen S, Zhu M, Dai J, Guo F, Yuan X. Twist angle dependent high degree of anisotropic emission and phonon scattering in WS 2/NbOCl 2 heterostructures. NANOSCALE 2025; 17:6079-6089. [PMID: 39932054 DOI: 10.1039/d4nr05496b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
van der Waals (vdWs) heterostructures provide a superior platform to combine different low-dimensional materials together to tune their physical properties for different types of applications. Specifically, anisotropic heterostructures possess polarization-sensitive optical and electronic properties, which are highly needed in novel optoelectronic devices. However, the achieved degree of polarization (DOP) for the previously investigated heterostructure is relatively low and the induced polarization mechanism and key factors determining the DOP are still unclear. Here, we successfully fabricated an anisotropic TMDC/NbOCl2 heterostructure to break the rotation symmetry of WS2. Taking advantage of the strong anisotropy in NbOCl2, we achieved a high DOP of Raman scattering (0.813) and photoluminescence emission (0.801). Furthermore, we demonstrated that this anisotropy is also valid for bilayer WS2 with indirect exciton emissions. Twist angle is demonstrated to be an effective approach for further tuning the DOP. Density functional theory calculations reveal that increasing the coupling is twist angle dependent, leading to a twist angle-dependent DOP in the NbOCl2/TMDC heterostructure. Moreover, heterostructure formation also reduces intervalley scattering, leading to the observed valley polarization of WS2 at room temperature. Based on these findings, we proposed a conceptual framework to search for vdWs heterostructures with a high DOP. These findings are of critical importance in designing highly efficient anisotropic quantum emitters and optoelectronic devices using vdWs heterostructures.
Collapse
Affiliation(s)
- Mingyi Xu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Xinhui Yang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Xiao Guo
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Jie Jiang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| | - Shula Chen
- College of Chemistry and Chemical Engineering, Hunan University, South Lushan Road, Yuelu District, Changsha, Hunan, 410082, P. R. China
| | - Mengjian Zhu
- College of Advanced Interdisciplinary Studies & Hunan Provincial Key Laboratory of Novel Nano-Optoelectronic Information Materials and Devices, National University of Defense Technology, Changsha, Hunan, 410083, People's Republic of China
| | - Jiayu Dai
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan, China.
| | - Fangyu Guo
- College of Science & Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, Hunan, China.
| | - Xiaoming Yuan
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
3
|
Luo Y, Sun Z, Sun Z, Dai Q. Ultrafast Infrared Plasmonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2413748. [PMID: 39888061 DOI: 10.1002/adma.202413748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/08/2024] [Indexed: 02/01/2025]
Abstract
Ultrafast plasmonics represents a cutting-edge frontier in light-matter interactions, providing a unique platform to study electronic interactions and collective motions across femtosecond to picosecond timescales. In the infrared regime, where energy aligns with the rearrangements of low-energy electrons, molecular vibrations, and thermal fluctuations, ultrafast plasmonics can be a powerful tool for revealing ultrafast electronic phase transitions, controlling molecular reactions, and driving subwavelength thermal processes. Here, the evolution of ultrafast infrared plasmonics, discussing the recent progress in their manipulation, detection, and applications is reviewed. The future opportunities, including their potential to probe electronic correlations, investigate intrinsic ultrafast plasmonic interactions, and enable advanced applications in quantum information are highlighted, which may be promoted by multi-physical field integrated ultrafast techniques.
