1
|
Selvan T M, Mondal T. Prognosis of Cardiovascular Conditions Noninvasively Using Printable Elastomeric Electronic Skin. Adv Healthc Mater 2025; 14:e2404056. [PMID: 39745132 DOI: 10.1002/adhm.202404056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/17/2024] [Indexed: 03/04/2025]
Abstract
Lack of timely prognosis of cardiovascular condition (CVC) is resulting in increased mortality across the globe. Currently, available techniques are confined to medical facilities and need the intervention of specialists. Frequently, this impedes timely treatment, driven by socioeconomic factors. Consequently, the disease transcends toward incurable complications. In such a scenario, point-of-care diagnostic tools can help with prognosis at an early stage. Albeit there are such tools available, it is imperative to develop affordably in uncomplicated manufacturing techniques and should have simple readout and analysis modules for monitoring CVC. Accordingly, the solvent-free manufacturing of stencil printable liquid elastomer-carbon nanotube electronic skin-based strain sensor, capable of accurately detecting pulse (at different positions) and other parameters like augmentation index and stiffness index of artery related to the CVC, is reported. The Poincare plot, derived from the recorded data, measures heart rate variability, a key indicator linked to mortality. Thanks to the staggering linearity, gauge factor of 234.26, fast response time of 85 ms (measured from pulse data), and cyclic stability (over 500 cycles), assist in the ease of detection of vital parameters. Furthermore, the sensor patch demonstrates its capability to acquire pulse waves under different real-time artery conditions using cuff-based pressure applications.
Collapse
Affiliation(s)
- Muthamil Selvan T
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Titash Mondal
- Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
2
|
Min S, An J, Lee JH, Kim JH, Joe DJ, Eom SH, Yoo CD, Ahn HS, Hwang JY, Xu S, Rogers JA, Lee KJ. Wearable blood pressure sensors for cardiovascular monitoring and machine learning algorithms for blood pressure estimation. Nat Rev Cardiol 2025:10.1038/s41569-025-01127-0. [PMID: 39966649 DOI: 10.1038/s41569-025-01127-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2025] [Indexed: 02/20/2025]
Abstract
With advances in materials science and medical technology, wearable sensors have become crucial tools for the early diagnosis and continuous monitoring of numerous cardiovascular diseases, including arrhythmias, hypertension and coronary artery disease. These devices employ various sensing mechanisms, such as mechanoelectric, optoelectronic, ultrasonic and electrophysiological methods, to measure vital biosignals, including pulse rate, blood pressure and changes in heart rhythm. In this Review, we provide a comprehensive overview of the current state of wearable cardiovascular sensors, focusing particularly on those that measure blood pressure. We explore biosignal sensing principles, discuss blood pressure estimation methods (including machine learning algorithms) and summarize the latest advances in cuffless wearable blood pressure sensors. Finally, we highlight the challenges of and offer insights into potential pathways for the practical application of cuffless wearable blood pressure sensors in the medical field from both technical and clinical perspectives.
Collapse
Affiliation(s)
- Seongwook Min
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jaehun An
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Jae Hee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Ji Hoon Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Daniel J Joe
- Safety Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, Republic of Korea
| | - Soo Hwan Eom
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chang D Yoo
- Department of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyo-Suk Ahn
- Department of Internal Medicine, Division of Cardiology, Uijeongbu St Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Young Hwang
- Department of Anaesthesiology and Pain Medicine, SMG-SNU Boramae Medical Center, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Sheng Xu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Keon Jae Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Cao Y, Li P, Zhu Y, Wang Z, Tang N, Li Z, Cheng B, Wang F, Chen T, Sun L. Artificial Intelligence-Enabled Novel Atrial Fibrillation Diagnosis System Using 3D Pulse Perception Flexible Pressure Sensor Array. ACS Sens 2025; 10:272-282. [PMID: 39757849 DOI: 10.1021/acssensors.4c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Atrial fibrillation (AF) as one of the most common cardiovascular diseases has attracted great attention due to its high disability and mortality rate. Thus, a timely and effective recognition method for AF is of great importance for diagnosing and preventing it. Herein, we proposed a novel intelligent sensing and recognition system for AF which combined Traditional Chinese Medicine (TCM), flexible wearable electronic devices, and artificial intelligence. Experiment and simulation synergistically verified that the flexible pressure sensor arrays designed according to the TCM theory could synchronously obtain the 3D pulses at Cun, Guan, and Chi. Combined with a homemade signal acquisition system and the pulse signals labeled by doctors of cardiovascular diseases, the differences in the 3D pulse signals between ones with AF and without can be picked up clearly. Enabled the convolutional neural network (CNN) and the pulse database, the recognition model was formed with a recognition rate of up to 90%. As a proof of concept, the artificial intelligence-enabled novel atrial fibrillation diagnosis system has been used to detect patients with AF in hospitals, showing 80% recognition rate. This work provides a new strategy to precisely diagnose and remotely treat AF, as well as to accelerate the development of Modern Chinese Medicine treatment.
Collapse
Affiliation(s)
- Yujie Cao
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China
| | - Ping Li
- Shanghai University of Medicine & Health Sciences, Shanghai 201318, China
| | - Yirun Zhu
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China
| | - Zheng Wang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Nuo Tang
- Cardiology Department, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhibin Li
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China
| | - Bin Cheng
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China
| | - Fengxia Wang
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China
| | - Tao Chen
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China
| | - Lining Sun
- Jiangsu Provincial Key Laboratory of Advanced Robotics, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215137, China
| |
Collapse
|
4
|
Wang X, Wu G, Zhang X, Lv F, Yang Z, Nan X, Zhang Z, Xue C, Cheng H, Gao L. Traditional Chinese Medicine (TCM)-Inspired Fully Printed Soft Pressure Sensor Array with Self-Adaptive Pressurization for Highly Reliable Individualized Long-Term Pulse Diagnostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410312. [PMID: 39344553 DOI: 10.1002/adma.202410312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/15/2024] [Indexed: 10/01/2024]
Abstract
Reliable, non-invasive, continuous monitoring of pulse and blood pressure is essential for the prevention and diagnosis of cardiovascular diseases. However, the pulse wave varies drastically among individuals or even over time in the same individual, presenting significant challenges for the existing pulse sensing systems. Inspired by pulse diagnosis methods in traditional Chinese medicine (TCM), this work reports a self-adaptive pressure sensing platform (PSP) that combines the fully printed flexible pressure sensor array with an adaptive wristband-style pressure system can identify the optimal pulse signal. Besides the detected pulse rate/width/length, "Cun, Guan, Chi" position, and "floating, moderate, sinking" pulse features, the PSP combined with a machine learning-based linear regression model can also accurately predict blood pressure such as systolic, diastolic, and mean arterial pressure values. The developed diagnostic platform is demonstrated for highly reliable long-term monitoring and analysis of pulse and blood pressure across multiple human subjects over time. The design concept and proof-of-the-concept demonstrations also pave the way for the future developments of flexible sensing devices/systems for adaptive individualized monitoring in the complex practical environments for personalized medicine, along with the support for the development of digital TCM.
