1
|
Mao L, Wang L, Huang Z, Chen JK, Tucker L, Zhang Q. Comprehensive insights into emerging advances in the Neurobiology of anorexia. J Adv Res 2025:S2090-1232(25)00206-1. [PMID: 40180244 DOI: 10.1016/j.jare.2025.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/07/2025] [Accepted: 03/24/2025] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Anorexia is a complex eating disorder influenced by genetic, environmental, psychological, and socio-cultural factors. Research into its molecular mechanisms and neural circuits has deepened our understanding of its pathogenesis. Recent advances in neuroscience, molecular biology, and genetics have revealed key molecular and neural circuit mechanisms underlying anorexia. AIM OF REVIEW Clarify the peripheral and central molecular mechanisms regulating various types of anorexia, identify key cytokines and neural circuits, and propose new strategies for its treatment. Key scientific concepts of review: Anorexia animal models, including activity-induced, genetic mutation, and inflammation-induced types, are explored for their relevance to studying the disorder. Anorexic behavior is regulated by cytokines, hormones (like GDF15, GLP-1, and leptin), and neural circuits such as AgRP, serotonergic, dopaminergic, and glutamatergic pathways. Disruptions in these pathways, including GABAergic signaling in AgRP neurons and 5-HT2C and D2 receptors, contribute to anorexia. Potential therapies target neurotransmitter receptors, ghrelin receptors, and the GDF15-GFRAL pathway, offering insights for treating anorexia, immune responses, and obesity.
Collapse
Affiliation(s)
- Liwei Mao
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lian Wang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Zhihai Huang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA 71103, USA
| | - Jian-Kang Chen
- Departments of Cellular Biology & Anatomy and Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Lorelei Tucker
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA
| | - Quanguang Zhang
- Department of Neurology, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
2
|
Kirchberg MC, Pinson C, Frank GKW. Pharmacotherapeutic strategies for the treatment of anorexia nervosa - novel targets to break a vicious cycle. Expert Opin Pharmacother 2024; 25:2253-2265. [PMID: 39497232 PMCID: PMC11972612 DOI: 10.1080/14656566.2024.2424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Anorexia nervosa (AN) has one of the highest mortality rates of all mental illnesses. No approved pharmacological treatments exist for AN, but novel neurobiological targets show promise. AREAS COVERED Studies show that in individuals with AN, there are alterations in brain neurotransmitter signaling, alongside associated mental rigidity and comorbid anxiety and depression. Available and new therapies could be used to improve alterations in neurobiology and behavior. This narrative review serves as a review of previously published literature assessing the efficacy of traditional pharmacotherapy in treating AN while also exploring novel treatments, including dissociative anesthetics, psychedelics, cannabinoids, hormones, neurosteroids, and ketogenic nutrition. EXPERT OPINION If best practice psychotherapeutic interventions have failed, we recommend a neuroscience and brain research-based medication approach that targets dopamine neurotransmitter receptors to enhance cognitive flexibility and illness insight while reducing dread and avoidance toward food. It is furthermore essential to recognize and treat comorbid conditions such as anxiety, depression, or obsessive-compulsive disorder as they interfere with recovery, and typically do not resolve even with successful AN treatment. Novel strategies have the promise to show efficacy in improving mood and reducing specific AN psychopathology with hopes to be used in clinical practice soon.
Collapse
Affiliation(s)
| | - Claire Pinson
- School of Medicine, University of California San Diego, CA, USA
| | - Guido K. W. Frank
- Department of Psychiatry, University of California San Diego, CA, USA
- Medical Behavioral Unit, Rady Children’s Hospital San Diego, CA, USA
| |
Collapse
|
3
|
Yang S, Cao SJ, Li CY, Zhang Q, Zhang BL, Qiu F, Kang N. Berberine directly targets AKR1B10 protein to modulate lipid and glucose metabolism disorders in NAFLD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118354. [PMID: 38762210 DOI: 10.1016/j.jep.2024.118354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berberine (BBR) is the main active component from Coptidis rhizome, a well-known Chinese herbal medicine used for metabolic diseases, especially diabetes for thousands of years. BBR has been reported to cure various metabolic disorders, such as nonalcoholic fatty liver disease (NAFLD). However, the direct proteomic targets and underlying molecular mechanism of BBR against NAFLD remain less understood. AIM OF THE STUDY To investigate the direct target and corresponding molecular mechanism of BBR on NAFLD is the aim of the current study. MATERIALS AND METHODS High-fat diet (HFD)-fed mice and oleic acid (OA) stimulated HepG2 cells were utilized to verify the beneficial impacts of BBR on glycolipid metabolism profiles. The click chemistry in proteomics, DARTS, CETSA, SPR and fluorescence co-localization analysis were conducted to identify the targets of BBR for NAFLD. RNA-seq and shRNA/siRNA were used to investigate the downstream pathways of the target. RESULTS BBR improved hepatic steatosis, ameliorated insulin resistance, and reduced TG levels in the NAFLD models. Importantly, Aldo-keto reductase 1B10 (AKR1B10) was first proved as the target of BBR for NAFLD. The gene expression of AKR1B10 increased significantly in the NAFLD patients' liver tissue. We further demonstrated that HFD and OA increased AKR1B10 expression in the C57BL/6 mice's liver and HepG2 cells, respectively, whereas BBR decreased the expression and activities of AKR1B10. Moreover, the knockdown of AKR1B10 by applying shRNA/siRNA profoundly impacted the beneficial effects on the pathogenesis of NAFLD by BBR. Meanwhile, the changes in various proteins (ACC1, CPT-1, GLUT2, etc.) are responsible for hepatic lipogenesis, fatty acid oxidation, glucose uptake, etc. by BBR were reversed by the knockdown of AKR1B10. Additionally, RNA-seq was used to identify the downstream pathway of AKR1B10 by examining the gene expression of liver tissues from HFD-fed mice. Our findings revealed that BBR markedly increased the protein levels of PPARα while downregulating the expression of PPARγ. However, various proteins of PPAR signaling pathways remained unaffected post the knockdown of AKR1B10. CONCLUSIONS BBR alleviated NAFLD via mediating PPAR signaling pathways through targeting AKR1B10. This study proved that AKR1B10 is a novel target of BBR for NAFLD treatment and helps to find new targets for the treatment of NAFLD by using active natural compounds isolated from traditional herbal medicines as the probe.