Collapse
Affiliation(s)
- Yang Luo
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Sun
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Zhipei Sun
- QTF Centre of Excellence, Department of Electronics and Nanoengineering, Aalto University, Tietotie 3, Espoo, FI-02150, Finland
| | - Qing Dai
- CAS Key Laboratory of Nanophotonic Materials and Devices, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Suk SH, Nah S, Sajjad M, Seo SB, Chen J, Sim S. Sub-picosecond, strain-tunable, polarization-selective optical switching via anisotropic exciton dynamics in quasi-1D ZrSe 3. LIGHT, SCIENCE & APPLICATIONS 2024; 13:240. [PMID: 39237511 PMCID: PMC11377565 DOI: 10.1038/s41377-024-01585-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/29/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024]
Abstract
In cutting-edge optical technologies, polarization is a key for encoding and transmitting vast information, highlighting the importance of selectively switching and modulating polarized light. Recently, anisotropic two-dimensional materials have emerged for ultrafast switching of polarization-multiplexed optical signals, but face challenges with low polarization ratios and limited spectral ranges. Here, we apply strain to quasi-one-dimensional layered ZrSe3 to enhance polarization selectivity and tune operational energies in ultrafast all-optical switching. Initially, transient absorption on unstrained ZrSe3 reveals a sub-picosecond switching response in polarization along a specific crystal axis, attributed to shifting-recovery dynamics of an anisotropic exciton. However, its polarization selectivity is weakened by a slow non-excitonic response in the perpendicular polarization. To overcome this limitation, we apply strain to ZrSe3 by bending its flexible substrate. The compressive strain spectrally decouples the excitonic and non-excitonic components, doubling the polarization selectivity of the sub-picosecond switching and tripling it compared to that in the tensile-strained ZrSe3. It also effectively tunes the switching energy at a shift rate of ~93 meV %-1. This strain-tunable switching is repeatable, reversible, and robustly maintains the sub-picosecond operation. First-principles calculations reveal that the strain control is enabled by momentum- and band-dependent modulations of the electronic band structure, causing opposite shifts in the excitonic and non-excitonic transitions. Our findings offer a novel approach for high-performance, wavelength-tunable, polarization-selective ultrafast optical switching.
Collapse
Affiliation(s)
- Sang Ho Suk
- School of Electrical Engineering, Hanyang University, Ansan, South Korea
| | - Sanghee Nah
- Seoul Center, Korea Basic Science Institute, Seoul, South Korea
| | - Muhammad Sajjad
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham, Ningbo, China
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo, China
| | - Sung Bok Seo
- School of Electrical Engineering, Hanyang University, Ansan, South Korea
| | - Jianxiang Chen
- School of Electrical Engineering, Hanyang University, Ansan, South Korea
| | - Sangwan Sim
- School of Electrical Engineering, Hanyang University, Ansan, South Korea.
| |
Collapse
|
5
|
Dai Y, Tao G, Chen Y, Yao G, Liu D, Dang Z, Liu Z, Peng P, Huang Y, He X, Zhang H, Zheng Z, Sun H, Qian W, Qi P, Gong Y, Guan Y, Liu K, Fang Z. Two-Dimensional Exciton Oriented Diffusion via Periodic Potentials. ACS NANO 2024; 18:23196-23204. [PMID: 39141918 DOI: 10.1021/acsnano.4c05723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Excitonic devices operate based on excitons, which can be excited by photons as well as emitting photons and serve as a medium for photon-carrier conversion. Excitonic devices are expected to combine the advantages of both the high response rate of photonic devices and the high integration of electronic devices simultaneously. However, because of the neutral feature, exciton transport is generally achieved via diffusion rather than using electric fields, and the efficient control of exciton flux directionality has always been difficult. In this work, a precisely designed one-dimensional periodic nanostructure (1DPS) is used to introduce periodic strain field along with resonant mode to the WS2 monolayer, achieving exciton oriented diffusion with a 7.6-fold exciton diffusion coefficient enhancement relative to that of intrinsic, while enhancing the excitonic emission intensity by a factor of 10 and reducing exciton saturation threshold power by 2 orders of magnitude. Based on the analysis of the density functional theory (DFT) and the finite-element method (FEM), we attribute the anisotropy of exciton diffusion to exciton funneling induced by periodic potentials, which do not require excessive potential height difference for an efficient oriented diffusion. As a result of resonant emission, the exciton diffusion is dragged into the nonlinear regime owing to the high exciton density close to saturation, which improves the exciton diffusion coefficient and diffusion anisotropy more appreciably.