Collapse
Affiliation(s)
- Xin Wang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Guirong Wu
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
| | - Xikuan Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan, 030051, China
| | - Fei Lv
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, Taiyuan, 030051, China
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, Taiyuan, 030006, China
| | - Zengxing Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
5
|
Tian X, Cheng G, Wu Z, Wen X, Kong Y, Long P, Zhao F, Li Z, Zhang D, Hu Y, Wei D. High‐Resolution Carbon‐Based Tactile Sensor Array for Dynamic Pulse Imaging. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202406022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 09/14/2024]
Abstract
AbstractWith the development of modern medicine, the importance of continuous and reliable pulse wave monitoring has increased significantly in physiological evaluation and disease diagnosis. Among them, the 3D reconstruction of the pulse wave is indispensable, and needs rely on ultra‐high resolution sensor arrays, that is, high spatial resolution, temporal resolution, and force resolution. Herein, a flexible high‐density 32 × 32 tactile sensor array based on pressure‐sensitive tunneling mechanism is develpoed. Conformal graphene nanowalls (GNWs) pattern arrays are deposited on micro‐pyramidal structural Si substrate via mask‐assisted plasma enhanced chemical vapor deposition (PECVD) method and are adopted as pressure‐sensitive electrode, exhibiting a spatial resolution of 64 dots/cm2, high sensitivity (222.36 kPa−1) and short response time (2 ms). More importantly, HfO2 tunneling layer can effectively suppress noise current, which made it sense weak pressure signals with 1/1000 force resolution and SNR of 36.32 dB. By leveraging its high‐resolution array, more holistic pulse signals are acquired and the 3D shape of the pulse wave are successfully replicated. This work shows high‐resolution sensors have significant promise for applications in remote intelligent diagnostics.
Collapse
Affiliation(s)
- Xin Tian
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Guanyin Cheng
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Zhonghuai Wu
- The MIIT Key Laboratory of Complex‐Field Intelligent Exploration School of Optics and Photonics Beijing Institute of Technology Beijing 100081 China
| | - Xudong Wen
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Yongkang Kong
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Pan Long
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Fubang Zhao
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
| | - Zhongxiang Li
- The MIIT Key Laboratory of Complex‐Field Intelligent Exploration School of Optics and Photonics Beijing Institute of Technology Beijing 100081 China
| | - Dong Zhang
- Xiyuan Hospital of China Academy of Chinese Medical Sciences Beijing 100091 China
| | - Yonghe Hu
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Dapeng Wei
- Chongqing Key Laboratory of Generic Technology and System of Service Robots, Chongqing Institute of Green and Intelligent Technology Chinese Academy of Sciences Chongqing 400714 China
- State Key Laboratory of Trauma and Chemical Poisoning Third Military Medical University Chongqing 400042 China
| |
Collapse
|
6
|
Liu W, Chung K, Yu S, Lee LP. Nanoplasmonic biosensors for environmental sustainability and human health. Chem Soc Rev 2024; 53:10491-10522. [PMID: 39192761 DOI: 10.1039/d3cs00941f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Monitoring the health conditions of the environment and humans is essential for ensuring human well-being, promoting global health, and achieving sustainability. Innovative biosensors are crucial in accurately monitoring health conditions, uncovering the hidden connections between the environment and human well-being, and understanding how environmental factors trigger autoimmune diseases, neurodegenerative diseases, and infectious diseases. This review evaluates the use of nanoplasmonic biosensors that can monitor environmental health and human diseases according to target analytes of different sizes and scales, providing valuable insights for preventive medicine. We begin by explaining the fundamental principles and mechanisms of nanoplasmonic biosensors. We investigate the potential of nanoplasmonic techniques for detecting various biological molecules, extracellular vesicles (EVs), pathogens, and cells. We also explore the possibility of wearable nanoplasmonic biosensors to monitor the physiological network and healthy connectivity of humans, animals, plants, and organisms. This review will guide the design of next-generation nanoplasmonic biosensors to advance sustainable global healthcare for humans, the environment, and the planet.
Collapse
Affiliation(s)
- Wenpeng Liu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Kyungwha Chung
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Yu
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
| | - Luke P Lee
- Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Harvard University, Boston, MA 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
7
|
Yang R, Ma Y, Cui J, Liu M, Wu Y, Zheng H. Nano PDA@Tur-Modified Piezoelectric Sensors for Enhanced Sensitivity and Energy Harvesting. ACS Sens 2024; 9:3137-3149. [PMID: 38812068 DOI: 10.1021/acssensors.4c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Tourmaline is known for its natural negative ion effect and far-infrared radiation function, which promote human blood circulation, relieve pain, regulate the endocrine system, and enhance immunity and other functions. These functions motivate the use of this material for enhanced sensitivity of wearable sensors. In this work, taking advantage of the unique multifunctions of tourmaline nanoparticles (Tur), highly boosted piezoelectricity was achieved by incorporating polydopamine (PDA)-modified Tur in PVDF. The PDA@Tur nanofillers not only effectively increased the β-phase content of PVDF but also played a major role in significantly enhancing piezoelectricity, wettability, elasticity, air permeability, and stability of the piezoelectric sensors. Especially, the maximum output voltage of the fiber membrane with 0.5 wt % PDA@Tur reached 31.0 V, being 4 times that of the output voltage of the pure PVDF fiber membrane. Meanwhile, the sensitivity reached 0.7011 V/kPa at 1-10 N, which was 3.6 times that of pure PVDF film (0.196 V/kPa). The power intensity reached 8 μW/cm2, being 5.55 times that of the pristine PVDF PENG (1.44 μW/cm2), and the piezoelectric coefficient from d33 m/PFM is 5.5 pC/N, higher than that of pristine PVDF PENG (3.1 pC/N). Output signal graphs corresponding to flapping, finger, knee, and elbow movements were detected. The response/recovery time of the sensor device was 24/19 ms. The piezoelectric nanogenerator (PENG) was capable of charging multiple capacitors to 2 V within a short time and lighting up 15 light-emitting diodes bulbs (LEDs) simultaneously with a single beat. In addition, a 4 × 4 row-column multiplexed sensor array was made of PENGs, which showed distinct responses to different stress areas in different sensor modules. This study demonstrated high-performance PDA@Tur PVDF-based PENG being capable of energy harvesting and sensing, providing a guideline for the design and buildup of wearable self-powered devices in healthcare and human-computer interaction.
