1
|
Ryu J, Oh M. Positron Emission Tomography in Autism Spectrum Disorder: Current Status and Future Perspectives. Semin Nucl Med 2025:S0001-2998(25)00065-0. [PMID: 40514318 DOI: 10.1053/j.semnuclmed.2025.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2025] [Accepted: 06/02/2025] [Indexed: 06/16/2025]
Abstract
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition marked by impairments in social communication and the presence of repetitive behaviors. While both genetic and environmental factors are known to contribute to ASD, its precise causes remain unclear. Advances in molecular imaging, particularly positron emission tomography (PET), have enhanced our ability to investigate the neurobiological mechanisms underlying ASD. PET offers valuable insights into brain metabolism, neurotransmitter systems, neuroinflammation, and synaptic density. This review highlights the contributions of PET imaging to understanding the pathophysiology of ASD, focusing on recent advancements in technology and novel radiotracers. These innovations may lead to more accurate biomarkers for diagnosis and targeted therapeutic strategies. As PET technology continues to improve, it holds significant potential for advancing ASD research and clinical applications.
Collapse
Affiliation(s)
- Jeongryul Ryu
- Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Minyoung Oh
- Departments of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Matuskey D, Yang Y, Naganawa M, Koohsari S, Toyonaga T, Gravel P, Pittman B, Torres K, Pisani L, Finn C, Cramer-Benjamin S, Herman N, Rosenthal LH, Franke CJ, Walicki BM, Esterlis I, Skosnik P, Radhakrishnan R, Wolf JM, Nabulsi N, Ropchan J, Huang Y, Carson RE, Naples AJ, McPartland JC. 11C-UCB-J PET imaging is consistent with lower synaptic density in autistic adults. Mol Psychiatry 2025; 30:1610-1616. [PMID: 39367053 DOI: 10.1038/s41380-024-02776-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The neural bases of autism are poorly understood at the molecular level, but evidence from animal models, genetics, post-mortem studies, and single-gene disorders implicate synaptopathology. Here, we use positron emission tomography (PET) to assess the density of synapses with synaptic vesicle glycoprotein 2A (SV2A) in autistic adults using 11C-UCB-J. Twelve autistic (mean (SD) age 25 (4) years; six males), and twenty demographically matched non-autistic individuals (26 (3) years; eleven males) participated in a 11C-UCB-J PET scan. Binding potential, BPND, was the primary outcome measure and computed with the centrum semiovale as the reference region. Partial volume correction with Iterative Yang was applied to control for possible volumetric differences. Mixed-model statistics were calculated for between-group differences. Relationships to clinical characteristics were evaluated based on clinician ratings of autistic features. Whole cortex synaptic density was 17% lower in the autism group (p = 0.01). All brain regions in autism had lower 11C-UCB-J BPND compared to non-autistic participants. This effect was evident in all brain regions implicated in autism. Significant differences were observed across multiple individual regions, including the prefrontal cortex (-15%, p = 0.02), with differences most pronounced in gray matter (p < 0.0001). Synaptic density was significantly associated with clinical measures across the whole cortex (r = 0.67, p = 0.02) and multiple regions (rs = -0.58 to -0.82, ps = 0.05 to <0.01). The first in vivo investigation of synaptic density in autism with PET reveals pervasive and large-scale lower density in the cortex and across multiple brain areas. Synaptic density also correlated with clinical features, such that a greater number of autistic features were associated with lower synaptic density. These results indicate that brain-wide synaptic density may represent an as-yet-undiscovered molecular basis for the clinical phenotype of autism and associated pervasive alterations across a diversity of neural processes.
Collapse
Affiliation(s)
- David Matuskey
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA.
- Department of Psychiatry, Yale University, New Haven, CT, USA.
- Department of Neurology, Yale University, New Haven, CT, USA.