Collapse
Affiliation(s)
- Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yuxiang Chen
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Guangjie Yao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Donglin Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhibo Dang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhengchang Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Pu Peng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Yijing Huang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Xiao He
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Han Zhang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zhipeng Zheng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Haonan Sun
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Wenqi Qian
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Pengfei Qi
- Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Yan Guan
- Center for Physicochemical Analysis and Measurements in ICCAS, Analytical Instrumentation Center, Peking University, Beijing 100871, China
| | - Kaihui Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Wang Z, Kalathingal V, Trushin M, Liu J, Wang J, Guo Y, Özyilmaz B, Nijhuis CA, Eda G. Upconversion electroluminescence in 2D semiconductors integrated with plasmonic tunnel junctions. NATURE NANOTECHNOLOGY 2024; 19:993-999. [PMID: 38641642 DOI: 10.1038/s41565-024-01650-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Plasmonic tunnel junctions are a unique electroluminescent system in which light emission occurs via an interplay between tunnelling electrons and plasmonic fields instead of electron-hole recombination as in conventional light-emitting diodes. It was previously shown that placing luminescent molecules in the tunneling pathway of nanoscopic tunnel junctions results in peculiar upconversion electroluminescence where the energy of emitted photons exceeds that of excitation electrons. Here we report the observation of upconversion electroluminescence in macroscopic van der Waals plasmonic tunnel junctions comprising gold and few-layer graphene electrodes separated by a ~2-nm-thick hexagonal boron nitride tunnel barrier and a monolayer semiconductor. We find that the semiconductor ground exciton emission is triggered at excitation electron energies lower than the semiconductor optical gap. Interestingly, this upconversion is reached in devices operating at a low conductance (<10-6 S) and low power density regime (<102 W cm-2), defying explanation through existing proposed mechanisms. By examining the scaling relationship between plasmonic and excitonic emission intensities, we elucidate the role of inelastic electron tunnelling dipoles that induce optically forbidden transitions in the few-layer graphene electrode and ultrafast hot carrier transfer across the van der Waals interface.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Vijith Kalathingal
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, Kannur University, Swami Anandatheertha Campus-Payyanur, Kannur, India
| | - Maxim Trushin
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Material Science and Engineering, National University of Singapore, Singapore, Singapore
| | - Jiawei Liu
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Junyong Wang
- CAS Key Laboratory of Nano-Bio Interface and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, China
| | - Yongxin Guo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
| | - Barbaros Özyilmaz
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore
- Department of Material Science and Engineering, National University of Singapore, Singapore, Singapore
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Christian A Nijhuis
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, the Netherlands.
| | - Goki Eda
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
7
|
Zhang F, Oiticica PRA, Abad-Arredondo J, Arai MS, Oliveira ON, Jaque D, Fernandez Dominguez AI, de Camargo ASS, Haro-González P. Brownian Motion Governs the Plasmonic Enhancement of Colloidal Upconverting Nanoparticles. NANO LETTERS 2024; 24:3785-3792. [PMID: 38497999 PMCID: PMC10979430 DOI: 10.1021/acs.nanolett.4c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
Upconverting nanoparticles are essential in modern photonics due to their ability to convert infrared light to visible light. Despite their significance, they exhibit limited brightness, a key drawback that can be addressed by combining them with plasmonic nanoparticles. Plasmon-enhanced upconversion has been widely demonstrated in dry environments, where upconverting nanoparticles are immobilized, but constitutes a challenge in liquid media where Brownian motion competes against immobilization. This study employs optical tweezers for the three-dimensional manipulation of an individual upconverting nanoparticle, enabling the exploration of plasmon-enhanced upconversion luminescence in water. Contrary to expectation, experiments reveal a long-range (micrometer scale) and moderate (20%) enhancement in upconversion luminescence due to the plasmonic resonances of gold nanostructures. Comparison between experiments and numerical simulations evidences the key role of Brownian motion. It is demonstrated how the three-dimensional Brownian fluctuations of the upconverting nanoparticle lead to an "average effect" that explains the magnitude and spatial extension of luminescence enhancement.
