1
|
Tan XJ, Huang Z. MINFLUX nanoscopy enhanced with high-order vortex beams. LIGHT, SCIENCE & APPLICATIONS 2025; 14:184. [PMID: 40324976 PMCID: PMC12052830 DOI: 10.1038/s41377-025-01822-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 05/07/2025]
Abstract
Minimal photon fluxes (MINFLUX) nanoscopy has emerged as a transformative advancement in superresolution imaging, enabling unprecedented nanoscale observations across diverse biological scenarios. In this work, we propose, for the first time, that employing high-order vortex beams can significantly enhance the performance of MINFLUX, surpassing the limitations of the conventional MINFLUX using the first-order vortex beam. Our theoretical analysis indicates that, for standard MINFLUX, high-order vortex beams can improve the maximum localization precision by a factor corresponding to their order, which can approach a sub-nanometer scale under optimal conditions, and for raster scan MINFLUX, high-order vortex beams allow for a wider field of view while maintaining enhanced precision. These findings underscore the potential of high-order vortex beams to elevate the performance of MINFLUX, paving the way towards ultra-high resolution imaging for a broad range of applications.
Collapse
Affiliation(s)
- Xiao-Jie Tan
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Zhiwei Huang
- Optical Bioimaging Laboratory, Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117576, Singapore.
- National University of Singapore (Suzhou) Research Institute, Suzhou, Jiangsu, 215123, China.
- NUS Graduate School for Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, 119077, Singapore.
| |
Collapse
|
2
|
Carsten A, Failla AV, Aepfelbacher M. MINFLUX nanoscopy: Visualising biological matter at the nanoscale level. J Microsc 2025; 298:219-231. [PMID: 38661499 PMCID: PMC11987580 DOI: 10.1111/jmi.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Since its introduction in 2017, MINFLUX nanoscopy has shown that it can visualise fluorescent molecules with an exceptional localisation precision of a few nanometres. In this overview, we provide a brief insight into technical implementations, fluorescent marker developments and biological studies that have been conducted in connection with MINFLUX imaging and tracking. We also formulate ideas on how MINFLUX nanoscopy and derived technologies could influence bioimaging in the future. This insight is intended as a general starting point for an audience looking for a brief overview of MINFLUX nanoscopy from theory to application.
Collapse
Affiliation(s)
- Alexander Carsten
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| | | | - Martin Aepfelbacher
- Institute of Medical Microbiology, Virology and HygieneUniversity Medical Center Hamburg EppendorfHamburgGermany
| |
Collapse
|
3
|
Patil S, Vicidomini G, Slenders E. Open-source 3D active sample stabilization for fluorescence microscopy. BIOPHYSICAL REPORTS 2025; 5:100208. [PMID: 40254224 PMCID: PMC12124610 DOI: 10.1016/j.bpr.2025.100208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/27/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025]
Abstract
Super-resolution microscopy has enabled imaging at nanometer-scale resolution. However, achieving this level of detail without introducing artifacts that could mislead data interpretation requires maintaining sample stability throughout the entire imaging acquisition. This process can range from a few seconds to several hours, particularly when combining live-cell imaging with super-resolution techniques. Here, we present a three-dimensional active sample stabilization system based on real-time tracking of fiducial markers. To ensure broad accessibility, the system is designed using readily available off-the-shelf optical and photonic components. Additionally, the accompanying software is open source and written in Python, facilitating adoption and customization by the community. We achieve a standard deviation of the sample movement within 1 nm in both the lateral and axial directions for a duration in the range of hours. Our approach allows easy integration into existing microscopes, not only making prolonged super-resolution microscopy more accessible but also allowing confocal and widefield live-cell imaging experiments spanning hours or even days.