Collapse
Affiliation(s)
- Ruiyong Yang
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yulin Ma
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jinghui Cui
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Mingming Liu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yongling Wu
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Hongyu Zheng
- School of Mechanical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| |
Collapse
|
8
|
Liu Y, Xu Z, Ji X, Xu X, Chen F, Pan X, Fu Z, Chen Y, Zhang Z, Liu H, Cheng B, Liang J. Ag-thiolate interactions to enable an ultrasensitive and stretchable MXene strain sensor with high temporospatial resolution. Nat Commun 2024; 15:5354. [PMID: 38918424 PMCID: PMC11200319 DOI: 10.1038/s41467-024-49787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
High-sensitivity strain sensing elements with a wide strain range, fast response, high stability, and small sensing areas are desirable for constructing strain sensor arrays with high temporospatial resolution. However, current strain sensors rely on crack-based conductive materials having an inherent tradeoff between their sensing area and performance. Here, we present a molecular-level crack modulation strategy in which we use layer-by-layer assembly to introduce strong, dynamic, and reversible coordination bonds in an MXene and silver nanowire-matrixed conductive film. We use this approach to fabricate a crack-based stretchable strain sensor with a very small sensing area (0.25 mm2). It also exhibits an ultrawide working strain range (0.001-37%), high sensitivity (gauge factor ~500 at 0.001% and >150,000 at 35%), fast response time, low hysteresis, and excellent long-term stability. Based on this high-performance sensing element and facile assembly process, a stretchable strain sensor array with a device density of 100 sensors per cm2 is realized. We demonstrate the practical use of the high-density strain sensor array as a multichannel pulse sensing system for monitoring pulses in terms of their spatiotemporal resolution.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China.
| | - Zijun Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Xinyi Ji
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Xin Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Fei Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaosen Pan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiqiang Fu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Yunzhi Chen
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Zhengjian Zhang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Hongbin Liu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin, China.
| | - Jiajie Liang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
- Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, China.
- School of Materials Science and Engineering & Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, China.
| |
Collapse
|
9
|
Zhao Y, Sun Q, Mei S, Gao L, Zhang X, Yang Z, Nan X, Zhang H, Xue C, Li J. Wearable multichannel-active pressurized pulse sensing platform. MICROSYSTEMS & NANOENGINEERING 2024; 10:77. [PMID: 38867942 PMCID: PMC11166975 DOI: 10.1038/s41378-024-00703-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/04/2024] [Accepted: 04/06/2024] [Indexed: 06/14/2024]
Abstract
With the modernization of traditional Chinese medicine (TCM), creating devices to digitalize aspects of pulse diagnosis has proved to be challenging. The currently available pulse detection devices usually rely on external pressure devices, which are either bulky or poorly integrated, hindering their practical application. In this work, we propose an innovative wearable active pressure three-channel pulse monitoring device based on TCM pulse diagnosis methods. It combines a flexible pressure sensor array, flexible airbag array, active pressure control unit, advanced machine learning approach, and a companion mobile application for human-computer interaction. Due to the high sensitivity (460.1 kPa-1), high linearity (R 2 > 0.999) and flexibility of the flexible pressure sensors, the device can accurately simulate finger pressure to collect pulse waves (Cun, Guan, and Chi) at different external pressures on the wrist. In addition, by measuring the change in pulse wave amplitude at different pressures, an individual's blood pressure status can be successfully predicted. This enables truly wearable, actively pressurized, continuous wireless dynamic monitoring of wrist pulse health. The innovative and integrated design of this pulse monitoring platform could provide a new paradigm for digitizing aspects of TCM and other smart healthcare systems.
Collapse
Affiliation(s)
- Yunlong Zhao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361102 Xiamen, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, 361102 Xiamen, China
| | - Qingxia Sun
- Department of Electronic Engineering, Ocean University of China, 266000 Qingdao, China
| | - Shixuan Mei
- School of Automation and Software Engineering, Shanxi University, 030006 Taiyuan, China
| | - Libo Gao
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361102 Xiamen, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, 361102 Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361005 Xiamen, China
| | - Xikuan Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, 030006 Taiyuan, China
| | - Haiyan Zhang
- Science and Technology on Vacuum Technology and Physics Laboratory, Lanzhou Institute of Physics, Chinese Academy of Space Technology, 730000 Lanzhou, China
| | - Chenyang Xue
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, 361102 Xiamen, China
- Discipline of Intelligent Instrument and Equipment, Xiamen University, 361102 Xiamen, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), 361005 Xiamen, China
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China, 266000 Qingdao, China
| |
Collapse
|
10
|
Du Y, Kim JH, Kong H, Li AA, Jin ML, Kim DH, Wang Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv Healthc Mater 2024; 13:e2303461. [PMID: 38569196 DOI: 10.1002/adhm.202303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases represent a significant threat to the overall well-being of the global population. Continuous monitoring of vital signs related to cardiovascular health is essential for improving daily health management. Currently, there has been remarkable proliferation of technology focused on collecting data related to cardiovascular diseases through daily electronic skin monitoring. However, concerns have arisen regarding potential skin irritation and inflammation due to the necessity for prolonged wear of wearable devices. To ensure comfortable and uninterrupted cardiovascular health monitoring, the concept of biocompatible electronic skin has gained substantial attention. In this review, biocompatible electronic skins for cardiovascular health monitoring are comprehensively summarized and discussed. The recent achievements of biocompatible electronic skin in cardiovascular health monitoring are introduced. Their working principles, fabrication processes, and performances in sensing technologies, materials, and integration systems are highlighted, and comparisons are made with other electronic skins used for cardiovascular monitoring. In addition, the significance of integrating sensing systems and the updating wireless communication for the development of the smart medical field is explored. Finally, the opportunities and challenges for wearable electronic skin are also examined.