Collapse
Affiliation(s)
- Fengchan Zhang
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | | | - Jaime Abad-Arredondo
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Marylyn Setsuko Arai
- São
Carlos Institute of Physics, University
of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Osvaldo N. Oliveira
- São
Carlos Institute of Physics, University
of São Paulo (USP), 13566-590 São Carlos, São Paulo, Brazil
| | - Daniel Jaque
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antonio I. Fernandez Dominguez
- Departamento
de Física Teórica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Facultad de Ciencias, Universidad Autónoma de Madrid, E28049 Madrid, Spain
| | - Andrea Simone Stucchi de Camargo
- Federal
Institute for Materials Research and Testing (BAM), Berlin 12489, Germany
- Friedrich
Schiller University (FSU), Jena 07737, Germany
| | - Patricia Haro-González
- Nanomaterials
for Bioimaging Group (nanoBIG), Departamento de Física de Materiales,
Facultad de Ciencias, Universidad Autónoma
de Madrid, Madrid 28049, Spain
- Instituto
Nicolás Cabrera, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
8
|
Chen R, Liang N, Zhai T. Dual-color emissive OLED with orthogonal polarization modes. Nat Commun 2024; 15:1331. [PMID: 38351002 PMCID: PMC10864411 DOI: 10.1038/s41467-024-45311-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/21/2024] [Indexed: 02/16/2024] Open
Abstract
Linearly polarized organic light-emitting diodes have become appealing functional expansions of polarization optics and optoelectronic applications. However, the current linearly polarized diodes exhibit low polarization performance, cost-prohibitive process, and monochromatic modulation limit. Herein, we develop a switchable dual-color orthogonal linear polarization mode in organic light-emitting diode, based on a dielectric/metal nanograting-waveguide hybrid-microcavity using cost-efficient laser interference lithography and vacuum thermal evaporation. This acquired diode presents a transverse-electric/transverse-magnetic polarization extinction ratio of 15.8 dB with a divergence angle of ±30°, an external quantum efficiency of 2.25%, and orthogonal polarized colors from green to sky-blue. This rasterization of dielectric/metal-cathode further satisfies momentum matching between waveguide and air mode, diffracting both the targeted sky-blue transverse-electric mode and the off-confined green transverse-magnetic mode. Therefore, a polarization-encrypted colorful optical image is proposed, representing a significant step toward the low-cost high-performance linearly polarized light-emitting diodes and electrically-inspired polarization encryption for color images.
Collapse
Affiliation(s)
- Ruixiang Chen
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ningning Liang
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Tianrui Zhai
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
9
|
Zhang Y, Du W, Liu X. Photophysics and its application in photon upconversion. NANOSCALE 2024; 16:2747-2764. [PMID: 38250819 DOI: 10.1039/d3nr05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Photoluminescence (PL) upconversion is a phenomenon involving light-matter interaction, where the energy of the emitted photons is higher than that of the incident photons. PL upconversion has promising applications in optoelectronic devices, displays, photovoltaics, imaging, diagnosis and treatment. In this review, we summarize the mechanism of PL upconversion and ultrafast PL physical processes. In particular, we highlight the advances in laser cooling, biological imaging, volumetric displays and photonics.