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
| | - Yanghong Yang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Mika Naganawa
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Paul Gravel
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Brian Pittman
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Kristen Torres
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Lauren Pisani
- Child Study Center, Yale University, New Haven, CT, USA
| | - Caroline Finn
- Child Study Center, Yale University, New Haven, CT, USA
| | | | - Nicole Herman
- Child Study Center, Yale University, New Haven, CT, USA
| | | | | | | | - Irina Esterlis
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Patrick Skosnik
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Rajiv Radhakrishnan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Julie M Wolf
- Child Study Center, Yale University, New Haven, CT, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Jim Ropchan
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Yiyun Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Adam J Naples
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA
- Child Study Center, Yale University, New Haven, CT, USA
| | - James C McPartland
- Center for Brain and Mind Health, Yale University, New Haven, CT, USA.
- Child Study Center, Yale University, New Haven, CT, USA.
| |
Collapse
|
3
|
Wiśniewska K, Wolski J, Anikiej-Wiczenbach P, Żabińska M, Węgrzyn G, Pierzynowska K. Behavioural disorders and sleep problems in Sanfilippo syndrome: overlaps with some other conditions and importance indications. Eur Child Adolesc Psychiatry 2025:10.1007/s00787-025-02661-5. [PMID: 40087177 DOI: 10.1007/s00787-025-02661-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 02/07/2025] [Indexed: 03/17/2025]
Abstract
Sanfilippo syndrome (MPS III) is one of the types of mucopolysaccharidoses (MPS), a group of inherited metabolic diseases in which the accumulation of glycosaminoglycans (GAGs) results from deficiency of different lysosomal enzymes. The hallmarks of MPS III are relatively minor somatic abnormalities with severe and progressive central nervous system (CNS) symptoms. An analysis of the literature showed that the biggest problems for carers of people with MPS III are behavioural disorders and sleep disorders. Despite extensive discussions on improving the quality of life of patients, little attention was paid to the families/carers of patients. The families/carers are providing appropriate medical and palliative care to the patient every day due to their loss of mobility, self-care skills, tube feeding, airway clearance and other supports continue to have an adverse effect on the quality of life of families/carers. However, a literature review of possible solutions showed that effective methods (both pharmacological and non-pharmacological) exist. The needs of carers of MPS III patients should receive as much attention as the search for new treatments. There are many options for dealing with such problems. The key issue is to identify the source of the problem and choose the most effective therapy. Alleviating behavioural disorders, pain complaints and sleep problems will have a positive impact not only on the quality of life of carers/families, but also on the patients themselves.
Collapse
Affiliation(s)
- Karolina Wiśniewska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308, Gdansk, Poland
| | - Jakub Wolski
- Psychiatry Ward, 7, Navy Hospital in Gdańsk, Polanki 117, 80-305, Gdańsk, Poland
| | | | - Magdalena Żabińska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308, Gdansk, Poland
| | - Karolina Pierzynowska
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308, Gdansk, Poland.
| |
Collapse
|
4
|
Takeda T, Makinodan M, Toritsuka M, Iwata N. Impacts of adverse childhood experiences on individuals with autism spectrum disorder. Curr Opin Neurobiol 2024; 89:102932. [PMID: 39509835 DOI: 10.1016/j.conb.2024.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/02/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
Individuals with autism spectrum disorder (ASD) are more likely to experience adverse childhood experiences (ACEs) compared with typically developing (TD) individuals, which predisposes them to an elevated risk of mental health issues. This review elucidates the profound impact of ACEs on individuals with ASD by synthesizing findings from a plethora of epidemiologic and biological studies, encompassing genetics, epigenetics, and neuroimaging. Despite the limited number of studies explicitly focusing on this intersection, the extant literature consistently demonstrates that ASD individuals are disproportionately affected by ACEs, leading to significant deterioration in mental health and brain function. Furthermore, the nature and extent of the effects of ACEs appear to diverge between ASD and TD populations, underscoring the necessity for tailored clinical and research approaches. Understanding these complex and intertwined interactions is imperative for advancing both clinical practice and research, with the goal of mitigating the adverse outcomes associated with ACEs in ASD individuals.
