1
|
Diaz-Perez JA, Rosenberg AE. Cartilage Forming Tumors of the Skeleton. Adv Anat Pathol 2025; 32:132-146. [PMID: 39588691 DOI: 10.1097/pap.0000000000000475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Cartilage-forming tumors are a broad and diverse group of neoplasms frequently affecting the skeleton. Distinguishing between the members of this group is important because of significant differences in treatment and prognosis. Accurate diagnosis can be challenging because of similarities in their clinical, radiographic, and pathologic features. Immunohistochemistry and molecular tools are helpful in select instances. Therefore, careful evaluation and correlation of these features are essential in arriving at the correct diagnosis and appropriate patient management. This review provides an overview of the current literature, emphasizing helpful features in diagnosis.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Departments of Dermatology and Pathology, Virginia Commonwealth University, Richmond, VA
| | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL
| |
Collapse
|
2
|
Beele L, Miquelestorena-Standley E, De Pinieux G. [Rare forms of dedifferentiated chondrosarcomas: About 3 cases]. Ann Pathol 2025:S0242-6498(25)00023-9. [PMID: 40011124 DOI: 10.1016/j.annpat.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 02/04/2025] [Accepted: 02/08/2025] [Indexed: 02/28/2025]
Abstract
Conventional chondrosarcoma is the most common primary malignant bone tumor in adults. Dedifferentiated chondrosarcomas represent 10 to 15% of conventional chondrosarcomas and constitute a high-grade subtype with a poor prognosis, with a 5-year survival rate of 24%. These tumors are characterized by a mutation in one of the isocitrate dehydrogenase (IDH) 1 or 2 genes in 70% of cases. Histological diagnosis requires a biphasic morphology combining a low-grade conventional chondrosarcoma component with a high-grade non-cartilaginous sarcomatoid component. In the literature, this dedifferentiated component most often corresponds to an osteosarcoma or an undifferentiated sarcomatous component. This article describes three cases of dedifferentiated chondrosarcomas: two with bone localization and one with laryngeal cartilaginous localization presenting a rare dedifferentiation component, either epithelial or rhabdomyosarcomatous, which may pose a diagnostic challenge, particularly in micro-biopsy samples. The mechanism of dedifferentiation is still poorly understood, and the origin of the dedifferentiated component remains controversial.
Collapse
Affiliation(s)
- Lola Beele
- Service anatomie et cytologie pathologiques, CHU Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France
| | - Elodie Miquelestorena-Standley
- Service anatomie et cytologie pathologiques, CHU Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France; Inserm U1327 ISCHEMIA « Membrane signalling and inflammation in reperfusion injuries », université de Tours, boulevard Tonnellé, 37032 Tours cedex 1, France.
| | - Gonzague De Pinieux
- Service anatomie et cytologie pathologiques, CHU Trousseau, avenue de la République, 37170 Chambray-lès-Tours, France
| |
Collapse
|
3
|
Colaco JC, Suresh B, Kaushal K, Singh V, Ramakrishna S. The Role of Deubiquitinating Enzymes in Primary Bone Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01254-y. [PMID: 39177860 DOI: 10.1007/s12033-024-01254-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/01/2024] [Indexed: 08/24/2024]
Abstract
Bone is a living, intricate, and dynamic tissue providing locomotion and protection of the body. It also performs hematopoiesis and mineral homeostasis. Osteosarcoma (OS), Ewing sarcoma (ES), and chondrosarcoma (CS) are primary bone cancers. OS and ES mostly develop in younger individuals, and CS generally develops in adults. Ubiquitination regulates numerous cellular processes. The deubiquitinating enzymes (DUBs) detach the ubiquitin molecules from the ubiquitin labeled substrate, altering ubiquitinated protein functions and regulating protein stability via various signaling pathways. Protein homeostasis and bone remodeling are both crucially influenced by the UPS. Recently, there have been several reports on DUBs involved in bone homeostasis and various bone disorders through the regulation of osteoblasts and osteoclasts via NF-κB, Wnt/β-catenin, TRAF6, TGFβ, ERK1/2, and PI3K/Akt pathways. However, DUBs regulating function in bone homeostasis is still in its infancy. Here, we summarized several recent identifications on DUBs, with a focus on their role in bone cancer progression. Therefore, the study attempts to summarize association with the expression level of DUBs as key factors driving bone cancers and also provide new insights on DUBs as key pharmacologic targets for bone cancer therapeutics.