Collapse
Affiliation(s)
- Yucong Du
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hui Kong
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Anne Ailina Li
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
11
|
Wang J, Wang Z, Zhang Z, Li P, Pan H, Ren Y, Hou T, Wang C, Kwong CF, Zhang B, Yang S, Bie J. Simultaneous Measurement of Local Pulse Wave Velocities in Radial Arteries Using a Soft Sensor Based on the Fiber Bragg Grating Technique. MICROMACHINES 2024; 15:507. [PMID: 38675318 PMCID: PMC11052460 DOI: 10.3390/mi15040507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Arterial stiffness has been proved to be an important parameter in the evaluation of cardiovascular diseases, and Pulse Wave Velocity (PWV) is a strong indicator of arterial stiffness. Compared to regional PWV (PWV among different arteries), local PWV (PWV within a single artery) outstands in providing higher precision in indicating arterial properties, as regional PWVs are highly affected by multiple parameters, e.g., variations in blood vessel lengths due to individual differences, and multiple reflection effects on the pulse waveform. However, local PWV is less-developed due to its high dependency on the temporal resolution in synchronized signals with usually low signal-to-noise ratios. This paper presents a method for the noninvasive simultaneous measurement of two local PWVs in both left and right radial arteries based on the Fiber Bragg Grating (FBG) technique via correlation analysis of the pulse pairs at the fossa cubitalis and at the wrist. Based on the measurements of five male volunteers at the ages of 19 to 21 years old, the average left radial PWV ranged from 9.44 m/s to 12.35 m/s and the average right radial PWV ranged from 11.50 m/s to 14.83 m/s. What is worth mentioning is that a stable difference between the left and right radial PWVs was observed for each volunteer, ranging from 2.27 m/s to 3.04 m/s. This method enables the dynamic analysis of local PWVs and analysis of their features among different arteries, which will benefit the diagnosis of early-stage arterial stiffening and may bring more insights into the diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China
- Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Zhukun Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
| | - Zijun Zhang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
| | - Peiyun Li
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
| | - Han Pan
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
| | - Yong Ren
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China
- Department of Mechanics, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China;
- Key Laboratory of Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Tuo Hou
- Department of Mechanics, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, Ningbo 315100, China;
| | - Chengbo Wang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China
| | - Chiew-Foong Kwong
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
- Key Laboratory of More Electric Aircraft Technology of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Bei Zhang
- Department of Automation Science and Electrical Engineering, Beihang University, No. 37 Xueyuan Road, Haidian District, Beijing 100191, China;
| | - Sen Yang
- Department of Electrical and Electronic Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; (Z.W.); (Z.Z.); (P.L.); (H.P.); (C.W.); (C.-F.K.); (S.Y.)
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, China
| | - Jing Bie
- Department of Civil Engineering, University of Nottingham Ningbo China, Ningbo 315100, China;
| |
Collapse
|
12
|
Yang C, Hu J, Liu L, Wu S, Pan M, Liu Y, Wang H, Li P, Zhang Q, Qiu W, Luo H. An underwater vest containing an antioxidant MXene hydrogel for sensitive recognition of fish locomotion. MICROSYSTEMS & NANOENGINEERING 2024; 10:41. [PMID: 38523657 PMCID: PMC10957866 DOI: 10.1038/s41378-024-00675-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/11/2023] [Accepted: 12/29/2023] [Indexed: 03/26/2024]
Abstract
The perception of fish locomotion is important for understanding their adaptive behaviors and ethological characteristics. However, the main strategy used for extracting fish attitudes involves the use of a vision-based monitoring system, which is limited in its range of observation and cannot perform tracking for long times. Here, we report the use of a wearable tagging electronic device, referred to as an underwater vest, to capture the surrounding flow field disturbances triggered by swimming or momentary postural changes. All of these goals were achieved by integrating a pair of pseudocapacitive pressure-sensing units and a flexible circuit board. Notably, additional conditions, such as variable hydraulic pressures and minimal changes in fish posture, require high stability and sensitivity of the sensing units. Thus, hybrid hydrogel electrodes were developed through cross-linking MXene with holey-reduced graphene oxide nanosheets and further modification with 1-ethyl-3-methylimidazolium dicyanamide ionic liquids, which increased the interfacial capacitance and long-term interfacial activity of the MXene. Consequently, the sensing unit exhibited ultrahigh sensitivity (Smax~136,207 kPa-1) in an aquatic environment for 60 days and superior high-pressure resolution (10 Pa) within a wide working range of 1 MPa. Ultimately, an underwater vest integrated with such sensing units clearly distinguished and recorded fish locomotion. We believe that the designed device may open avenues in flow field monitoring and ocean current detection and provide new insights into the development of sensitive underwater tagging.
Collapse
Affiliation(s)
- Chengxiu Yang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Jiafei Hu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Lihui Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Shaowei Wu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Mengchun Pan
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Yan Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Haomiao Wang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Peisen Li
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Qi Zhang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Weicheng Qiu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| | - Huihui Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, 410073 China
| |
Collapse
|
13
|
Li L, Wang T, Zhong Y, Li R, Deng W, Xiao X, Xu Y, Zhang J, Hu X, Wang Y. A review of nanomaterials for biosensing applications. J Mater Chem B 2024; 12:1168-1193. [PMID: 38193143 DOI: 10.1039/d3tb02648e] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A biosensor is a device that reacts with the analyte to be analyzed, detects its concentration, and generates readable information, which plays an important role in medical diagnosis, detection of physiological indicators, and disease prevention. Nanomaterials have received increasing attention in the fabrication and improvement of biosensors due to their unique physicochemical and optical properties. In this paper, the properties of nanomaterials such as the size effect, optical and electrical properties, and their advantages in the field of biosensing are briefly summarized, and the application of nanomaterials can effectively improve the sensitivity and reduce the detection limit of biosensors. The advantages of commonly used nanomaterials such as gold nanoparticles (AuNPs), carbon nanotubes (CNTs), quantum dots (QDs), graphene, and magnetic nanobeads for biosensor applications are also reviewed. Besides, the two main types of biosensors using nanomaterials involved in their construction and their working principles are described, and the toxicity and biocompatibility of nanomaterials and the future direction of nanomaterial biosensors are discussed.
Collapse
Affiliation(s)
- Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Tianshu Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Ruyi Li
- Rotex Co., Ltd, Chengdu, Sichuan, 610043, China
| | - Wei Deng
- Department of Orthopedics, Pidu District People's Hospital, the Third Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 611730, China
| | - Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
14
|
Chowdhury AH, Jafarizadeh B, Pala N, Wang C. Paper-Based Supercapacitive Pressure Sensor for Wrist Arterial Pulse Waveform Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37921369 DOI: 10.1021/acsami.3c08720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Recent developments in wearable pressure sensors have led to the need for high sensitivity and a broad sensing range to accurately detect various physiological states. However, high sensitivity does not always translate to a wide sensing range, and manufacturing sensors with such high sensitivity is a complex and expensive process. In this study, we present a capacitive pressure sensor based on tissue paper that is simple to produce and cost-effective yet still exhibits high linear sensitivity of 2.9 kPa-1 in the 0-16 kPa range. The linear sensitivity of 1.5 kPa-1 was achieved from 16 to 90 kPa. The sensor also demonstrated a fast response time of 0.2 s, excellent pressure resolution at both low and high pressures, and a sufficient signal-to-noise ratio, making it ideal for detecting wrist arterial pulse waveforms. We were also able to demonstrate the sensor's practicality in real-world applications by cycling it 5000 times and showing its capability to capture pulse waveforms from different arterial locations. These low-cost sensors possess all the intrinsic features necessary for efficient measurement of pulse waveforms, which may facilitate the diagnosis of cardiovascular diseases.