Collapse
Affiliation(s)
- Sa Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shi-Jie Cao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Cong-Yu Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Qiang Zhang
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Bo-Li Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Ning Kang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
4
|
Conn K, Huang K, Gorrell S, Foldi CJ. A transdiagnostic and translational framework for delineating the neuronal mechanisms of compulsive exercise in anorexia nervosa. Int J Eat Disord 2024; 57:1406-1417. [PMID: 38174745 PMCID: PMC11222308 DOI: 10.1002/eat.24130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE The development of novel treatments for anorexia nervosa (AN) requires a detailed understanding of the biological underpinnings of specific, commonly occurring symptoms, including compulsive exercise. There is considerable bio-behavioral overlap between AN and obsessive-compulsive disorder (OCD), therefore it is plausible that similar mechanisms underlie compulsive behavior in both populations. While the association between these conditions is widely acknowledged, defining the shared mechanisms for compulsive behavior in AN and OCD requires a novel approach. METHODS We present an argument that a better understanding of the neurobiological mechanisms that underpin compulsive exercise in AN can be achieved in two critical ways. First, by applying a framework of the neuronal control of OCD to exercise behavior in AN, and second, by taking better advantage of the activity-based anorexia (ABA) rodent model to directly test this framework in the context of feeding pathology. RESULTS A cross-disciplinary approach that spans preclinical, neuroimaging, and clinical research as well as compulsive neurocircuitry and behavior can advance our understanding of when, why, and how compulsive exercise develops in the context of AN and provide targets for novel treatment strategies. DISCUSSION In this article, we (i) link the expression of compulsive behavior in AN and OCD via a transition between goal-directed and habitual behavior, (ii) present disrupted cortico-striatal circuitry as a key substrate for the development of compulsive behavior in both conditions, and (iii) highlight the utility of the ABA rodent model to better understand the mechanisms of compulsive behavior relevant to AN. PUBLIC SIGNIFICANCE Individuals with AN who exercise compulsively are at risk of worse health outcomes and have poorer responses to standard treatments. However, when, why, and how compulsive exercise develops in AN remains inadequately understood. Identifying whether the neural circuitry underlying compulsive behavior in OCD also controls hyperactivity in the activity-based anorexia model will aid in the development of novel eating disorder treatment strategies for this high-risk population.
Collapse
Affiliation(s)
- K Conn
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| | - K Huang
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| | - S Gorrell
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th street, San Francisco, CA 94143, USA
| | - CJ Foldi
- Monash University, Department of Physiology, 26 Innovation Walk, 3800, Clayton, Australia
- Monash Biomedicine Discovery Institute, 23 Innovation Walk, 3800, Clayton, Australia
| |
Collapse
|
5
|
Pinson CK, Frank GKW. Why Don't You Just Eat? Neuroscience and the Enigma of Eating Disorders. FOCUS (AMERICAN PSYCHIATRIC PUBLISHING) 2024; 22:328-332. [PMID: 38988457 PMCID: PMC11231469 DOI: 10.1176/appi.focus.20240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Eating disorders are severe psychiatric illnesses that are associated with high mortality. Research has identified environmental, psychological, and biological risk factors that could contribute to the psychopathology of eating disorders. Nevertheless, the patterns of self-starvation, binge eating, and purging behaviors are difficult to reconcile with the typical mechanisms that regulate appetite, hunger, and satiety. Here, the authors present a neuroscience and human brain imaging-based model to help explain the detrimental and often persistent behavioral patterns seen in individuals with eating disorders and why it is so difficult to overcome them. This model incorporates individual motivations to change eating, fear conditioning, biological adaptations of the brain and body, and the development of a vicious cycle that drives the individual to perpetuate those behaviors. This knowledge helps to explain these illnesses to patients and their families, and to develop more effective treatments, including biological interventions.
Collapse
Affiliation(s)
- Claire K Pinson
- School of Medicine, University of California, San Diego, California (Pinson); Department of Psychiatry, University of California, San Diego, UCSD Eating Disorders Center for Treatment and Research, and Rady Children's Hospital, San Diego, California (Frank)
| | - Guido K W Frank
- School of Medicine, University of California, San Diego, California (Pinson); Department of Psychiatry, University of California, San Diego, UCSD Eating Disorders Center for Treatment and Research, and Rady Children's Hospital, San Diego, California (Frank)
| |
Collapse
|
6
|
Chen D, Wang Y, Yang J, Ou W, Lin G, Zeng Z, Lu X, Chen Z, Zou L, Tian Y, Wu A, Keating SE, Yang Q, Lin C, Liang Y. Shenling Baizhu San ameliorates non-alcoholic fatty liver disease in mice by modulating gut microbiota and metabolites. Front Pharmacol 2024; 15:1343755. [PMID: 38720776 PMCID: PMC11076757 DOI: 10.3389/fphar.2024.1343755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Purpose: The prevalence of non-alcoholic fatty liver disease (NAFLD) and its related mortality is increasing at an unprecedented rate. Traditional Chinese medicine (TCM) has been shown to offer potential for early prevention and treatment of NAFLD. The new mechanism of "Shenling Baizhu San" (SLBZS) is examined in this study for the prevention and treatment of NAFLD at the preclinical level. Methods: Male C57BL/6J mice were randomly divided into three groups: normal diet (ND), western diet + CCl4 injection (WDC), and SLBZS intervention (WDC + SLBZS). Body weights, energy intake, liver enzymes, pro-inflammatory factors, and steatosis were recorded in detail. Meanwhile, TPH1, 5-HT, HTR2A, and HTR2B were tested using qRT-PCR or ELISA. Dynamic changes in the gut microbiota and metabolites were further detected through the 16S rRNA gene and untargeted metabolomics. Results: SLBZS intervention for 6 weeks could reduce the serum and liver lipid profiles, glucose, and pro-inflammatory factors while improving insulin resistance and liver function indexes in the mice, thus alleviating NAFLD in mice. More importantly, significant changes were found in the intestinal TPH-1, 5-HT, liver 5-HT, and related receptors HTR2A and HTR2B. The 16S rRNA gene analysis suggested that SLBZS was able to modulate the disturbance of gut microbiota, remarkably increasing the relative abundance of probiotics (Bifidobacterium and Parvibacter) and inhibiting the growth of pro-inflammatory bacteria (Erysipelatoclostridium and Lachnoclostridium) in mice with NAFLD. Combined with metabolomics in positive- and negative-ion-mode analyses, approximately 50 common differential metabolites were selected via non-targeted metabolomics detection, which indicated that the targeting effect of SLBZS included lipid metabolites, bile acids (BAs), amino acids (AAs), and tryptophan metabolites. In particular, the lipid metabolites 15-OxEDE, vitamin D3, desoxycortone, and oleoyl ethanol amide were restored by SLBZS. Conclusion: Integrating the above results of multiple omics suggests that SLBZS ameliorates NAFLD via specific gut microbiota, gut-derived 5-HT, and related metabolites to decrease fat accumulation in the liver and inflammatory responses.
Collapse
Affiliation(s)
- Dongliang Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuanfei Wang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Jianmei Yang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Wanyi Ou
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Guiru Lin
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Ze Zeng
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Xiaomin Lu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Zumin Chen
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Lili Zou
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Yaling Tian
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
| | - Aiping Wu
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
| | - Shelley E. Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Qinhe Yang
- School of Chinese Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Chenli Lin
- School of Medicine, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| | - Yinji Liang
- School of Nursing, Jinan University, Guangzhou, Guangdong Province, China
- Health Science Center, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
7
|
Foldi CJ. Taking better advantage of the activity-based anorexia model. Trends Mol Med 2024; 30:330-338. [PMID: 38103992 DOI: 10.1016/j.molmed.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/02/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
The lack of specific treatments for anorexia nervosa (AN) is partly driven by an inadequate understanding of the neurobiological drivers of the condition. The activity-based anorexia (ABA) model recapitulates key characteristics of AN in rats and mice, and can be used to understand factors that predispose, maintain, and rescue anorectic behaviour. With the rapidly evolving suite of technologies to manipulate and record neural activity during the development of ABA, we are better placed than ever before to take advantage of this unique biobehavioural model in order to develop and refine novel treatments for AN. This will require a collective effort to bridge research disciplines in order to capitalise on knowledge gains from genetics, neurobiology, metabolism, and cognition.