Collapse
Affiliation(s)
- Tsutomu Takeda
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan; Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan; Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan.
| | - Michihiro Toritsuka
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan; Department of Psychiatry, Nara Medical University School of Medicine, Nara, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Aichi, Japan
| |
Collapse
|
5
|
Rahdar M, Davoudi S, Dehghan S, Javan M, Hosseinmardi N, Behzadi G, Janahmadi M. Reversal of electrophysiological and behavioral deficits mediated by 5-HT7 receptor upregulation following LP-211 treatment in an autistic-like rat model induced by prenatal valproic acid exposure. Neuropharmacology 2024; 257:110057. [PMID: 38964596 DOI: 10.1016/j.neuropharm.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by alterations and imbalances in multiple brain neurochemical systems, particularly the serotonergic neurotransmission. This includes changes in serotonin (5-HT) levels, aberrations in 5-HT transporter activity, and decreased synthesis and expression of 5-HT receptors (5-HT7Rs). The exact role of the brain 5-HT system in the development of ASD remains unclear, with conflicting evidence on its involvement. Recently, we have reported research has shown a significant decrease in serotonergic neurons originating from the raphe nuclei and projecting to the CA1 region of the dorsal hippocampus in autistic-like rats. Additionally, we have shown that chronic activation of 5-HT7Rs reverses the effects of autism induction on synaptic plasticity. However, the functional significance of 5-HT7Rs at the cellular level is still not fully understood. This study presents new evidence indicating an upregulation of 5-HT7R in the CA1 subregion of the hippocampus following the induction of autism. The present account also demonstrates that activation of 5-HT7R with its agonist LP-211 can reverse electrophysiological abnormalities in hippocampal pyramidal neurons in a rat model of autism induced by prenatal exposure to VPA. Additionally, in vivo administration of LP-211 resulted in improvements in motor coordination, novel object recognition, and a reduction in stereotypic behaviors in autistic-like offspring. The findings suggest that dysregulated expression of 5-HT7Rs may play a role in the pathophysiology of ASD, and that agonists like LP-211 could potentially be explored as a pharmacological treatment for autism spectrum disorder.
Collapse
Affiliation(s)
- Mona Rahdar
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shima Davoudi
- Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Dehghan
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javan
- Department of Physiology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Narges Hosseinmardi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahyar Janahmadi
- Neuroscience Research Center and Dep. of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Blum K, Bowirrat A, Sunder K, Thanos PK, Hanna C, Gold MS, Dennen CA, Elman I, Murphy KT, Makale MT. Dopamine Dysregulation in Reward and Autism Spectrum Disorder. Brain Sci 2024; 14:733. [PMID: 39061473 PMCID: PMC11274922 DOI: 10.3390/brainsci14070733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by core deficits in social skills, communication, and cognition and by repetitive stereotyped behaviors. These manifestations are variable between individuals, and ASD pathogenesis is complex, with over a thousand implicated genes, many epigenetic factors, and multiple environmental influences. The mesolimbic dopamine (DA) mediated brain reward system is held to play a key role, but the rapidly expanding literature reveals intricate, nuanced signaling involving a wide array of mesolimbic loci, neurotransmitters and receptor subtypes, and neuronal variants. How altered DA signaling may constitute a downstream convergence of the manifold causal origins of ASD is not well understood. A clear working framework of ASD pathogenesis may help delineate common stages and potential diagnostic and interventional opportunities. Hence, we summarize the known natural history of ASD in the context of emerging data and perspectives to update ASD reward signaling. Then, against this backdrop, we proffer a provisional framework that organizes ASD pathogenesis into successive levels, including (1) genetic and epigenetic changes, (2) disrupted mesolimbic reward signaling pathways, (3) dysregulated neurotransmitter/DA signaling, and finally, (4) altered neurocognitive and social behavior and possible antagonist/agonist based ASD interventions. This subdivision of ASD into a logical progression of potentially addressable parts may help facilitate the rational formulation of diagnostics and targeted treatments.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Exercise Sports, Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Sunder Foundation, Palm Springs, CA 92264, USA
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | | | - Panayotis K. Thanos
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Colin Hanna