Collapse
Affiliation(s)
- Azmal Huda Chowdhury
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Borzooye Jafarizadeh
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, Florida 33174, United States
| | - Chunlei Wang
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
- Mechanical and Aerospace Engineering, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
15
|
Wang F, Su D, Ma K, Qin B, Li B, Li J, Zhang C, Xin Y, Huang Z, Yang W, Wang S, He X. Reliable and Scalable Piezoresistive Sensors with an MXene/MoS 2 Hierarchical Nanostructure for Health Signals Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44001-44011. [PMID: 37671797 DOI: 10.1021/acsami.3c09464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The increased popularity of wearable electronic devices has led to a greater need for advanced sensors. However, fabricating pressure sensors that are flexible, highly sensitive, robust, and compatible with large-scale fabrication technology is challenging. This work investigates a piezoresistive sensor constructed from an MXene/MoS2 hierarchical nanostructure, which is obtained through an easy and inexpensive fabrication process. The sensor exhibits a high sensitivity of 0.42 kPa-1 (0-1.5 kPa), rapid response (∼36 ms), and remarkable mechanical durability (∼10,000 cycles at 13 kPa). The sensor has been demonstrated to be successful in detecting human motion, speech recognition, and physiological signals, particularly in analyzing human pulse. These data can be used to alert and identify irregularities in human health. Additionally, the sensing units are able to construct sensor arrays of various sizes and configurations, enabling pressure distribution imaging in a variety of application scenarios. This research proposes a cost-effective and scalable approach to fabricating piezoresistive sensors and sensor arrays, which can be utilized for monitoring human health and for use in human-machine interfaces.
Collapse
Affiliation(s)
- Fengming Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Daojian Su
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Ke Ma
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Bolong Qin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Baijun Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Junxian Li
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Chi Zhang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Yue Xin
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Zundi Huang
- School of Rail Transportation, Wuyi University, Jiangmen 529020, P.R. China
| | - Weijia Yang
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| | - Shuangpeng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, P.R. China
| | - Xin He
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, P.R. China
| |
Collapse
|
16
|
Li Y, Villada A, Lu SH, Sun H, Xiao J, Wang X. Soft, flexible pressure sensors for pressure monitoring under large hydrostatic pressure and harsh ocean environments. SOFT MATTER 2023. [PMID: 37466916 DOI: 10.1039/d3sm00563a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Traditional rigid ocean pressure sensors typically require protection from bulky pressure chambers and complex seals to survive the large hydrostatic pressure and harsh ocean environment. Here, we introduce soft, flexible pressure sensors that can eliminate such a need and measure a wide range of hydrostatic pressures (0.1 MPa to 15 MPa) in environments that mimic the ocean, achieving small size, high flexibility, and potentially low power consumption. The sensors are fabricated from lithographically patterned gold thin films (100 nm thick) encapsulated with a soft Parylene C film and tested in a customized pressure vessel under well-controlled pressure and temperature conditions. Using a rectangular pressure sensor as an example, the resistance of the sensor is found to decrease linearly with the increase of the hydrostatic pressure from 0.1 MPa to 15 MPa. Finite element analysis (FEA) reveals the strain distributions in the pressure sensor under hydrostatic pressures of up to 15 MPa. The effect of geometry on sensor performance is also studied, and radially symmetric pressure sensors (like circular and spike-shaped) are shown to have more uniform strain distributions under large hydrostatic pressures and, therefore, have a potentially enhanced pressure measurement range. Pressure sensors of all geometries show high consistency and negligible hysteresis over 15 cyclic tests. In addition, the sensors exhibit excellent flexibility and operate reliably under a hydrostatic pressure of 10 MPa for up to 70 days. The developed soft pressure sensors are promising for integration with many platforms including animal tags, diver equipment, and soft underwater robotics.
Collapse
Affiliation(s)
- Yi Li
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - Andres Villada
- Department of Mechanical engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Shao-Hao Lu
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
| | - He Sun
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jianliang Xiao
- Department of Mechanical engineering, University of Colorado, Boulder, CO 80309, USA.
| | - Xueju Wang
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
17
|
Nguyen TH, Ngo BV, Nguyen TN, Vu CC. Flexible Pressure Sensors and Machine Learning Algorithms for Human Walking Phase Monitoring. MICROMACHINES 2023; 14:1411. [PMID: 37512722 PMCID: PMC10385105 DOI: 10.3390/mi14071411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Soft sensors are attracting much attention from researchers worldwide due to their versatility in practical projects. There are already many applications of soft sensors in aspects of life, consisting of human-robot interfaces, flexible electronics, medical monitoring, and healthcare. However, most of these studies have focused on a specific area, such as fabrication, data analysis, or experimentation. This approach can lead to challenges regarding the reliability, accuracy, or connectivity of the components. Therefore, there is a pressing need to consider the sensor's placement in an overall system and find ways to maximize the efficiency of such flexible sensors. This paper proposes a fabrication method for soft capacitive pressure sensors with spacer fabric, conductive inks, and encapsulation glue. The sensor exhibits a good sensitivity of 0.04 kPa-1, a fast recovery time of 7 milliseconds, and stability of 10,000 cycles. We also evaluate how to connect the sensor to other traditional sensors or hardware components. Some machine learning models are applied to these built-in soft sensors. As expected, the embedded wearables achieve a high accuracy of 96% when recognizing human walking phases.