Collapse
Affiliation(s)
- Sanket Patil
- Molecular Microscopy and Spectroscopy (MMS), Istituto Italiano di Tecnologia, Genoa, Italy; Department of Informatics, Bioengineering, Robotics and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
| | - Giuseppe Vicidomini
- Molecular Microscopy and Spectroscopy (MMS), Istituto Italiano di Tecnologia, Genoa, Italy
| | - Eli Slenders
- Molecular Microscopy and Spectroscopy (MMS), Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
4
|
Sosa S, Szalai AM, Lopez LF, Prieto JM, Zaza C, Adamczyk AK, Bonomi HR, Marti MA, Acuna GP, Goldbaum FA, Stefani FD. Monitoring Dynamic Conformations of a Single Fluorescent Molecule Inside a Protein Cavity. SMALL METHODS 2025:e2402114. [PMID: 39895187 DOI: 10.1002/smtd.202402114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/24/2025] [Indexed: 02/04/2025]
Abstract
Fluorescence nanoscopy and single-molecule methods are entering the realm of structural biology, breaking new ground for dynamic structural measurements at room temperature and liquid environments. Here, single-molecule localization microscopy, polarization-dependent single-molecule excitation, and protein engineering are combined to determine the orientation of a fluorophore forming hydrogen bonds inside a protein cavity. The observed conformations are in good agreement with molecular dynamics simulations, enabling a new, more realistic interplay between experiments and simulations to identify stable conformations and the key interactions involved. Furthermore, jumps between conformations can be monitored with a precision of 3° and a time resolution of a few seconds, confirming the potential of this methodology for retrieving dynamic structural information of nanoscopic biological systems under physiologically compatible conditions.
Collapse
Affiliation(s)
- Santiago Sosa
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, C1425FQD, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, C1425FQD, Argentina
| | - Lucía F Lopez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, C1425FQD, Argentina
| | - Juan Manuel Prieto
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Cecilia Zaza
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, C1425FQD, Argentina
| | - Aleksandra K Adamczyk
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700, Switzerland
| | - Hernán R Bonomi
- Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, Ciudad Autónoma de Buenos Aires, C1405BWE, Argentina
- Generate Biomedicines, Somerville, MA, 02143, USA
| | - Marcelo A Marti
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700, Switzerland
- Swiss National Center for Competence in Research (NCCR) Bio-inspired Materials, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| | - Fernando A Goldbaum
- Centro de Rediseño e Ingeniería de Proteínas and Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (CRIP-IIB-UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Campus Miguelete, Buenos Aires, CP1650, Argentina
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, Ciudad Autónoma de Buenos Aires, C1425FQD, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, Ciudad Autónoma de Buenos Aires, C1428EHA, Argentina
| |
Collapse
|
5
|
Huijben TA, Mahajan S, Fahim M, Zijlstra P, Marie R, Mortensen KI. Point-Spread Function Deformations Unlock 3D Localization Microscopy on Spherical Nanoparticles. ACS NANO 2024; 18:29832-29845. [PMID: 39411831 PMCID: PMC11526427 DOI: 10.1021/acsnano.4c09719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Nanoparticles (NPs) have proven their applicability in biosensing, drug delivery, and photothermal therapy, but their performance depends critically on the distribution and number of functional groups on their surface. When studying surface functionalization using super-resolution microscopy, the NP modifies the fluorophore's point-spread function (PSF). This leads to systematic mislocalizations in conventional analyses employing Gaussian PSFs. Here, we address this shortcoming by deriving the analytical PSF model for a fluorophore near a spherical NP. Its calculation is four orders of magnitude faster than numerical approaches and thus feasible for direct use in localization algorithms. We fit this model to individual 2D images from DNA-PAINT experiments on DNA-coated gold NPs and demonstrate extraction of the 3D positions of functional groups with <5 nm precision, revealing inhomogeneous surface coverage. Our method is exact, fast, accessible, and poised to become the standard in super-resolution imaging of NPs for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Teun A.P.M. Huijben
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Sarojini Mahajan
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Masih Fahim
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Rodolphe Marie
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Kim I. Mortensen
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| |
Collapse
|
6
|
He H, Hao R. Multiplexed Fluoro-electrochemical Single-Molecule Counting Enabled by SiC Semiconducting Nanofilm. NANO LETTERS 2024; 24:11051-11058. [PMID: 39196295 DOI: 10.1021/acs.nanolett.4c03199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
A major challenge for ultrasensitive analysis is the high-efficiency determination of different target single molecules in parallel with high accuracy. Herein, we developed a quantitative fluoro-electrochemical imaging approach for direct multiplexed single-molecule counting with a SiC-nanofilm-modified indium tin oxide transparent electrode. The nanofilm could control local pH through proton-coupled electron transfer in a lower potential range and further induce direct electrochemical oxidation of the dye molecules with a higher applied potential. The fluoro-electrochemical responses of immobilized single molecules with different pH values and redox behaviors could thus be distinguished within the same fluorescence channels. This method yields nonamplified direct counting of single molecules, as indicated by excellent linear responses in the picomolar range. The successful distinction of seven different randomly mixed dyes underscores the versatility and efficacy of the proposed method in the highly accurate determination of single dye molecules, paving the way for highly parallel single-molecule detection for diverse applications.