Collapse
Affiliation(s)
- Claire J Foldi
- Monash University, Department of Physiology, 26 Innovation Walk, Clayton, VIC 3800, Australia; Monash Biomedicine Discovery Institute, 23 Innovation Walk, Clayton, VIC 3800, Australia.
| |
Collapse
|
8
|
Schnapp WI, Kim J, Wang Y, Timilsena S, Fang C, Cai H. Development of activity-based anorexia requires PKC-δ neurons in two central extended amygdala nuclei. Cell Rep 2024; 43:113933. [PMID: 38460131 PMCID: PMC11003439 DOI: 10.1016/j.celrep.2024.113933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024] Open
Abstract
Anorexia nervosa (AN) is a serious psychiatric disease, but the neural mechanisms underlying its development are unclear. A subpopulation of amygdala neurons, marked by expression of protein kinase C-delta (PKC-δ), has previously been shown to regulate diverse anorexigenic signals. Here, we demonstrate that these neurons regulate development of activity-based anorexia (ABA), a common animal model for AN. PKC-δ neurons are located in two nuclei of the central extended amygdala (EAc): the central nucleus (CeA) and oval region of the bed nucleus of the stria terminalis (ovBNST). Simultaneous ablation of CeAPKC-δ and ovBNSTPKC-δ neurons prevents ABA, but ablating PKC-δ neurons in the CeA or ovBNST alone is not sufficient. Correspondingly, PKC-δ neurons in both nuclei show increased activity with ABA development. Our study shows how neurons in the amygdala regulate ABA by impacting both feeding and wheel activity behaviors and support a complex heterogeneous etiology of AN.
Collapse
Affiliation(s)
- Wesley Ilana Schnapp
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Graduate Interdisciplinary Program in Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - JungMin Kim
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Yong Wang
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an, PR China
| | - Sayujya Timilsena
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Caohui Fang
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA
| | - Haijiang Cai
- Department of Neuroscience, University of Arizona, Tucson, AZ 85721, USA; Bio5 Institute and Department of Neurology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
9
|
Walle R, Petitbon A, Fois GR, Varin C, Montalban E, Hardt L, Contini A, Angelo MF, Potier M, Ortole R, Oummadi A, De Smedt-Peyrusse V, Adan RA, Giros B, Chaouloff F, Ferreira G, de Kerchove d'Exaerde A, Ducrocq F, Georges F, Trifilieff P. Nucleus accumbens D1- and D2-expressing neurons control the balance between feeding and activity-mediated energy expenditure. Nat Commun 2024; 15:2543. [PMID: 38514654 PMCID: PMC10958053 DOI: 10.1038/s41467-024-46874-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Accumulating evidence points to dysregulations of the Nucleus Accumbens (NAc) in eating disorders (ED), however its precise contribution to ED symptomatic dimensions remains unclear. Using chemogenetic manipulations in male mice, we found that activity of dopamine D1 receptor-expressing neurons of the NAc core subregion facilitated effort for a food reward as well as voluntary exercise, but decreased food intake, while D2-expressing neurons have opposite effects. These effects are congruent with D2-neurons being more active than D1-neurons during feeding while it is the opposite during running. Chronic manipulations of each subpopulations had limited effects on energy balance. However, repeated activation of D1-neurons combined with inhibition of D2-neurons biased behavior toward activity-related energy expenditure, whilst the opposite manipulations favored energy intake. Strikingly, concomitant activation of D1-neurons and inhibition of D2-neurons precipitated weight loss in anorexia models. These results suggest that dysregulations of NAc dopaminoceptive neurons might be at the core of EDs.
Collapse
Affiliation(s)
- Roman Walle
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| | - Anna Petitbon
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Giulia R Fois
- Univ. Bordeaux, CNRS, IMN, UMR5293 F-33000, Bordeaux, France
| | - Christophe Varin
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Enrica Montalban
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Lola Hardt
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Andrea Contini
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Mylène Potier
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
- Bordeaux Sciences Agro, F-, 33175, Gradignan, France
| | - Rodrigue Ortole
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Asma Oummadi
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Roger A Adan
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Universiteitsweg 100, 3584CG, Utrecht, Netherlands
- Altrecht Eating Disorders Rintveld, Zeist, the Netherlands
| | - Bruno Giros
- Department of Psychiatry, Douglas Hospital, McGill University, Montreal, QC, Canada
- Université de Paris Cité, INCC UMR 8002, CNRS; F-75006, Paris, France
| | - Francis Chaouloff
- Endocannabinoids and NeuroAdaptation, NeuroCentre INSERM U1215, 33077, Bordeaux, France
- Université de Bordeaux, 33077, Bordeaux, France
| | - Guillaume Ferreira
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, WELBIO, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fabien Ducrocq
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France
| | | | - Pierre Trifilieff
- Université de Bordeaux, INRAE, Bordeaux INP, NutriNeuro, 33000, Bordeaux, France.
| |
Collapse
|
10
|
Castell L, Le Gall V, Cutando L, Petit CP, Puighermanal E, Makrini-Maleville L, Kim HR, Jercog D, Tarot P, Tassou A, Harrus AG, Rubinstein M, Nouvian R, Rivat C, Besnard A, Trifilieff P, Gangarossa G, Janak PH, Herry C, Valjent E. Dopamine D2 receptors in WFS1-neurons regulate food-seeking and avoidance behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 129:110883. [PMID: 37858736 DOI: 10.1016/j.pnpbp.2023.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/09/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
The selection and optimization of appropriate adaptive responses depends on interoceptive and exteroceptive stimuli as well as on the animal's ability to switch from one behavioral strategy to another. Although growing evidence indicate that dopamine D2R-mediated signaling events ensure the selection of the appropriate strategy for each specific situation, the underlying neural circuits through which they mediate these effects are poorly characterized. Here, we investigated the role of D2R signaling in a mesolimbic neuronal subpopulation expressing the Wolfram syndrome 1 (Wfs1) gene. This subpopulation is located within the nucleus accumbens, the central amygdala, the bed nucleus of the stria terminalis, and the tail of the striatum, all brain regions critical for the regulation of emotions and motivated behaviors. Using a mouse model carrying a temporally controlled deletion of D2R in WFS1-neurons, we demonstrate that intact D2R signaling in this neuronal population is necessary to regulate homeostasis-dependent food-seeking behaviors in both male and female mice. In addition, we found that reduced D2R signaling in WFS1-neurons impaired active avoidance learning and innate escape responses. Collectively, these findings identify a yet undocumented role for D2R signaling in WFS1-neurons as a novel effector through which dopamine optimizes appetitive behaviors and regulates defensive behaviors.