Collapse
Affiliation(s)
- Thanh-Hai Nguyen
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| | - Ba-Viet Ngo
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| | - Thanh-Nghia Nguyen
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| | - Chi Cuong Vu
- Faculty of Electrical and Electronics Engineering, Ho Chi Minh City University of Technology and Education, 01 Vo Van Ngan Street, Linh Chieu Ward, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
18
|
Yang Z, Duan Q, Zang J, Zhao Y, Zheng W, Xiao R, Zhang Z, Hu L, Wu G, Nan X, Zhang Z, Xue C, Gao L. Boron nitride-enabled printing of a highly sensitive and flexible iontronic pressure sensing system for spatial mapping. MICROSYSTEMS & NANOENGINEERING 2023; 9:68. [PMID: 37251710 PMCID: PMC10220000 DOI: 10.1038/s41378-023-00543-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/31/2023]
Abstract
Recently, flexible iontronic pressure sensors (FIPSs) with higher sensitivities and wider sensing ranges than conventional capacitive sensors have been widely investigated. Due to the difficulty of fabricating the nanostructures that are commonly used on electrodes and ionic layers by screen printing techniques, strategies for fabricating such devices using these techniques to drive their mass production have rarely been reported. Herein, for the first time, we employed a 2-dimensional (2D) hexagonal boron nitride (h-BN) as both an additive and an ionic liquid reservoir in an ionic film, making the sensor printable and significantly improving its sensitivity and sensing range through screen printing. The engineered sensor exhibited high sensitivity (Smin> 261.4 kPa-1) and a broad sensing range (0.05-450 kPa), and it was capable of stable operation at a high pressure (400 kPa) for more than 5000 cycles. In addition, the integrated sensor array system allowed accurate monitoring of wrist pressure and showed great potential for health care systems. We believe that using h-BN as an additive in an ionic material for screen-printed FIPS could greatly inspire research on 2D materials for similar systems and other types of sensors. Hexagonal boron nitride (h-BN) was employed for the first time to make iontronic pressure sensor arrays with high sensitivity and a broad sensing range by screen printing.
Collapse
Affiliation(s)
- Zekun Yang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Qikai Duan
- School of Automation and Software Engineering, Shanxi University, 030006 Taiyuan, China
| | - Junbin Zang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Yunlong Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Weihao Zheng
- School of Mechano-Electronic Engineering, Xidian University, 710071 Xi’an, China
| | - Ran Xiao
- Department of Mechanical Engineering, City University of Hong Kong, 999077 Kowloon, Hong Kong SAR
| | - Zhidong Zhang
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
| | - Liangwei Hu
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Guirong Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Xueli Nan
- School of Automation and Software Engineering, Shanxi University, 030006 Taiyuan, China
| | - Zengxing Zhang
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science and Dynamic Measurement Ministry of Education, North University of China, 030051 Taiyuan, China
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| | - Libo Gao
- Department of Mechanical and Electrical Engineering, Xiamen University, 361102 Xiamen, China
| |
Collapse
|
19
|
Kang X, Huang L, Zhang Y, Yun S, Jiao B, Liu X, Zhang J, Li Z, Zhang H. Wearable Multi-Channel Pulse Signal Acquisition System Based on Flexible MEMS Sensor Arrays with TSV Structure. Biomimetics (Basel) 2023; 8:biomimetics8020207. [PMID: 37218793 DOI: 10.3390/biomimetics8020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Micro-electro-mechanical system (MEMS) pressure sensors play a significant role in pulse wave acquisition. However, existing MEMS pulse pressure sensors bound with a flexible substrate by gold wire are vulnerable to crush fractures, leading to sensor failure. Additionally, establishing an effective mapping between the array sensor signal and pulse width remains a challenge. To solve the above problems, we propose a 24-channel pulse signal acquisition system based on a novel MEMS pressure sensor with a through-silicon-via (TSV) structure, which connects directly to a flexible substrate without gold wire bonding. Firstly, based on the MEMS sensor, we designed a 24-channel pressure sensor flexible array to collect the pulse waves and static pressure. Secondly, we developed a customized pulse preprocessing chip to process the signals. Finally, we built an algorithm to reconstruct the three-dimensional pulse wave from the array signal and calculate the pulse width. The experiments verify the high sensitivity and effectiveness of the sensor array. In particular, the measurement results of pulse width are highly positively correlated with those obtained via infrared images. The small-size sensor and custom-designed acquisition chip meet the needs of wearability and portability, meaning that it has significant research value and commercial prospects.
Collapse
Affiliation(s)
- Xiaoxiao Kang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China
| | - Lin Huang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China
| | - Yitao Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China
| | - Shichang Yun
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
| | - Binbin Jiao
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Liu
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China
| | - Jun Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China
| | - Zhiqiang Li
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China
| | - Haiying Zhang
- Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Key Laboratory for Next Generation RF Communication Chip Technology, Beijing 100029, China
| |
Collapse
|
20
|
Liu T, Liu L, Gou GY, Fang Z, Sun J, Chen J, Cheng J, Han M, Ma T, Liu C, Xue N. Recent Advancements in Physiological, Biochemical, and Multimodal Sensors Based on Flexible Substrates: Strategies, Technologies, and Integrations. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21721-21745. [PMID: 37098855 DOI: 10.1021/acsami.3c02690] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Flexible wearable devices have been widely used in biomedical applications, the Internet of Things, and other fields, attracting the attention of many researchers. The physiological and biochemical information on the human body reflects various health states, providing essential data for human health examination and personalized medical treatment. Meanwhile, physiological and biochemical information reveals the moving state and position of the human body, and it is the data basis for realizing human-computer interactions. Flexible wearable physiological and biochemical sensors provide real-time, human-friendly monitoring because of their light weight, wearability, and high flexibility. This paper reviews the latest advancements, strategies, and technologies of flexibly wearable physiological and biochemical sensors (pressure, strain, humidity, saliva, sweat, and tears). Next, we systematically summarize the integration principles of flexible physiological and biochemical sensors with the current research progress. Finally, important directions and challenges of physiological, biochemical, and multimodal sensors are proposed to realize their potential applications for human movement, health monitoring, and personalized medicine.
Collapse
Affiliation(s)
- Tiezhu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Lidan Liu
- Zhucheng Jiayue Central Hospital, Shandong 262200, China
| | - Guang-Yang Gou
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Zhen Fang
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Jianhai Sun
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jiamin Chen
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Jianqun Cheng
- School of Integrated Circuit, Quanzhou University of Information Engineering, Quanzhou, Fujian 362000, China
| | - Mengdi Han
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100091, China
| | - Tianjun Ma
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Chunxiu Liu
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| | - Ning Xue
- School of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
- Personalized Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing 100190, China
| |
Collapse
|
21
|
Liu T, Gou GY, Gao F, Yao P, Wu H, Guo Y, Yin M, Yang J, Wen T, Zhao M, Li T, Chen G, Sun J, Ma T, Cheng J, Qi Z, Chen J, Wang J, Han M, Fang Z, Gao Y, Liu C, Xue N. Multichannel Flexible Pulse Perception Array for Intelligent Disease Diagnosis System. ACS NANO 2023; 17:5673-5685. [PMID: 36716225 PMCID: PMC10062340 DOI: 10.1021/acsnano.2c11897] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/23/2023] [Indexed: 05/25/2023]
Abstract
Pressure sensors with high sensitivity, a wide linear range, and a quick response time are critical for building an intelligent disease diagnosis system that directly detects and recognizes pulse signals for medical and health applications. However, conventional pressure sensors have limited sensitivity and nonideal response ranges. We proposed a multichannel flexible pulse perception array based on polyimide/multiwalled carbon nanotube-polydimethylsiloxane nanocomposite/polyimide (PI/MPN/PI) sandwich-structure pressure sensor that can be applied for remote disease diagnosis. Furthermore, we established a mechanical model at the molecular level and guided the preparation of MPN. At the structural level, we achieved high sensitivity (35.02 kPa-1) and a broad response range (0-18 kPa) based on a pyramid-like bilayer microstructure with different upper and lower surfaces. A 27-channel (3 × 9) high-density sensor array was integrated at the device level, which can extract the spatial and temporal distribution information on a pulse. Furthermore, two intelligent algorithms were developed for extracting six-dimensional pulse information and automatic pulse recognition (the recognition rate reaches 97.8%). The results indicate that intelligent disease diagnosis systems have great potential applications in wearable healthcare devices.