Collapse
Affiliation(s)
- Haihan He
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Rui Hao
- Department of Chemistry, Southern University of Science and Technology, 518055 Shenzhen, China
- Research Center for Chemical Biology and Omics Analysis, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
7
|
Xie Y, Liu H, Sun H, Liu K, Gao J. Far-field superresolution of thermal sources by double homodyne or double array homodyne detection. OPTICS EXPRESS 2024; 32:19495-19507. [PMID: 38859083 DOI: 10.1364/oe.523046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/04/2024] [Indexed: 06/12/2024]
Abstract
We propose two schemes for estimating the separation of two thermal sources via double homodyne and double array homodyne detection considering the joint measurement of conjugate quadratures of the image plane field.By using the Cramér-Rao bound, we demonstrate that the two schemes can estimate the separation well below the Rayleigh limit and have an advantage over direct imaging when the average photon number per source exceeds five.For arbitrary source strengths, double homodyne detection is superior to homodyne detection when the separation is above 25/4 σ/N s , σ is the beam width, Ns is the average photon number per source.A larger separation can be estimated better via double array homodyne detection with the superiority of flexible operation compared with other schemes. High-speed and high-efficiency detection enables the measurement schemes with potential practical applications in fluorescence microscopy, astronomy and quantum imaging.
Collapse
|
8
|
Kalisvaart D, Hung ST, Smith CS. Quantifying the minimum localization uncertainty of image scanning localization microscopy. BIOPHYSICAL REPORTS 2024; 4:100143. [PMID: 38380223 PMCID: PMC10878846 DOI: 10.1016/j.bpr.2024.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/09/2024] [Indexed: 02/22/2024]
Abstract
Modulation enhanced single-molecule localization microscopy (meSMLM), where emitters are sparsely activated with sequentially applied patterned illumination, increases the localization precision over single-molecule localization microscopy (SMLM). The precision improvement of modulation enhanced SMLM is derived from retrieving the position of an emitter relative to individual illumination patterns, which adds to existing point spread function information from SMLM. Here, we introduce SpinFlux: modulation enhanced localization for spinning disk confocal microscopy. SpinFlux uses a spinning disk with pinholes in its illumination and emission paths, to sequentially illuminate regions in the sample during each measurement. The resulting intensity-modulated emission signal is analyzed for each individual pattern to localize emitters with improved precision. We derive a statistical image formation model for SpinFlux and we quantify the theoretical minimum localization uncertainty in terms of the Cramér-Rao lower bound. Using the theoretical minimum uncertainty, we compare SpinFlux to localization on Fourier reweighted image scanning microscopy reconstructions. We find that localization on image scanning microscopy reconstructions with Fourier reweighting ideally results in a global precision improvement of 2.1 over SMLM. When SpinFlux is used for sequential illumination with three patterns around the emitter position, the localization precision improvement over SMLM is twofold when patterns are focused around the emitter position. If four donut-shaped illumination patterns are used for SpinFlux, the maximum local precision improvement over SMLM is increased to 3.5. Localization of image scanning microscopy reconstructions thus has the largest potential for global improvements of the localization precision, where SpinFlux is the method of choice for local refinements.