Collapse
Affiliation(s)
- Jencia Carminha Colaco
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bharathi Suresh
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, 382715, India.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, 04763, South Korea.
- College of Medicine, Hanyang University, Seoul, 04763, South Korea.
| |
Collapse
|
4
|
Dry SM. Dedifferentiation in bone and soft tissue sarcomas: How do we define it? What is prognostically relevant? Hum Pathol 2024; 147:139-147. [PMID: 38311185 DOI: 10.1016/j.humpath.2024.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Dedifferentiation traditionally is defined by descriptive criteria as a tumor showing an abrupt change in histology from a conventional, classic, low-grade appearing neoplasm to a tumor that is more cellular, pleomorphic and "high grade", with grading typically being performed by subjective criteria. The dedifferentiated areas range from areas with recognizable histologic differentiation which differs from the primary tumor (such as an osteosarcoma arising from a low-grade chondrosarcoma) to areas containing sarcomas without specific histologic differentiation (such as pleomorphic or spindle cell sarcoma). Many, but not all, dedifferentiated tumors are aggressive and associated with significantly shorter survival than their conventional counterparts, even grade 3 conventional tumors. As a result, dedifferentiated tumors are generally considered to be clinically aggressive and as a result, more aggressive surgery or the addition of (neo)adjuvant chemotherapy is often considered. However, long-term (greater than 20 year) survivors are reported in the most common dedifferentiated bone and soft tissue sarcomas. Moreover, use of mitotic criterion for defining dedifferentiation in dedifferentiated liposarcoma as well as grading (by the French system) have been found to be associated with survival. This paper reviews the literature on dedifferentiated chondrosarcoma, dedifferentiated liposarcoma, dedifferentiated chordoma and dedifferentiated parosteal osteosarcoma. As a result of that review, recommendations are advocated to identify evidence-based, objective diagnostic and grading criteria for dedifferentiation that are appropriate for each tumor type. Adding such criteria will improve consistency in diagnosis worldwide, allow easier comparison of clinical research performed on dedifferentiated tumors and help communicate (to patients and clinicians) the tumors with highest risk of clinically aggressive behavior, to allow appropriate and personalized treatment planning.
Collapse
Affiliation(s)
- Sarah M Dry
- Department of Pathology and Laboratory Medicine, UCLA David Geffen School of Medicine, 13-222 CHS, 10833 Le Conte Ave, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Tsukamoto S, Mavrogenis AF, Nitta Y, Righi A, Masunaga T, Honoki K, Fujii H, Kido A, Tanaka Y, Tanaka Y, Errani C. A Systematic Review of Adjuvant Chemotherapy in Localized Dedifferentiated Chondrosarcoma. Curr Oncol 2024; 31:566-578. [PMID: 38275833 PMCID: PMC10813944 DOI: 10.3390/curroncol31010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Dedifferentiated chondrosarcoma (DDCS) is a high-grade subtype of chondrosarcoma with the bimorphic histological appearance of a conventional chondrosarcoma component with abrupt transition to a high-grade, non-cartilaginous sarcoma. DDCS can be radiographically divided into central and peripheral types. Wide resection is currently the main therapeutic option for localized DDCS. Moreover, the effectiveness of adjuvant chemotherapy remains controversial. Therefore, we performed a systematic review of available evidence to evaluate the effect of adjuvant chemotherapy on localized DDCS. The purpose was to compare the 5-year survival rate among patients treated with surgery plus adjuvant chemotherapy or surgery alone for localized DDCS. The search was conducted in PubMed, Embase, and Cochrane Central Register of Controlled Trials (CENTRAL) databases. Of the 217 studies shortlisted, 11 retrospective non-randomized studies (comprising 556 patients with localized DDCS) were selected. The 5-year survival rates were similar between the two treatment groups (28.2% (51/181) vs. 24.0% (90/375), respectively). The overall pooled odds ratio was 1.25 (95% confidence interval: 0.80-1.94; p = 0.324), and heterogeneity I2 was 2%. However, when limited to peripheral DDCS, adjuvant chemotherapy was associated with prolonged survival (p = 0.03). Due to the paucity of included studies and the absence of prospective comparative studies, no conclusions can be drawn regarding the effectiveness or ineffectiveness of adjuvant chemotherapy for localized DDCS.