Collapse
Affiliation(s)
- Laia Castell
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France; Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Valentine Le Gall
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Laura Cutando
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Chloé P Petit
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Emma Puighermanal
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | | | - Ha-Rang Kim
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Daniel Jercog
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Pauline Tarot
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Adrien Tassou
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | | | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Régis Nouvian
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Cyril Rivat
- INM, Université, Montpellier, Inserm, Montpellier F-34000, France
| | - Antoine Besnard
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France
| | - Pierre Trifilieff
- Université, Bordeaux, INRAE, Bordeaux INP, NutriNeuro, Bordeaux F-33000, France
| | - Giuseppe Gangarossa
- Université Paris Cité, CNRS, Unité de Biologie Fonctionnelle et Adaptative, Paris F-75013, France; Institut Universitaire de France, France
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Cyril Herry
- Université, Bordeaux, Neurocentre Magendie, U1215, Bordeaux F-33077, France
| | - Emmanuel Valjent
- IGF, Université, Montpellier, CNRS, Inserm, Montpellier F-34094, France.
| |
Collapse
|
11
|
Cai J, Jiang Y, Xu Y, Jiang Z, Young C, Li H, Ortiz-Guzman J, Zhuo Y, Li Y, Xu Y, Arenkiel BR, Tong Q. An excitatory projection from the basal forebrain to the ventral tegmental area that underlies anorexia-like phenotypes. Neuron 2024; 112:458-472.e6. [PMID: 38056455 PMCID: PMC10922337 DOI: 10.1016/j.neuron.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maladaptation in balancing internal energy needs and external threat cues may result in eating disorders. However, brain mechanisms underlying such maladaptations remain elusive. Here, we identified that the basal forebrain (BF) sends glutamatergic projections to glutamatergic neurons in the ventral tegmental area (VTA) in mice. Glutamatergic neurons in both regions displayed correlated responses to various stressors. Notably, in vivo manipulation of BF terminals in the VTA revealed that the glutamatergic BF → VTA circuit reduces appetite, increases locomotion, and elicits avoidance. Consistently, activation of VTA glutamatergic neurons reduced body weight, blunted food motivation, and caused hyperactivity with behavioral signs of anxiety, all hallmarks of typical anorexia symptoms. Importantly, activation of BF glutamatergic terminals in the VTA reduced dopamine release in the nucleus accumbens. Collectively, our results point to overactivation of the glutamatergic BF → VTA circuit as a potential cause of anorexia-like phenotypes involving reduced dopamine release.
Collapse
Affiliation(s)
- Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Claire Young
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX 77030, USA; Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Zapata RC, Nasamran CA, Chilin-Fuentes DR, Dulawa SC, Osborn O. Identification of adipose tissue transcriptomic memory of anorexia nervosa. Mol Med 2023; 29:109. [PMID: 37582711 PMCID: PMC10428576 DOI: 10.1186/s10020-023-00705-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Anorexia nervosa (AN) is a complex debilitating disease characterized by intense fear of weight gain and excessive exercise. It is the deadliest of any psychiatric disorder with a high rate of recidivism, yet its pathophysiology is unclear. The Activity-Based Anorexia (ABA) paradigm is a widely accepted mouse model of AN that recapitulates hypophagia and hyperactivity despite reduced body weight, however, not the chronicity. METHODS Here, we modified the prototypical ABA paradigm to increase the time to lose 25% of baseline body weight from less than 7 days to more than 2 weeks. We used this paradigm to identify persistently altered genes after weight restoration that represent a transcriptomic memory of under-nutrition and may contribute to AN relapse using RNA sequencing. We focused on adipose tissue as it was identified as a major location of transcriptomic memory of over-nutririon. RESULTS We identified 300 dysregulated genes that were refractory to weight restroration after ABA, including Calm2 and Vps13d, which could be potential global regulators of transcriptomic memory in both chronic over- and under-nutrition. CONCLUSION We demonstrated the presence of peristent changes in the adipose tissue transcriptome in the ABA mice after weight restoration. Despite being on the opposite spectrum of weight perturbations, majority of the transcriptomic memory genes of under- and over-nutrition did not overlap, suggestive of the different mechanisms involved in these extreme nutritional statuses.
Collapse
Affiliation(s)
- Rizaldy C Zapata
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, San Diego, USA.
| | - Chanond A Nasamran
- Center for Computational Biology & Bioinformatics, School of Medicine, University of California San Diego, San Diego, USA
| | - Daisy R Chilin-Fuentes
- Center for Computational Biology & Bioinformatics, School of Medicine, University of California San Diego, San Diego, USA
| | - Stephanie C Dulawa
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, 92093, San Diego, CA, USA
| | - Olivia Osborn
- Division of Endocrinology and Metabolism, School of Medicine, University of California San Diego, San Diego, USA
| |
Collapse
|
13
|
Giunti E, Collu R, Dedoni S, Castelli MP, Fratta W, Scherma M, Fadda P. Food restriction and hyperactivity induce changes in corticolimbic brain dopamine and serotonin levels in female rats. Behav Brain Res 2023; 444:114374. [PMID: 36863461 DOI: 10.1016/j.bbr.2023.114374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/04/2023]
Abstract
Compelling data support altered dopamine (DA) and serotonin (5-HT) signaling in anorexia nervosa (AN). However, their exact role in the etiopathogenesis of AN has yet to be elucidated. Here, we evaluated the corticolimbic brain levels of DA and 5-HT in the induction and recovery phases of the activity-based anorexia (ABA) model of AN. We exposed female rats to the ABA paradigm and measured the levels of DA, 5-HT, the metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxyindoleacetic acid (5-HIAA), and the dopaminergic type 2 (D2) receptors density in feeding- and reward-implicated brain regions (i.e., cerebral cortex, Cx; prefrontal cortex, PFC; caudate putamen, CPu; nucleus accumbens, NAcc; amygdala, Amy; hypothalamus, Hyp; hippocampus, Hipp). DA levels were significantly increased in the Cx, PFC and NAcc, while 5-HT was significantly enhanced in the NAcc and Hipp of ABA rats. Following recovery, DA was still elevated in the NAcc, while 5-HT was increased in the Hyp of recovered ABA rats. DA and 5-HT turnover were impaired at both ABA induction and recovery. D2 receptors density was increased in the NAcc shell. These results provide further proof of the impairment of the dopaminergic and serotoninergic systems in the brain of ABA rats and support the knowledge of the involvement of these two important neurotransmitter systems in the development and progression of AN. Thus, providing new insights on the corticolimbic regions involved in the monoamine dysregulations in the ABA model of AN.
Collapse
Affiliation(s)
- Elisa Giunti
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Roberto Collu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Simona Dedoni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | | | - Maria Scherma
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy.
| | - Paola Fadda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy; CNR Institute of Neuroscience, Cagliari, National Research Council, Cagliari, Italy
| |
Collapse
|
14
|
Sutton Hickey AK, Duane SC, Mickelsen LE, Karolczak EO, Shamma AM, Skillings A, Li C, Krashes MJ. AgRP neurons coordinate the mitigation of activity-based anorexia. Mol Psychiatry 2023; 28:1622-1635. [PMID: 36577844 PMCID: PMC10782560 DOI: 10.1038/s41380-022-01932-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/13/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Anorexia nervosa (AN) is a debilitating and deadly disease characterized by low body mass index due to diminished food intake, and oftentimes concurrent hyperactivity. A high percentage of AN behavioral and metabolic phenotypes can be replicated in rodents given access to a voluntary running wheel and subject to food restriction, termed activity-based anorexia (ABA). Despite the well-documented bodyweight loss observed in AN human patients and ABA rodents, much less is understood regarding the neurobiological underpinnings of these maladaptive behaviors. Hunger-promoting hypothalamic agouti-related peptide (AgRP) neurons have been well characterized in their ability to regulate appetite, yet much less is known regarding their activity and function in the mediation of food intake during ABA. Here, feeding microstructure analysis revealed ABA mice decreased food intake due to increased interpellet interval retrieval and diminished meal number. Longitudinal activity recordings of AgRP neurons in ABA animals exhibited a maladaptive inhibitory response to food, independent of basal activity changes. We then demonstrated that ABA development or progression can be mitigated by chemogenetic AgRP activation through the reprioritization of food intake (increased meal number) over hyperactivity, but only during periods of food availability. These results elucidate a potential neural target for the amelioration of behavioral maladaptations present in AN patients.