Collapse
Affiliation(s)
- Dylan Kalisvaart
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Shih-Te Hung
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
| | - Carlas S. Smith
- Delft Center for Systems and Control, Delft University of Technology, Delft, the Netherlands
- Department of Imaging Physics, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
9
|
Raju G, Nayak S, Acharya N, Sunder M, Kistenev Y, Mazumder N. Exploring the future of regenerative medicine: Unveiling the potential of optical microscopy for structural and functional imaging of stem cells. JOURNAL OF BIOPHOTONICS 2024; 17:e202300360. [PMID: 38168892 DOI: 10.1002/jbio.202300360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/18/2023] [Accepted: 12/03/2023] [Indexed: 01/05/2024]
Abstract
Regenerative medicine, which utilizes stem cells for tissue and organ repair, holds immense promise in healthcare. A comprehensive understanding of stem cell characteristics is crucial to unlock their potential. This study explores the pivotal role of optical microscopy in advancing regenerative medicine as a potent tool for stem cell research. Advanced optical microscopy techniques enable an in-depth examination of stem cell behavior, morphology, and functionality. The review encompasses current optical microscopy, elucidating its capabilities and constraints in stem cell imaging, while also shedding light on emerging technologies for improved stem cell visualization. Optical microscopy, complemented by techniques like fluorescence and multiphoton imaging, enhances our comprehension of stem cell dynamics. The introduction of label-free imaging facilitates noninvasive, real-time stem cell monitoring without external dyes or markers. By pushing the boundaries of optical microscopy, researchers reveal the intricate cellular mechanisms underpinning regenerative processes, thereby advancing more effective therapeutic strategies. The current study not only outlines the future of regenerative medicine but also underscores the pivotal role of optical microscopy in both structural and functional stem cell imaging.
Collapse
Affiliation(s)
- Gagan Raju
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Smitha Nayak
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Neha Acharya
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mridula Sunder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Yury Kistenev
- Laboratory of Laser Molecular Imaging and Machine Learning, Tomsk State University, Tomsk, Russia
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
10
|
Fessl T, Majellaro M, Bondar A. Microscopy and spectroscopy approaches to study GPCR structure and function. Br J Pharmacol 2023. [PMID: 38087925 DOI: 10.1111/bph.16297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
The GPCR signalling cascade is a key pathway responsible for the signal transduction of a multitude of physical and chemical stimuli, including light, odorants, neurotransmitters and hormones. Understanding the structural and functional properties of the GPCR cascade requires direct observation of signalling processes in high spatial and temporal resolution, with minimal perturbation to endogenous systems. Optical microscopy and spectroscopy techniques are uniquely suited to this purpose because they excel at multiple spatial and temporal scales and can be used in living objects. Here, we review recent developments in microscopy and spectroscopy technologies which enable new insights into GPCR signalling. We focus on advanced techniques with high spatial and temporal resolution, single-molecule methods, labelling strategies and approaches suitable for endogenous systems and large living objects. This review aims to assist researchers in choosing appropriate microscopy and spectroscopy approaches for a variety of applications in the study of cellular signalling.
Collapse
Affiliation(s)
- Tomáš Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Alexey Bondar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| |
Collapse
|
11
|
Wang Z, Wang T, Yang Y, Mi X, Wang J. Differential Confocal Optical Probes with Optimized Detection Efficiency and Pearson Correlation Coefficient Strategy Based on the Peak-Clustering Algorithm. MICROMACHINES 2023; 14:1163. [PMID: 37374748 DOI: 10.3390/mi14061163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023]
Abstract
Quantifying free-form surfaces using differential confocal microscopy can be challenging, as it requires balancing accuracy and efficiency. When the axial scanning mechanism involves sloshing and the measured surface has a finite slope, traditional linear fitting can introduce significant errors. This study introduces a compensation strategy based on Pearson's correlation coefficient to effectively reduce measurement errors. Additionally, a fast-matching algorithm based on peak clustering was proposed to meet real-time requirements for non-contact probes. To validate the effectiveness of the compensation strategy and matching algorithm, detailed simulations and physical experiments were conducted. The results showed that for a numerical aperture of 0.4 and a depth of slope < 12°, the measurement error was <10 nm, improving the speed of the traditional algorithm system by 83.37%. Furthermore, repeatability and anti-disturbance experiments demonstrated that the proposed compensation strategy is simple, efficient, and robust. Overall, the proposed method has significant potential for application in the realization of high-speed measurements of free-form surfaces.