Collapse
Affiliation(s)
- Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Japan; (T.M.); (K.H.); (H.F.); (Y.T.)
| | - Andreas F. Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 41 Ventouri Street, Holargos, 15562 Athens, Greece;
| | - Yuji Nitta
- Department of Diagnostic Pathology, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Japan;
| | - Alberto Righi
- Department of Pathology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rizzoli Orthopaedic Institute, Via di Barbiano 1/10, 40136 Bologna, Italy;
| | - Tomoya Masunaga
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Japan; (T.M.); (K.H.); (H.F.); (Y.T.)
| | - Kanya Honoki
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Japan; (T.M.); (K.H.); (H.F.); (Y.T.)
| | - Hiromasa Fujii
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Japan; (T.M.); (K.H.); (H.F.); (Y.T.)
| | - Akira Kido
- Department of Rehabilitation Medicine, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Japan;
| | - Yuu Tanaka
- Department of Rehabilitation Medicine, Wakayama Professional University of Rehabilitation, 3-1, Minamoto-cho, Wakayama 640-8222, Japan;
| | - Yasuhito Tanaka
- Department of Orthopaedic Surgery, Nara Medical University, 840, Shijo-cho, Kashihara 634-8521, Japan; (T.M.); (K.H.); (H.F.); (Y.T.)
| | - Costantino Errani
- Department of Orthopaedic Oncology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Rizzoli Orthopaedic Institute, Via Pupilli 1, 40136 Bologna, Italy;
| |
Collapse
|
6
|
Jiang L, Gong Y, Jiang J, Zhao D. Construction of novel predictive tools for post-surgical cancer-specific survival probability in patients with primary chondrosarcoma and external validation in Chinese cohorts: a large population-based retrospective study. J Cancer Res Clin Oncol 2023; 149:13027-13042. [PMID: 37466790 DOI: 10.1007/s00432-023-05186-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Surgery is the predominant treatment modality for chondrosarcoma. This study aims to construct a novel clinic predictive tool that accurately predicts the 3-, 5-, and 8-year probability of cancer-specific survival (CSS) for primary chondrosarcoma patients who have undergone surgical treatment. METHODS The Surveillance, Epidemiology, and End Results (SEER) database was used to identify 982 primary chondrosarcoma patients after surgery, who were randomly divided into two sets: training set (60%) and internal validation set (40%). Cox proportional regression analyses were used to screen post-surgical independent prognostic variables in primary chondrosarcoma patients. These identified variables were used to construct a nomogram to predict the probability of post-surgical CSS of primary chondrosarcoma patients. The k-fold cross-validation method (k = 10), Harrell's concordance index (C-index), receiver operating characteristic curve (ROC) and area under curve (AUC) were used to assess the predictive accuracy of the nomogram. Calibration curve and decision curve analysis (DCA) were used to validate the clinical application of the nomogram. RESULTS Age, tumor size, disease stage and histological type were finally identified post-surgical independent prognostic variables. Based the above variables, a nomogram was constructed to predict the 3-, 5- and 8-year probability of post-surgical CSS in primary chondrosarcoma patients. The results of the C-index showed excellent predictive performance of the nomogram (training set: 0.837, 95% CI: 0.766-0.908; internal validation set: 0.835, 95% CI: 0.733-0.937; external validation set: 0.869, 95% CI: 0.740-0.998). The AUCs of ROC were all greater than 0.830 which again indicated that the nomogram had excellent predictive performance. The results of calibration curve and DCA indicated that the clinical applicability of this nomogram was outstanding. Finally, the risk classification system and online access version of the nomogram was developed. CONCLUSION We constructed the first nomogram to accurately predict the 3-, 5- and 8-year probability of post-surgical CSS in primary chondrosarcoma patients. This nomogram would assist surgeons to provide individualized post-surgical survival predictions and clinical strategies for primary chondrosarcoma patients.