Collapse
Affiliation(s)
- Tiezhu Liu
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Guang-yang Gou
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Fupeng Gao
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Pan Yao
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Haoyu Wu
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing10029, China
| | - Yusen Guo
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Minghui Yin
- Department
of Materials and Manufacturing, Beijing
University of Technology, Beijing100124, China
| | - Jie Yang
- TCM
Data Center & Institute of Information on Traditional Chinese
Medicine, China Academy of Chinese Medical
Sciences (CAMS), Beijing100700, China
| | - Tiancai Wen
- TCM
Data Center & Institute of Information on Traditional Chinese
Medicine, China Academy of Chinese Medical
Sciences (CAMS), Beijing100700, China
| | - Ming Zhao
- Department
of Neurosurgery, the First Medical Center, Chinese PLA General Hospital, Beijing100853, China
| | - Tong Li
- School
of Modern Post (School of Automation), Beijing
University of Posts and Telecommunications, Beijing100876, China
| | - Gang Chen
- School
of Modern Post (School of Automation), Beijing
University of Posts and Telecommunications, Beijing100876, China
| | - Jianhai Sun
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Tianjun Ma
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Jianqun Cheng
- School
of Integrated Circuit, Quanzhou University
of Information Engineering, Quanzhou, Fujian362000, China
| | - Zhimei Qi
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Jiamin Chen
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Junbo Wang
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
| | - Mengdi Han
- Department
of Biomedical Engineering, College of Future Technology, Peking University, Beijing100091, China
| | - Zhen Fang
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
- Personalized
Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing100190, China
| | - Yangyang Gao
- State
Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing10029, China
| | - Chunxiu Liu
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
- Personalized
Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing100190, China
| | - Ning Xue
- School
of Electronic, Electrical, and Communication Engineering, University of Chinese Academy of Sciences (UCAS), Beijing100049, China
- State
Key Laboratory of Transducer Technology, Aerospace Information Research
Institute (AIR), Chinese Academy of Sciences, Beijing100190, China
- Personalized
Management of Chronic Respiratory Disease, Chinese Academy of Medical Sciences, Beijing100190, China
| |
Collapse
|
22
|
Chen S, Ren X, Xu J, Yuan Y, Shi J, Ling H, Yang Y, Tang W, Lu F, Kong X, Hu B. In-Memory Tactile Sensor with Tunable Steep-Slope Region for Low-Artifact and Real-Time Perception of Mechanical Signals. ACS NANO 2023; 17:2134-2147. [PMID: 36688948 DOI: 10.1021/acsnano.2c08110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A tactile sensor needs to perceive static pressures and dynamic forces in real-time with high accuracy for early diagnosis of diseases and development of intelligent medical prosthetics. However, biomechanical and external mechanical signals are always aliased (including variable physiological and pathological events and motion artifacts), bringing great challenges to precise identification of the signals of interest (SOI). Although the existing signal segmentation methods can extract SOI and remove artifacts by blind source separation and/or additional filters, they may restrict the recognizable patterns of the device, and even cause signal distortion. Herein, an in-memory tactile sensor (IMT) with a dynamically adjustable steep-slope region (SSR) and nanocavity-induced nonvolatility (retention time >1000 s) is proposed on the basis of a machano-gated transistor, which directly transduces the tactile stimuli to various dope states of the channel. The programmable SSR endows the sensor with a critical window of responsiveness, realizing the perception of signals on demand. Owing to the nonvolatility of the sensor, the mapping of mechanical cues with high spatiotemporal accuracy and associative learning between two physical inputs are realized, contributing to the accurate assessment of the tissue health status and ultralow-power (about 25.1 μW) identification of an occasionally occurring tremor.
Collapse
Affiliation(s)
- Shisheng Chen
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Xueyang Ren
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
- School of Biological Science and Medical Engineering, Southeast University, Nanjing210096, People's Republic of China
| | - Jingfeng Xu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Yuehui Yuan
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Jing Shi
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University and Cardiovascular Device and Technique Engineering Laboratory of Jiangsu Province, Nanjing210029, People's Republic of China
| | - Huaxu Ling
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Yizhuo Yang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Wenjie Tang
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Fangzhou Lu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
| | - Xiangqing Kong
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University and Cardiovascular Device and Technique Engineering Laboratory of Jiangsu Province, Nanjing210029, People's Republic of China
| | - Benhui Hu
- School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing211166, People's Republic of China
- The Affiliated Eye Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing211166, People's Republic of China
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing211166, People's Republic of China
| |
Collapse
|
23
|
Yuan Y, Liu B, Li H, Li M, Song Y, Wang R, Wang T, Zhang H. Flexible Wearable Sensors in Medical Monitoring. BIOSENSORS 2022; 12:bios12121069. [PMID: 36551036 PMCID: PMC9775172 DOI: 10.3390/bios12121069] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The popularity of health concepts and the wave of digitalization have driven the innovation of sensors in the medical field. Such continual development has made sensors progress in the direction of safety, flexibility, and intelligence for continuous monitoring of vital signs, which holds considerable promise for changing the way humans live and even treat diseases. To this end, flexible wearable devices with high performance, such as high sensitivity, high stability, and excellent biodegradability, have attracted strong interest from scientists. Herein, a review of flexible wearable sensors for temperature, heart rate, human motion, respiratory rate, glucose, and pH is highlighted. In addition, engineering issues are also presented, focusing on material selection, sensor fabrication, and power supply. Finally, potential challenges facing current technology and future directions of wearable sensors are also discussed.