Collapse
Affiliation(s)
- Zhiyi Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Jilin Provincial Key Laboratory of Intelligent Wavefront Sensing and Control, Changchun 130033, China
| | - Tingyu Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Jilin Provincial Key Laboratory of Intelligent Wavefront Sensing and Control, Changchun 130033, China
| | - Yongqiang Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Jilin Provincial Key Laboratory of Intelligent Wavefront Sensing and Control, Changchun 130033, China
| | - Xiaotao Mi
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Jilin Provincial Key Laboratory of Intelligent Wavefront Sensing and Control, Changchun 130033, China
| | - Jianli Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- Jilin Provincial Key Laboratory of Intelligent Wavefront Sensing and Control, Changchun 130033, China
| |
Collapse
|
12
|
Reinhardt SCM, Masullo LA, Baudrexel I, Steen PR, Kowalewski R, Eklund AS, Strauss S, Unterauer EM, Schlichthaerle T, Strauss MT, Klein C, Jungmann R. Ångström-resolution fluorescence microscopy. Nature 2023; 617:711-716. [PMID: 37225882 PMCID: PMC10208979 DOI: 10.1038/s41586-023-05925-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/07/2023] [Indexed: 05/26/2023]
Abstract
Fluorescence microscopy, with its molecular specificity, is one of the major characterization methods used in the life sciences to understand complex biological systems. Super-resolution approaches1-6 can achieve resolution in cells in the range of 15 to 20 nm, but interactions between individual biomolecules occur at length scales below 10 nm and characterization of intramolecular structure requires Ångström resolution. State-of-the-art super-resolution implementations7-14 have demonstrated spatial resolutions down to 5 nm and localization precisions of 1 nm under certain in vitro conditions. However, such resolutions do not directly translate to experiments in cells, and Ångström resolution has not been demonstrated to date. Here we introdue a DNA-barcoding method, resolution enhancement by sequential imaging (RESI), that improves the resolution of fluorescence microscopy down to the Ångström scale using off-the-shelf fluorescence microscopy hardware and reagents. By sequentially imaging sparse target subsets at moderate spatial resolutions of >15 nm, we demonstrate that single-protein resolution can be achieved for biomolecules in whole intact cells. Furthermore, we experimentally resolve the DNA backbone distance of single bases in DNA origami with Ångström resolution. We use our method in a proof-of-principle demonstration to map the molecular arrangement of the immunotherapy target CD20 in situ in untreated and drug-treated cells, which opens possibilities for assessing the molecular mechanisms of targeted immunotherapy. These observations demonstrate that, by enabling intramolecular imaging under ambient conditions in whole intact cells, RESI closes the gap between super-resolution microscopy and structural biology studies and thus delivers information key to understanding complex biological systems.
Collapse
Affiliation(s)
- Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | | | - Isabelle Baudrexel
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Philipp R Steen
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Alexandra S Eklund
- Max Planck Institute of Biochemistry, Planegg, Germany
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Eduard M Unterauer
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Thomas Schlichthaerle
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Maximilian T Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany
| | - Christian Klein
- Department of Chemistry and Biochemistry, Ludwig Maximilian University, Munich, Germany
- Roche Innovation Center Zurich, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany.
- Faculty of Physics and Center for NanoScience, Ludwig Maximilian University, Munich, Germany.
| |
Collapse
|
13
|
Zähringer J, Cole F, Bohlen J, Steiner F, Kamińska I, Tinnefeld P. Combining pMINFLUX, graphene energy transfer and DNA-PAINT for nanometer precise 3D super-resolution microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:70. [PMID: 36898993 PMCID: PMC10006205 DOI: 10.1038/s41377-023-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
3D super-resolution microscopy with nanometric resolution is a key to fully complement ultrastructural techniques with fluorescence imaging. Here, we achieve 3D super-resolution by combining the 2D localization of pMINFLUX with the axial information of graphene energy transfer (GET) and the single-molecule switching by DNA-PAINT. We demonstrate <2 nm localization precision in all 3 dimension with axial precision reaching below 0.3 nm. In 3D DNA-PAINT measurements, structural features, i.e., individual docking strands at distances of 3 nm, are directly resolved on DNA origami structures. pMINFLUX and GET represent a particular synergetic combination for super-resolution imaging near the surface such as for cell adhesion and membrane complexes as the information of each photon is used for both 2D and axial localization information. Furthermore, we introduce local PAINT (L-PAINT), in which DNA-PAINT imager strands are equipped with an additional binding sequence for local upconcentration improving signal-to-background ratio and imaging speed of local clusters. L-PAINT is demonstrated by imaging a triangular structure with 6 nm side lengths within seconds.