Collapse
Affiliation(s)
- Yutong Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Wu D, Wang Y, Xiao J, Hu J, Zhao X, Gao Y, Yuan J, Wang W. Surface lattice resonances enhanced directional amplified spontaneous emission on plasmonic honeycomb nanocone array. Phys Chem Chem Phys 2023; 25:26847-26852. [PMID: 37782475 DOI: 10.1039/d3cp03718e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Plasmonic arrays have emerged as a promising platform for investigating light-matter interactions enhanced by surface lattice resonance (SLR) at the nanoscale, which exhibit superior properties in localized field enhancement, narrow linewidth, and effective radiation loss suppression. In this study, an Al nanocone array in a honeycomb arrangement served as an optical cavity with a tip effect to realize the directional and polarized amplified spontaneous emission (ASE) of R6G. Based on the optical feedback between the degenerated SLR mode of high local density of states (LDOS) and the emission of gain media, 140-fold enhanced ASE was observed at an emission angle of 25° under TM polarization when the pump power density exceeded the threshold of 197.8 W cm-2. Moreover, polarization-resolved iso-frequency images indicated that a specific polarization dependence of ASE was modulated by the SLR mode. This study clarifies the interaction between the gain media and plasmonic system, which is beneficial for the generation of nanolasing with directional emission and lays a foundation for the plasmonic device.
Collapse
Affiliation(s)
- Dongda Wu
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yi Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiamin Xiao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiang Hu
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Xuchao Zhao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Yuhao Gao
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Jiazhi Yuan
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| | - Wenxin Wang
- College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin 150001, China.
- Qingdao Innovation and Development Center of Harbin Engineering University, Harbin Engineering University, Qingdao 266500, China
| |
Collapse
|
11
|
Mueller NS, Arul R, Kang G, Saunders AP, Johnson AC, Sánchez-Iglesias A, Hu S, Jakob LA, Bar-David J, de Nijs B, Liz-Marzán LM, Liu F, Baumberg JJ. Photoluminescence upconversion in monolayer WSe 2 activated by plasmonic cavities through resonant excitation of dark excitons. Nat Commun 2023; 14:5726. [PMID: 37714855 PMCID: PMC10504321 DOI: 10.1038/s41467-023-41401-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
Anti-Stokes photoluminescence (PL) is light emission at a higher photon energy than the excitation, with applications in optical cooling, bioimaging, lasing, and quantum optics. Here, we show how plasmonic nano-cavities activate anti-Stokes PL in WSe2 monolayers through resonant excitation of a dark exciton at room temperature. The optical near-fields of the plasmonic cavities excite the out-of-plane transition dipole of the dark exciton, leading to light emission from the bright exciton at higher energy. Through statistical measurements on hundreds of plasmonic cavities, we show that coupling to the dark exciton leads to a near hundred-fold enhancement of the upconverted PL intensity. This is further corroborated by experiments in which the laser excitation wavelength is tuned across the dark exciton. We show that a precise nanoparticle geometry is key for a consistent enhancement, with decahedral nanoparticle shapes providing an efficient PL upconversion. Finally, we demonstrate a selective and reversible switching of the upconverted PL via electrochemical gating. Our work introduces the dark exciton as an excitation channel for anti-Stokes PL in WSe2 and paves the way for large-area substrates providing nanoscale optical cooling, anti-Stokes lasing, and radiative engineering of excitons.
Collapse
Affiliation(s)
- Niclas S Mueller
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany.
| | - Rakesh Arul
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Gyeongwon Kang
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Ashley P Saunders
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Amalya C Johnson
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Ana Sánchez-Iglesias
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Centro de Física de Materiales, CSIC-UPV/EHU, Manuel Lardizabal Ibilbidea 5, Donostia-San Sebastián, 20018, Spain
| | - Shu Hu
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Lukas A Jakob
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jonathan Bar-David
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Donostia-San Sebastián, 20014, Spain
| | - Fang Liu
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
12
|
Bao X, Wu X, Ke Y, Wu K, Jiang C, Wu B, Li J, Yue S, Zhang S, Shi J, Du W, Zhong Y, Hu H, Bai P, Gong Y, Zhang Q, Zhang W, Liu X. Giant Out-of-Plane Exciton Emission Enhancement in Two-Dimensional Indium Selenide via a Plasmonic Nanocavity. NANO LETTERS 2023; 23:3716-3723. [PMID: 37125916 DOI: 10.1021/acs.nanolett.2c04902] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Out-of-plane (OP) exciton-based emitters in two-dimensional semiconductor materials are attractive candidates for novel photonic applications, such as radially polarized sources, integrated photonic chips, and quantum communications. However, their low quantum efficiency resulting from forbidden transitions limits their practicality. In this work, we achieve a giant enhancement of up to 34000 for OP exciton emission in indium selenide (InSe) via a designed Ag nanocube-over-Au film plasmonic nanocavity. The large photoluminescence enhancement factor (PLEF) is attributed to the induced OP local electric field (Ez) within the nanocavity, which facilitates effective OP exciton-plasmon interaction and subsequent tremendous enhancement. Moreover, the nanoantenna effect resulting from the effective interaction improves the directivity of spontaneous radiation. Our results not only reveal an effective photoluminescence enhancement approach for OP excitons but also present an avenue for designing on-chip photonic devices with an OP dipole orientation.