Collapse
Affiliation(s)
- Ames K Sutton Hickey
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| | - Sean C Duane
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Laura E Mickelsen
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Eva O Karolczak
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Ahmed M Shamma
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Anna Skillings
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Chia Li
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Michael J Krashes
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
- National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
15
|
Hebebrand J, Hildebrandt T, Schlögl H, Seitz J, Denecke S, Vieira D, Gradl-Dietsch G, Peters T, Antel J, Lau D, Fulton S. The role of hypoleptinemia in the psychological and behavioral adaptation to starvation: implications for anorexia nervosa. Neurosci Biobehav Rev 2022; 141:104807. [PMID: 35931221 DOI: 10.1016/j.neubiorev.2022.104807] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/11/2022] [Accepted: 07/31/2022] [Indexed: 12/17/2022]
Abstract
This narrative review aims to pinpoint mental and behavioral effects of starvation, which may be triggered by hypoleptinemia and as such may be amenable to treatment with leptin receptor agonists. The reduced leptin secretion results from the continuous loss of fat mass, thus initiating a graded triggering of diverse starvation related adaptive functions. In light of leptin receptors located in several peripheral tissues and many brain regions adaptations may extend beyond those of the hypothalamus-pituitary-end organ-axes. We focus on gastrointestinal tract and reward system as relevant examples of peripheral and central effects of leptin. Despite its association with extreme obesity, congenital leptin deficiency with its many parallels to a state of starvation allows the elucidation of mental symptoms amenable to treatment with exogenous leptin in both ob/ob mice and humans with this autosomal recessive disorder. For starvation induced behavioral changes with an intact leptin signaling we particularly focus on rodent models for which proof of concept has been provided for the causative role of hypoleptinemia. For humans, we highlight the major cognitive, emotional and behavioral findings of the Minnesota Starvation Experiment to contrast them with results obtained upon a lesser degree of caloric restriction. Evidence for hypoleptinemia induced mental changes also stems from findings obtained in lipodystrophies. In light of the recently reported beneficial cognitive, emotional and behavioral effects of metreleptin-administration in anorexia nervosa we discuss potential implications for the treatment of this eating disorder. We postulate that leptin has profound psychopharmacological effects in the state of starvation.
Collapse
Affiliation(s)
- Johannes Hebebrand
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Tom Hildebrandt
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Haiko Schlögl
- Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University Hospital Leipzig, Liebigstr. 20, 04103 Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Philipp-Rosenthal-Str. 27, 04103 Leipzig, Germany
| | - Jochen Seitz
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, RWTH University Hospital Aachen, Germany
| | - Saskia Denecke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Diana Vieira
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Gertraud Gradl-Dietsch
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Triinu Peters
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - Jochen Antel
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Essen, University of Duisburg-Essen, Wickenburgstr. 21, 45134 Essen, Germany
| | - David Lau
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| | - Stephanie Fulton
- Department of Nutrition, Neuroscience - University of Montreal & CRCHUM, Montréal QC H3T1J4, Canada
| |
Collapse
|
16
|
Xu J, Liu J, Mi Y, Zhao T, Mu D, Meng Q, Wang F, Li N, Hou Y. Triad3A-Dependent TLR4 Ubiquitination and Degradation Contributes to the Anti-Inflammatory Effects of Pterostilbene on Vascular Dementia. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5896-5910. [PMID: 35532888 DOI: 10.1021/acs.jafc.2c01219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pterostilbene, a methylated stilbene derived from many plant foods, has significant anti-inflammatory activity. Meanwhile, vascular dementia (VaD) is the second most common subtype of dementia, in which inflammation is one of the major pathogenic contributors. However, the protective effect of pterostilbene on VaD is not well understood. In this work, we investigated the effect of pterostilbene on VaD and explored its underlying mechanisms using in vivo and in vitro models. Y-maze and Morris water maze tests showed pterostilbene-attenuated cognitive impairment in mice with bilateral common carotid artery occlusion (BCCAO). The hippocampal neuronal death and microglial activation in BCCAO mice were also reduced by pterostilbene treatment. Further, pterostilbene inhibited the expression of TLR4 and downstream inflammatory cytokines in these mice, with similar results observed in an oxygen-glucose deprivation and reperfusion (OGD/R) BV-2 cell model. In addition, its anti-inflammatory effect on OGD/R BV-2 cells was partially blocked by TLR4 overexpression. Moreover, Triad3A-TLR4 interactions were increased by pterostilbene following enhanced ubiquitination and degradation of TLR4, and the inhibitory effect of pterostilbene on inflammation was blocked by Triad3A knockdown in OGD/R-stimulated BV-2 cells. Together, these results reveal that pterostilbene could reduce vascular cognitive impairment and that Triad3A-mediated TLR4 degradation might be the key target.
Collapse
Affiliation(s)
- Jikai Xu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Jingyu Liu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Yan Mi
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| | - Ting Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Danyang Mu
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Qingqi Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Feng Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110004, China
| | - Yue Hou
- College of Life and Health Sciences, Northeastern University, Shenyang 110004, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110004, China
| |
Collapse
|
17
|
Bulik CM, Coleman JRI, Hardaway JA, Breithaupt L, Watson HJ, Bryant CD, Breen G. Genetics and neurobiology of eating disorders. Nat Neurosci 2022; 25:543-554. [PMID: 35524137 PMCID: PMC9744360 DOI: 10.1038/s41593-022-01071-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 04/01/2022] [Indexed: 12/14/2022]
Abstract
Eating disorders (anorexia nervosa, bulimia nervosa and binge-eating disorder) are a heterogeneous class of complex illnesses marked by weight and appetite dysregulation coupled with distinctive behavioral and psychological features. Our understanding of their genetics and neurobiology is evolving thanks to global cooperation on genome-wide association studies, neuroimaging, and animal models. Until now, however, these approaches have advanced the field in parallel, with inadequate cross-talk. This review covers overlapping advances in these key domains and encourages greater integration of hypotheses and findings to create a more unified science of eating disorders. We highlight ongoing and future work designed to identify implicated biological pathways that will inform staging models based on biology as well as targeted prevention and tailored intervention, and will galvanize interest in the development of pharmacologic agents that target the core biology of the illnesses, for which we currently have few effective pharmacotherapeutics.
Collapse
Affiliation(s)
- Cynthia M Bulik
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Jonathan R I Coleman
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| | - J Andrew Hardaway
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Lauren Breithaupt
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Eating Disorders Clinical and Research Program, Massachusetts General Hospital, Boston, MA, USA
| | - Hunna J Watson
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- School of Psychology, Curtin University, Perth, Western Australia, Australia
- Division of Paediatrics, School of Medicine, The University of Western Australia, Perth, Western Australia, Australia
| | - Camron D Bryant
- Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Gerome Breen
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- National Institute of Health Research Maudsley Biomedical Research Centre, South London and Maudsley National Health Service Trust, London, UK
| |
Collapse
|
18
|
Cai X, Liu H, Feng B, Yu M, He Y, Liu H, Liang C, Yang Y, Tu L, Zhang N, Wang L, Yin N, Han J, Yan Z, Wang C, Xu P, Wu Q, Tong Q, He Y, Xu Y. A D2 to D1 shift in dopaminergic inputs to midbrain 5-HT neurons causes anorexia in mice. Nat Neurosci 2022; 25:646-658. [PMID: 35501380 PMCID: PMC9926508 DOI: 10.1038/s41593-022-01062-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/24/2022] [Indexed: 12/18/2022]
Abstract
Midbrain dopamine (DA) and serotonin (5-HT) neurons regulate motivated behaviors, including feeding, but less is known about how these circuits may interact. In this study, we found that DA neurons in the mouse ventral tegmental area bidirectionally regulate the activity of 5-HT neurons in the dorsal raphe nucleus (DRN), with weaker stimulation causing DRD2-dependent inhibition and overeating, while stronger stimulation causing DRD1-dependent activation and anorexia. Furthermore, in the activity-based anorexia (ABA) paradigm, which is a mouse model mimicking some clinical features of human anorexia nervosa (AN), we observed a DRD2 to DRD1 shift of DA neurotransmission on 5-HTDRN neurons, which causes constant activation of these neurons and contributes to AN-like behaviors. Finally, we found that systemic administration of a DRD1 antagonist can prevent anorexia and weight loss in ABA. Our results revealed regulation of feeding behavior by stimulation strength-dependent interactions between DA and 5-HT neurons, which may contribute to the pathophysiology of AN.