Collapse
Affiliation(s)
- Liming Jiang
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China
| | - Yan Gong
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China
| | - Jiajia Jiang
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China
| | - Dongxu Zhao
- Department of Orthopedics, The China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun, 130033, Jilin, People's Republic of China.
| |
Collapse
|
7
|
Hung YP, Chebib I, Bredella MA, Berner EA, Taylor-Black Q, Choy E, Cote GM, Chen YL, MacDonald SM, Schwab JH, Raskin KA, Newman ET, Selig MK, Deshpande V, Hornick JL, Lozano-Calderón SA, Nielsen GP. Prognostic Significance of Percentage and Size of Dedifferentiation in Dedifferentiated Chondrosarcoma. Mod Pathol 2023; 36:100069. [PMID: 36788104 DOI: 10.1016/j.modpat.2022.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/17/2022] [Accepted: 12/11/2022] [Indexed: 01/11/2023]
Abstract
Dedifferentiated chondrosarcoma is rare, aggressive, and microscopically bimorphic. How pathologic features such as the amounts of dedifferentiation affect prognosis remains unclear. We evaluated the percentages and sizes of dedifferentiation in a consecutive institutional series of dedifferentiated chondrosarcomas from 1999 to 2021. The statistical analysis included cox proportional hazard models and log-rank tests. Of the 67 patients (26 women, 41 men; age, 39 to >89 [median 61] years; 2 with Ollier disease), 58 presented de novo; 9 were identified with conventional chondrosarcomas 0.6-13.2 years (median, 5.5 years) prior. Pathologic fracture and distant metastases were noted in 27 and 7 patients at presentation. The tumors involved the femur (n = 27), pelvis (n = 22), humerus (n = 7), tibia (n = 4), scapula/ribs (n = 4), spine (n = 2), and clivus (n = 1). In the 56 resections, the tumors ranged in size from 3.5 to 46.0 cm (median, 11.5 cm) and contained 1%-99.5% (median, 70%) dedifferentiated components that ranged in size from 0.6 to 24.0 cm (median, 7.3 cm). No correlation was noted between total size and percentage of dedifferentiation. The dedifferentiated components were typically fibrosarcomatous or osteosarcomatous, whereas the associated cartilaginous components were predominantly grade 1-2, rarely enchondromas or grade 3. The entire cohort's median overall survival and progression-free survival were 11.8 and 5.4 months, respectively. In the resected cohort, although the total size was not prognostic, the percentage of dedifferentiation ≥20% and size of dedifferentiation >3.0 cm each predicted worse overall survival (9.9 vs 72.5 months; HR, 3.76; 95% CI, 1.27-11.14; P = .02; 8.7 vs 58.9 months; HR, 3.03; 95% CI, 1.21-7.57; P = .02, respectively) and progression-free survival (5.3 vs 62.1 months; HR, 3.05; 95% CI, 1.13-8.28; P = .03; 5.3 vs 56.6 months; HR, 2.50; 95% CI, 1.06-5.88; P = .04, respectively). In conclusion, both the percentages and sizes of dedifferentiation were better prognostic predictors than total tumor sizes in dedifferentiated chondrosarcomas, highlighting the utility of their pathologic evaluations.
Collapse
Affiliation(s)
- Yin P Hung
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts.
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Miriam A Bredella
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Emily A Berner
- Department of Orthopedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Quinn Taylor-Black
- Department of Orthopedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edwin Choy
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory M Cote
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Division of Hematology Oncology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Yen-Lin Chen
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Shannon M MacDonald
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Joseph H Schwab
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Orthopedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Kevin A Raskin
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Orthopedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Erik T Newman
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Orthopedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Martin K Selig
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Santiago A Lozano-Calderón
- Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts; Department of Orthopedic Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| |
Collapse
|