Collapse
Affiliation(s)
- Xiaotian Bao
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xianxin Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxuan Ke
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Keming Wu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Chuanxiu Jiang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Jing Li
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shuai Yue
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shuai Zhang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wenna Du
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yangguang Zhong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Huatian Hu
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan 430205, People's Republic of China
| | - Peng Bai
- State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yiyang Gong
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
13
|
Dai Y, Qi P, Tao G, Yao G, Shi B, Liu Z, Liu Z, He X, Peng P, Dang Z, Zheng L, Zhang T, Gong Y, Guan Y, Liu K, Fang Z. Phonon-assisted upconversion in twisted two-dimensional semiconductors. LIGHT, SCIENCE & APPLICATIONS 2023; 12:6. [PMID: 36588111 PMCID: PMC9806105 DOI: 10.1038/s41377-022-01051-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 06/17/2023]
Abstract
Phonon-assisted photon upconversion (UPC) is an anti-Stokes process in which incident photons achieve higher energy emission by absorbing phonons. This letter studies phonon-assisted UPC in twisted 2D semiconductors, in which an inverted contrast between UPC and conventional photoluminescence (PL) of WSe2 twisted bilayer is emergent. A 4-fold UPC enhancement is achieved in 5.5° twisted bilayer while PL weakens by half. Reduced interlayer exciton conversion efficiency driven by lattice relaxation, along with enhanced pump efficiency resulting from spectral redshift, lead to the rotation-angle-dependent UPC enhancement. The counterintuitive phenomenon provides a novel insight into a unique way that twisted angle affects UPC and light-matter interactions in 2D semiconductors. Furthermore, the UPC enhancement platform with various superimposable means offers an effective method for lighting bilayers and expanding the application prospect of 2D stacked van der Waals devices.
Collapse
Affiliation(s)
- Yuchen Dai
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Pengfei Qi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, 300350, Tianjin, China
| | - Guangyi Tao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
- Photonics Research Center, School of Physics, MOE Key Lab of Weak-Light Nonlinear Photonics, and Tianjin Key Lab of Photonics Materials and Technology for Information Science, Nankai University, 300071, Tianjin, China
| | - Guangjie Yao
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Beibei Shi
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zhixin Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zhengchang Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Xiao He
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Pu Peng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zhibo Dang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Liheng Zheng
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Tianhao Zhang
- Photonics Research Center, School of Physics, MOE Key Lab of Weak-Light Nonlinear Photonics, and Tianjin Key Lab of Photonics Materials and Technology for Information Science, Nankai University, 300071, Tianjin, China
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, 100191, Beijing, China
| | - Yan Guan
- Center for Physicochemical Analysis and Measurements in ICCAS, Analytical Instrumentation Center, Peking University, 100871, Beijing, China
| | - Kaihui Liu
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China
| | - Zheyu Fang
- School of Physics, State Key Laboratory for Mesoscopic Physics, Academy for Advanced Interdisciplinary Studies, Collaborative Innovation Center of Quantum Matter, Nano-optoelectronics Frontier Center of Ministry of Education, Peking University, 100871, Beijing, China.
| |
Collapse
|