Collapse
Affiliation(s)
- Xing Cai
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bing Feng
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Meng Yu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Hesong Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chen Liang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yongjie Yang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Longlong Tu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Nan Zhang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Lina Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Na Yin
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Junying Han
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Zili Yan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Chunmei Wang
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Pingwen Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Qi Wu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Qingchun Tong
- Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yanlin He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
19
|
Beeler JA, Burghardt NS. The Rise and Fall of Dopamine: A Two-Stage Model of the Development and Entrenchment of Anorexia Nervosa. Front Psychiatry 2022; 12:799548. [PMID: 35087433 PMCID: PMC8787068 DOI: 10.3389/fpsyt.2021.799548] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Dopamine has long been implicated as a critical neural substrate mediating anorexia nervosa (AN). Despite nearly 50 years of research, the putative direction of change in dopamine function remains unclear and no consensus on the mechanistic role of dopamine in AN has been achieved. We hypothesize two stages in AN- corresponding to initial development and entrenchment- characterized by opposite changes in dopamine. First, caloric restriction, particularly when combined with exercise, triggers an escalating spiral of increasing dopamine that facilitates the behavioral plasticity necessary to establish and reinforce weight-loss behaviors. Second, chronic self-starvation reverses this escalation to reduce or impair dopamine which, in turn, confers behavioral inflexibility and entrenchment of now established AN behaviors. This pattern of enhanced, followed by impaired dopamine might be a common path to many behavioral disorders characterized by reinforcement learning and subsequent behavioral inflexibility. If correct, our hypothesis has significant clinical and research implications for AN and other disorders, such as addiction and obesity.
Collapse
Affiliation(s)
- Jeff A. Beeler
- Department of Psychology, Queens College, City University of New York, Flushing, NY, United States
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Biology Program, The Graduate Center, City University of New York, New York, NY, United States
| | - Nesha S. Burghardt
- Psychology Program, The Graduate Center, CUNY, New York, NY, United States
- Department of Psychology, Hunter College, CUNY, New York, NY, United States
| |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW The goal of this review is to describe how emerging technological developments in pre-clinical animal research can be harnessed to accelerate research in anorexia nervosa (AN). RECENT FINDINGS The activity-based anorexia (ABA) paradigm, the best characterized animal model of AN, combines restricted feeding, excessive exercise, and weight loss. A growing body of evidence supports the idea that pathophysiological weight loss in this model is due to cognitive inflexibility, a clinical feature of AN. Targeted manipulations that recapitulate brain changes reported in AN - hyperdopaminergia or hyperactivity of cortical inputs to the nucleus accumbens - exacerbate weight loss in the ABA paradigm, providing the first evidence of causality. The power of preclinical research lies in the ability to assess the consequences of targeted manipulations of neuronal circuits that have been implicated in clinical research. Additional paradigms are needed to capture other features of AN that are not seen in ABA.
Collapse
Affiliation(s)
- Marie François
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, USA
| | - Lori M Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA.
| |
Collapse
|
21
|
Simpson EH, Gallo EF, Balsam PD, Javitch JA, Kellendonk C. How changes in dopamine D2 receptor levels alter striatal circuit function and motivation. Mol Psychiatry 2022; 27:436-444. [PMID: 34385603 PMCID: PMC8837728 DOI: 10.1038/s41380-021-01253-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
It was first posited, more than five decades ago, that the etiology of schizophrenia involves overstimulation of dopamine receptors. Since then, advanced clinical research methods, including brain imaging, have refined our understanding of the relationship between striatal dopamine and clinical phenotypes as well as disease trajectory. These studies point to striatal dopamine D2 receptors, the main target for all current antipsychotic medications, as being involved in both positive and negative symptoms. Simultaneously, animal models have been central to investigating causal relationships between striatal dopamine D2 receptors and behavioral phenotypes relevant to schizophrenia. We begin this article by reviewing the circuit, cell-type and subcellular locations of dopamine D2 receptors and their downstream signaling pathways. We then summarize results from several mouse models in which D2 receptor levels were altered in various brain regions, cell-types and developmental periods. Behavioral, electrophysiological and anatomical consequences of these D2 receptor perturbations are reviewed with a selective focus on striatal circuit function and alterations in motivated behavior, a core negative symptom of schizophrenia. These studies show that D2 receptors serve distinct physiological roles in different cell types and at different developmental time points, regulating motivated behaviors in sometimes opposing ways. We conclude by considering the clinical implications of this complex regulation of striatal circuit function by D2 receptors.
Collapse
Affiliation(s)
- Eleanor H. Simpson
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, 441 East Fordham Road, Bronx, NY 10458
| | - Peter D. Balsam
- Division of Developmental Neuroscience, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Department of Psychology, Barnard College, 3009 Broadway, New York, NY 10027,Department of Psychology, Columbia University, 1190 Amsterdam Ave, New York, NY 10027
| | - Jonathan A. Javitch
- Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY 10032, United States,Division of Molecular Therapeutics, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY 10032,Department of Molecular Pharmacology and Therapeutics, Columbia University, 1051 Riverside Drive, New York, NY 10032
| | - Christoph Kellendonk
- Department of Psychiatry, Columbia University, New York, NY, USA. .,Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA. .,Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Spadini S, Ferro M, Lamanna J, Malgaroli A. Activity-based anorexia animal model: a review of the main neurobiological findings. J Eat Disord 2021; 9:123. [PMID: 34600568 PMCID: PMC8487535 DOI: 10.1186/s40337-021-00481-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The genesis of anorexia nervosa (AN), a severe eating disorder with a pervasive effect on many brain functions such as attention, emotions, reward processing, cognition and motor control, has not yet been understood. Since our current knowledge of the genetic aspects of AN is limited, we are left with a large and diversified number of biological, psychological and environmental risk factors, called into question as potential triggers of this chronic condition with a high relapse rate. One of the most valid and used animal models for AN is the activity-based anorexia (ABA), which recapitulates important features of the human condition. This model is generated from naïve rodents by a self-motivated caloric restriction, where a fixed schedule food delivery induces spontaneous increased physical activity. AIM In this review, we sought to provide a summary of the experimental research conducted using the ABA model in the pursuit of potential neurobiological mechanism(s) underlying AN. METHOD The experimental work presented here includes evidence for neuroanatomical and neurophysiological changes in several brain regions as well as for the dysregulation of specific neurochemical synaptic and neurohormonal pathways. RESULTS The most likely hypothesis for the mechanism behind the development of the ABA phenotype relates to an imbalance of the neural circuitry that mediates reward processing. Evidence collected here suggests that ABA animals show a large set of alterations, involving regions whose functions extend way beyond the control of reward mechanisms and eating habits. Hence, we cannot exclude a primary role of these alterations from a mechanistic theory of ABA induction. CONCLUSIONS These findings are not sufficient to solve such a major enigma in neuroscience, still they could be used to design ad hoc further experimental investigation. The prospect is that, since treatment of AN is still challenging, the ABA model could be more effectively used to shed light on the complex AN neurobiological framework, thus supporting the future development of therapeutic strategies but also the identification of biomarkers and diagnostic tools. Anorexia Nervosa (AN) is a severe eating disorder with a dramatic effect on many functions of our brain, such as attention, emotions, cognition and motion control. Since our current knowledge of the genetic aspects behind the development of AN is still limited, many biological, psychological and environmental factors must be taken into account as potential triggers of this condition. One of the most valid animal models for studying AN is the activity-based anorexia (ABA). In this model, rodents spontaneously limit food intake and start performing increased physical activity on a running wheel, a result of the imposition of a fixed time schedule for food delivery. In this review, we provide a detailed summary of the experimental research conducted using the ABA model, which includes extended evidence for changes in the anatomy and function of the brain of ABA rodents. The hope is that such integrated view will support the design of future experiments that will shed light on the complex brain mechanisms behind AN. Such advanced knowledge is crucial to find new, effective strategies for both the early diagnosis of AN and for its treatment.