Collapse
Affiliation(s)
- Jonas Zähringer
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Fiona Cole
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Johann Bohlen
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
| | - Florian Steiner
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
- Department of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799, München, Germany
| | - Izabela Kamińska
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany
- Institute of Physical Chemistry Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 Haus E, 81377, München, Germany.
| |
Collapse
|
14
|
Affiliation(s)
- Sven Truckenbrodt
- Convergent Research, E11 Bio. 1600 Harbor Bay Parkway, Alameda, California94502, United States
| |
Collapse
|
15
|
Xu X, Jia S, Xi P. Raster-scanning Donut simplifies MINFLUX and provides alternative implement on other scanning-based microscopes. LIGHT, SCIENCE & APPLICATIONS 2022; 11:293. [PMID: 36216797 PMCID: PMC9550861 DOI: 10.1038/s41377-022-00983-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A donut excitation moves around a single molecule with a zigzag configuration lattice by lattice. Such a method implemented in scanning fluorescence microscopy simplifies the conventional MINFLUX process. Consisting of hollow zero-intensity excitation, single-pixel detection, time-correlated single photon counting, and drift stabilization, the system achieves localization precision and resolution very close to conventional MINFLUX theoretically and experimentally. An averaged high-SNR reference, and pixel-registered intensity from a single molecule is essential to reconstruct localization in maximum likelihood estimation. With performance reaching nearly conventional MINFLUX's, the proposed raster-scanning MINFLUX can inspire researchers expertized in STED or confocal setup to quickly transform to MINFLUX and develop for further exploring on bio-specimens or optical applications.
Collapse
Affiliation(s)
- Xinzhu Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Shu Jia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, 30332, USA
| | - Peng Xi
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- UTS-SUStech Joint Research Centre for Bio-medical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.
- National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Wang Z, Wang T, Yang Y, Yang Y, Mi X, Wang J. Precise Two-Dimensional Tilt Measurement Sensor with Double-Cylindrical Mirror Structure and Modified Mean-Shift Algorithm for a Confocal Microscopy System. SENSORS (BASEL, SWITZERLAND) 2022; 22:6794. [PMID: 36146144 PMCID: PMC9501962 DOI: 10.3390/s22186794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
To improve the accuracy of three-dimensional (3D) surface contour measurements of freeform optics, a two-dimensional (2D) tilt measurement sensor for confocal microscopy (CM) systems is proposed based on a double-cylindrical mirror structure. First, the proposed system is accurately modeled. Second, we introduce a modified mean-shift-based peak-extraction algorithm with a novel kernel function (MSN) because the reflectivity of the measured object and fluctuation of the light source affect the measurement accuracy. Third, a partition fitting (PF) strategy is proposed to reduce the fitting error and improve the measurement accuracy. Simulations and experiments reveal that the robustness, speed, and angular prediction accuracy of the system effectively improved as a function of MSN and PF. The developed sensor can measure the 2D tilt, where each tilt is a composition of two separate dimensions, and the mean prediction errors in the 2D plane from -10°-+10° are 0.0134° (0.067% full scale (F.S)) and 0.0142° (0.071% F.S). The sensor enables the optical probe of a traditional CM to obtain accurate and simultaneous estimates of the 2D inclination angle and spatial position coordinates of the measured surface. The proposed sensor has potential in 3D topographic reconstruction and dynamic sampling rate optimization for 3D contour detection.
Collapse
Affiliation(s)
- Zhiyi Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukai Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Mi
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Jianli Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Masullo LA, Szalai AM, Lopez LF, Pilo-Pais M, Acuna GP, Stefani FD. Correction: An alternative to MINFLUX that enables nanometer resolution in a confocal microscope. LIGHT, SCIENCE & APPLICATIONS 2022; 11:251. [PMID: 35945208 PMCID: PMC9363481 DOI: 10.1038/s41377-022-00942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Luciano A Masullo
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Alan M Szalai
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Lucía F Lopez
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | - Mauricio Pilo-Pais
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700, Switzerland
| | - Guillermo P Acuna
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg, CH-1700, Switzerland
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2390, C1425FQD Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Güiraldes 2620, C1428EHA Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|