Collapse
Affiliation(s)
- Yingying Yuan
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Liu
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| | - Hui Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Mo Li
- Department of Nursing, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Yingqiu Song
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Runze Wang
- School of Clinical Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Tianlu Wang
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
- Department of Radiotherapy, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang 110042, China
| | - Hangyu Zhang
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
24
|
Liu Z, Kong J, Qu M, Zhao G, Zhang C. Progress in Data Acquisition of Wearable Sensors. BIOSENSORS 2022; 12:889. [PMID: 36291026 PMCID: PMC9599646 DOI: 10.3390/bios12100889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Wearable sensors have demonstrated wide applications from medical treatment, health monitoring to real-time tracking, human-machine interface, smart home, and motion capture because of the capability of in situ and online monitoring. Data acquisition is extremely important for wearable sensors, including modules of probes, signal conditioning, and analog-to-digital conversion. However, signal conditioning, analog-to-digital conversion, and data transmission have received less attention than probes, especially flexible sensing materials, in research on wearable sensors. Here, as a supplement, this paper systematically reviews the recent progress of characteristics, applications, and optimizations of transistor amplifiers and typical filters in signal conditioning, and mainstream analog-to-digital conversion strategies. Moreover, possible research directions on the data acquisition of wearable sensors are discussed at the end of the paper.
Collapse
|
25
|
Wang S, Zhang Z, Chen Z, Mei D, Wang Y. Development of Pressure Sensor Based Wearable Pulse Detection Device for Radial Pulse Monitoring. MICROMACHINES 2022; 13:mi13101699. [PMID: 36296052 PMCID: PMC9609944 DOI: 10.3390/mi13101699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/27/2022] [Accepted: 10/06/2022] [Indexed: 05/31/2023]
Abstract
Wearable pulse detection devices can be used for daily human healthcare monitoring; however, the relatively poor flexibility and low sensitivity of the pulse detection devices are hindering the scrutiny of pulse information during pulse diagnosis of different pulse positions. This paper developed a novel and wearable pulse detection device based on three flexible pressure sensors using synthetic graphene and silver composites as the pressure sensing material. The structural design of the pulse detection device is firstly presented; the core component of pressure sensors is using the sawtooth protrusions to convert pressure induced by radial pulse vibrations into localized deformation of graphene composites. The fabricated pulse detection device is characterized by high pressure sensing performance, including relatively high sensitivity (8.65% kPa-1), broad sensing range (12 kPa), and good dynamic response with a response time of about 100 ms. Then, the pulse detection device is worn on a human wrist to detect the pulses from three pulse positions, namely, 'Cun', 'Guan', and 'Chi', and the results demonstrated the capability of using our device to detect pulse signals. The physical conditions of the subject, such as arterial stiffness index, can be further analyzed through the characteristics of the acquired pulse signals, demonstrating the potential application of using wearable pulse detection devices for human health monitoring.
Collapse
Affiliation(s)
- Shihang Wang
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhinan Zhang
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhijian Chen
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Deqing Mei
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yancheng Wang
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Donghai Laboratory, Zhoushan 316021, China
| |
Collapse
|
26
|
Andreozzi E, Sabbadini R, Centracchio J, Bifulco P, Irace A, Breglio G, Riccio M. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22197566. [PMID: 36236663 PMCID: PMC9570799 DOI: 10.3390/s22197566] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 05/31/2023]
Abstract
Pulse waves (PWs) are mechanical waves that propagate from the ventricles through the whole vascular system as brisk enlargements of the blood vessels' lumens, caused by sudden increases in local blood pressure. Photoplethysmography (PPG) is one of the most widespread techniques employed for PW sensing due to its ability to measure blood oxygen saturation. Other sensors and techniques have been proposed to record PWs, and include applanation tonometers, piezoelectric sensors, force sensors of different kinds, and accelerometers. The performances of these sensors have been analyzed individually, and their results have been found not to be in good agreement (e.g., in terms of PW morphology and the physiological parameters extracted). Such a comparison has led to a deeper comprehension of their strengths and weaknesses, and ultimately, to the consideration that a multimodal approach accomplished via sensor fusion would lead to a more robust, reliable, and potentially more informative methodology for PW monitoring. However, apart from various multichannel and multi-site systems proposed in the literature, no true multimodal sensors for PW recording have been proposed yet that acquire PW signals simultaneously from the same measurement site. In this study, a true multimodal PW sensor is presented, which was obtained by integrating a piezoelectric forcecardiography (FCG) sensor and a PPG sensor, thus enabling simultaneous mechanical-optical measurements of PWs from the same site on the body. The novel sensor performance was assessed by measuring the finger PWs of five healthy subjects at rest. The preliminary results of this study showed, for the first time, that a delay exists between the PWs recorded simultaneously by the PPG and FCG sensors. Despite such a delay, the pulse waveforms acquired by the PPG and FCG sensors, along with their first and second derivatives, had very high normalized cross-correlation indices in excess of 0.98. Six well-established morphological parameters of the PWs were compared via linear regression, correlation, and Bland-Altman analyses, which showed that some of these parameters were not in good agreement for all subjects. The preliminary results of this proof-of-concept study must be confirmed in a much larger cohort of subjects. Further investigation is also necessary to shed light on the physical origin of the observed delay between optical and mechanical PW signals. This research paves the way for the development of true multimodal, wearable, integrated sensors and for potential sensor fusion approaches to improve the performance of PW monitoring at various body sites.
Collapse
|
27
|
Hong Y, Lin Z, Yang Y, Jiang T, Shang J, Luo Z. Biocompatible Conductive Hydrogels: Applications in the Field of Biomedicine. Int J Mol Sci 2022; 23:4578. [PMID: 35562969 PMCID: PMC9104506 DOI: 10.3390/ijms23094578] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 02/04/2023] Open
Abstract
The impact of COVID-19 has rendered medical technology an important factor to maintain social stability and economic increase, where biomedicine has experienced rapid development and played a crucial part in fighting off the pandemic. Conductive hydrogels (CHs) are three-dimensional (3D) structured gels with excellent electrical conductivity and biocompatibility, which are very suitable for biomedical applications. CHs can mimic innate tissue's physical, chemical, and biological properties, which allows them to provide environmental conditions and structural stability for cell growth and serve as efficient delivery substrates for bioactive molecules. The customizability of CHs also allows additional functionality to be designed for different requirements in biomedical applications. This review introduces the basic functional characteristics and materials for preparing CHs and elaborates on their synthetic techniques. The development and applications of CHs in the field of biomedicine are highlighted, including regenerative medicine, artificial organs, biosensors, drug delivery systems, and some other application scenarios. Finally, this review discusses the future applications of CHs in the field of biomedicine. In summary, the current design and development of CHs extend their prospects for functioning as an intelligent and complex system in diverse biomedical applications.
Collapse
Affiliation(s)
| | | | | | - Tao Jiang
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| | | | - Zirong Luo
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China; (Y.H.); (Z.L.); (Y.Y.); (J.S.)
| |
Collapse
|