Collapse
Affiliation(s)
- Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
23
|
Martyniuk KM, Dandeneau M, Balsam PD, Kellendonk C. Dopamine D2R upregulation in ventral striatopallidal neurons does not affect Pavlovian or go/no-go learning. Behav Neurosci 2021; 135:369-379. [PMID: 34264690 DOI: 10.1037/bne0000403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Ventral striatal dopamine is thought to be important for associative learning. Dopamine exerts its role via activation of dopamine D1 and D2 receptors in the ventral striatum. Upregulation of dopamine D2R in ventral striatopallidal neurons impairs incentive motivation via inhibiting synaptic transmission to the ventral pallidum. Here, we determined whether upregulation of D2Rs and the resulting impairment in ventral striatopallidal pathway function modulates associative learning in an auditory Pavlovian reward learning task as well as Go/No-Go learning in an operant based reward driven Go/No-Go task. We found that upregulation of D2Rs did not affect Pavlovian learning or the extinction of Pavlovian responses, and neither did it alter No-Go learning. We however observed a delay in the Go component of the task which may indicate a deficit in learning though it could also be attributed to the established locomotor hyperactivity of the mice. In combination with previously published findings, our data suggest that D2Rs in ventral striatopallidal neurons play a specific role in regulating motivation by balancing cost/benefit computations but do not necessarily affect associative learning. (PsycInfo Database Record (c) 2021 APA, all rights reserved).
Collapse
Affiliation(s)
- Kelly M Martyniuk
- Department of Neuroscience, Graduate School of Arts and Sciences, Columbia University
| | | | | | | |
Collapse
|
24
|
From Desire to Dread-A Neurocircuitry Based Model for Food Avoidance in Anorexia Nervosa. J Clin Med 2021; 10:jcm10112228. [PMID: 34063884 PMCID: PMC8196668 DOI: 10.3390/jcm10112228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023] Open
Abstract
Anorexia nervosa is a severe psychiatric illness associated with food avoidance. Animal models from Berridge et al. over the past decade showed that environmental ambience, pleasant or fear inducing, can trigger either appetitive (desire) or avoidance (dread) behaviors in animals via frontal cortex, nucleus accumbens dopamine D1 and D2 receptors, and hypothalamus. Those mechanisms could be relevant for understanding anorexia nervosa. However, models that translate animal research to explain the psychopathology of anorexia nervosa are sparse. This article reviews animal and human research to find evidence for whether this model can explain food avoidance behaviors in anorexia nervosa. Research on anorexia nervosa suggests fear conditioning to food, activation of the corticostriatal brain circuitry, sensitization of ventral striatal dopamine response, and alterations in hypothalamic function. The results support the applicability of the animal neurocircuitry derived model and provide directions to further study the pathophysiology that underlies anorexia nervosa.
Collapse
|
25
|
Santiago AN, Makowicz EA, Du M, Aoki C. Food Restriction Engages Prefrontal Corticostriatal Cells and Local Microcircuitry to Drive the Decision to Run versus Conserve Energy. Cereb Cortex 2021; 31:2868-2885. [PMID: 33497440 DOI: 10.1093/cercor/bhaa394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/31/2022] Open
Abstract
Food restriction (FR) evokes running, which may promote adaptive foraging in times of food scarcity, but can become lethal if energy expenditure exceeds caloric availability. Here, we demonstrate that chemogenetic activation of either the general medial prefrontal cortex (mPFC) pyramidal cell population, or the subpopulation projecting to dorsal striatum (DS) drives running specifically during hours preceding limited food availability, and not during ad libitum food availability. Conversely, suppression of mPFC pyramidal cells generally, or targeting mPFC-to-DS cells, reduced wheel running specifically during FR and not during ad libitum food access. Post mortem c-Fos analysis and electron microscopy of mPFC layer 5 revealed distinguishing characteristics of mPFC-to-DS cells, when compared to neighboring non-DS-projecting pyramidal cells: 1) greater recruitment of GABAergic activity and 2) less axo-somatic GABAergic innervation. Together, these attributes position the mPFC-to-DS subset of pyramidal cells to dominate mPFC excitatory outflow, particularly during FR, revealing a specific and causal role for mPFC-to-DS control of the decision to run during food scarcity. Individual differences in GABAergic activity correlate with running response to further support this interpretation. FR enhancement of PFC-to-DS activity may influence neural circuits both in studies using FR to motivate animal behavior and in human conditions hallmarked by FR.
Collapse
Affiliation(s)
- Adrienne N Santiago
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA
| | - Emily A Makowicz
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA.,Hunter College, City University of New York, 695 Park Ave, New York, NY, 10065, USA
| | - Muzi Du
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA.,Langone Neuroscience Institute, New York University, 435 East 30th St, New York, NY 10016, USA
| | - Chiye Aoki
- Center for Neural Science, New York University, 4 Washington place, New York, NY 10003, USA.,New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China
| |
Collapse
|
26
|
Scharner S, Stengel A. Animal Models for Anorexia Nervosa-A Systematic Review. Front Hum Neurosci 2021; 14:596381. [PMID: 33551774 PMCID: PMC7854692 DOI: 10.3389/fnhum.2020.596381] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 12/16/2020] [Indexed: 12/16/2022] Open
Abstract
Anorexia nervosa is an eating disorder characterized by intense fear of gaining weight and a distorted body image which usually leads to low caloric intake and hyperactivity. The underlying mechanism and pathogenesis of anorexia nervosa is still poorly understood. In order to learn more about the underlying pathophysiology of anorexia nervosa and to find further possible treatment options, several animal models mimicking anorexia nervosa have been developed. The aim of this review is to systematically search different databases and provide an overview of existing animal models and to discuss the current knowledge gained from animal models of anorexia nervosa. For the systematic data search, the Pubmed—Medline database, Embase database, and Web of Science database were searched. After removal of duplicates and the systematic process of selection, 108 original research papers were included in this systematic review. One hundred and six studies were performed with rodents and 2 on monkeys. Eighteen different animal models for anorexia nervosa were used in these studies. Parameters assessed in many studies were body weight, food intake, physical activity, cessation of the estrous cycle in female animals, behavioral changes, metabolic and hormonal alterations. The most commonly used animal model (75 of the studies) is the activity-based anorexia model in which typically young rodents are exposed to time-reduced access to food (a certain number of hours a day) with unrestricted access to a running wheel. Of the genetic animal models, one that is of particular interest is the anx/anx mice model. Animal models have so far contributed many findings to the understanding of mechanisms of hunger and satiety, physical activity and cognition in an underweight state and other mechanisms relevant for anorexia nervosa in humans.
Collapse
Affiliation(s)
- Sophie Scharner
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Stengel
- Department for Psychosomatic Medicine, Charité Center for Internal Medicine and Dermatology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychosomatic Medicine and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Zhang J, Dulawa SC. The Utility of Animal Models for Studying the Metabo-Psychiatric Origins of Anorexia Nervosa. Front Psychiatry 2021; 12:711181. [PMID: 34721100 PMCID: PMC8551379 DOI: 10.3389/fpsyt.2021.711181] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder that primarily affects young women and girls, and is characterized by abnormal restrictive feeding and a dangerously low body-mass index. AN has one of the highest mortality rates of any psychiatric disorder, and no approved pharmacological treatments exist. Current psychological and behavioral treatments are largely ineffective, and relapse is common. Relatively little basic research has examined biological mechanisms that underlie AN compared to other major neuropsychiatric disorders. A recent large-scale genome-wide association study (GWAS) revealed that the genetic architecture of AN has strong metabolic as well as psychiatric origins, suggesting that AN should be reconceptualized as a metabo-psychiatric disorder. Therefore, identifying the metabo-psychiatric mechanisms that contribute to AN may be essential for developing effective treatments. This review focuses on animal models for studying the metabo-psychiatric mechanisms that may contribute to AN, with a focus on the activity-based anorexia (ABA) paradigm. We also highlight recent work using modern circuit-dissecting neuroscience techniques to uncover metabolic mechanisms that regulate ABA, and encourage further work to ultimately identify novel treatment strategies for AN.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
28
|
Labouesse MA, Cola RB, Patriarchi T. GPCR-Based Dopamine Sensors-A Detailed Guide to Inform Sensor Choice for In vivo Imaging. Int J Mol Sci 2020; 21:E8048. [PMID: 33126757 PMCID: PMC7672611 DOI: 10.3390/ijms21218048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how dopamine (DA) encodes behavior depends on technologies that can reliably monitor DA release in freely-behaving animals. Recently, red and green genetically encoded sensors for DA (dLight, GRAB-DA) were developed and now provide the ability to track release dynamics at a subsecond resolution, with submicromolar affinity and high molecular specificity. Combined with rapid developments in in vivo imaging, these sensors have the potential to transform the field of DA sensing and DA-based drug discovery. When implementing these tools in the laboratory, it is important to consider there is not a 'one-size-fits-all' sensor. Sensor properties, most importantly their affinity and dynamic range, must be carefully chosen to match local DA levels. Molecular specificity, sensor kinetics, spectral properties, brightness, sensor scaffold and pharmacology can further influence sensor choice depending on the experimental question. In this review, we use DA as an example; we briefly summarize old and new techniques to monitor DA release, including DA biosensors. We then outline a map of DA heterogeneity across the brain and provide a guide for optimal sensor choice and implementation based on local DA levels and other experimental parameters. Altogether this review should act as a tool to guide DA sensor choice for end-users.
Collapse
Affiliation(s)
- Marie A. Labouesse
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA;
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Reto B. Cola
- Anatomy and Program in Neuroscience, University of Fribourg, 1700 Fribourg, Switzerland;
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
29
|
Assari S, Boyce S, Bazargan M. Nucleus Accumbens Functional Connectivity with the Frontoparietal Network Predicts Subsequent Change in Body Mass Index for American Children. Brain Sci 2020; 10:brainsci10100703. [PMID: 33022949 PMCID: PMC7600639 DOI: 10.3390/brainsci10100703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Nucleus accumbens (NAc) is a brain structure with a well-established role in the brain reward processing system. Altered function of the NAc is shown to have a role in the development of food addiction and obesity. However, less is known about sex differences in the role of NAc function as a predictor of children’s change in body mass index (BMI) over time. Aim: We used the Adolescent Brain Cognitive Development data (version 2.01) to investigate sex differences in the predictive role of the NAc functional connectivity with the frontoparietal network on children’s BMI change over a one-year follow-up period. Methods: This 1-year longitudinal study successfully followed 3784 9–10-year-old children. Regression models were used to analyze the data. The predictor variable was NAc functional connectivity with the frontoparietal network measured using resting-state functional magnetic resonance imaging (fMRI). The primary outcome was BMI at the end of the 1-year follow up. Covariates included race, ethnicity, age, socioeconomic factors, and baseline BMI. Sex was the effect modifier. Results: NAc functional connectivity with the frontoparietal network was predictive of BMI changes over time. This association remained significant above and beyond all covariates. The above association, however, was only significant in female, not male children. Conclusion: The epidemiological observation that NAc functional connectivity is associated with BMI changes in children is an extension of well-controlled laboratory studies that have established the role of the NAc in the brain reward processing. More research is needed on sex differences in the brain regions that contribute to childhood obesity.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Urban Public Health, Charles Drew University, Los Angeles, CA 90059, USA
- Correspondence: ; Tel.: +(734)-232-0445; Fax: +734-615-8739
| | - Shanika Boyce
- Department of Pediatrics, Charles Drew University, Los Angeles, CA 90059, USA;
| | - Mohsen Bazargan
- Department of Family Medicine, Charles Drew University, Los Angeles, CA 90059, USA;
- Department of Family Medicine, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
30
|
Frank GKW. Pharmacotherapeutic strategies for the treatment of anorexia nervosa - too much for one drug? Expert Opin Pharmacother 2020; 21:1045-1058. [PMID: 32281881 DOI: 10.1080/14656566.2020.1748600] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Anorexia nervosa is a severe psychiatric illness and no medication has been approved for its treatment. This lack of biological treatments requires the development of new directions for pharmacological research. AREAS COVERED There is modest but emerging evidence that dopamine D2 and serotonin 1A and 2A receptor agonistic and antagonist medication might be beneficial for weight gain, although the underlying mechanisms are uncertain. Improving quality of life including treating comorbid conditions is an additional important outcome measure, but this has not been well researched. Biological and psychological risk factors together with neurobiological alterations during the illness maintain the disorder 's pathophysiology. Neuroscience research can be used to understand those interactions and advance the research agenda. The authors discuss the above as well as give perspectives on future research. EXPERT OPINION If a multidisciplinary approach that includes evidence-based psychotherapy shows unsatisfactory success in weight normalization and cognitive-emotional recovery, then more experimental treatments that are safe and have indicated treatment effectiveness should be tried to augment treatment. Identification and treatment of comorbid conditions to improve quality of life of the patient should also be part of the treatment regimen, even if the effect on weight gain is uncertain.
Collapse
Affiliation(s)
- Guido K W Frank
- UCSD Eating Disorder Center for Treatment and Research, University of California San Diego , San Diego, CA, USA
| |
Collapse
|