- Department of Pharmacology and Toxicology, State University of New York, SUNY, Buffalo, NY 14215, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19145, USA
| | - Igor Elman
- Department of Psychiatry, Harvard University School of Medicine, Cambridge, MA 02215, USA
| | - Kevin T. Murphy
- Division of Personalized Neuromodulations, PeakLogic, LLC, Del Mar, CA 92130, USA
| | - Milan T. Makale
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Tseng CEJ, Canales C, Marcus RE, Parmar AJ, Hightower BG, Mullett JE, Makary MM, Tassone AU, Saro HK, Townsend PH, Birtwell K, Nowinski L, Thom RP, Palumbo ML, Keary C, Catana C, McDougle CJ, Hooker JM, Zürcher NR. In vivo translocator protein in females with autism spectrum disorder: a pilot study. Neuropsychopharmacology 2024; 49:1193-1201. [PMID: 38615126 PMCID: PMC11109261 DOI: 10.1038/s41386-024-01859-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Sex-based differences in the prevalence of autism spectrum disorder (ASD) are well-documented, with a male-to-female ratio of approximately 4:1. The clinical presentation of the core symptoms of ASD can also vary between sexes. Previously, positron emission tomography (PET) studies have identified alterations in the in vivo levels of translocator protein (TSPO)-a mitochondrial protein-in primarily or only male adults with ASD, with our group reporting lower TSPO relative to whole brain mean in males with ASD. However, whether in vivo TSPO levels are altered in females with ASD, specifically, is unknown. This is the first pilot study to measure in vivo TSPO in the brain in adult females with ASD using [11C]PBR28 PET-magnetic resonance imaging (MRI). Twelve adult females with ASD and 10 age- and TSPO genotype-matched controls (CON) completed one or two [11C]PBR28 PET-MRI scans. Females with ASD exhibited elevated [11C]PBR28 standardized uptake value ratio (SUVR) in the midcingulate cortex and splenium of the corpus callosum compared to CON. No brain area showed lower [11C]PBR28 SUVR in females with ASD compared to CON. Test-retest over several months showed stable [11C]PBR28 SUVR across time in both groups. Elevated regional [11C]PBR28 SUVR in females with ASD stand in stark contrast to our previous findings of lower regional [11C]PBR28 SUVR in males with ASD. Preliminary evidence of regionally elevated mitochondrial protein TSPO relative to whole brain mean in ASD females may reflect neuroimmuno-metabolic alterations specific to females with ASD.
Collapse
Affiliation(s)
- Chieh-En Jane Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Camila Canales
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Rachel E Marcus
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Anjali J Parmar
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Baileigh G Hightower
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jennifer E Mullett
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Meena M Makary
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Systems and Biomedical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
| | - Alison U Tassone
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Hannah K Saro
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Paige Hickey Townsend
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Kirstin Birtwell
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Lisa Nowinski
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Robyn P Thom
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Michelle L Palumbo
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Christopher Keary
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Ciprian Catana
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Christopher J McDougle
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Lurie Center for Autism, Massachusetts General Hospital, Lexington, MA, USA.
| |
Collapse
|
8
|
Sakaguchi K, Tawata S. Giftedness and atypical sexual differentiation: enhanced perceptual functioning through estrogen deficiency instead of androgen excess. Front Endocrinol (Lausanne) 2024; 15:1343759. [PMID: 38752176 PMCID: PMC11094242 DOI: 10.3389/fendo.2024.1343759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Syndromic autism spectrum conditions (ASC), such as Klinefelter syndrome, also manifest hypogonadism. Compared to the popular Extreme Male Brain theory, the Enhanced Perceptual Functioning model explains the connection between ASC, savant traits, and giftedness more seamlessly, and their co-emergence with atypical sexual differentiation. Overexcitability of primary sensory inputs generates a relative enhancement of local to global processing of stimuli, hindering the abstraction of communication signals, in contrast to the extraordinary local information processing skills in some individuals. Weaker inhibitory function through gamma-aminobutyric acid type A (GABAA) receptors and the atypicality of synapse formation lead to this difference, and the formation of unique neural circuits that process external information. Additionally, deficiency in monitoring inner sensory information leads to alexithymia (inability to distinguish one's own emotions), which can be caused by hypoactivity of estrogen and oxytocin in the interoceptive neural circuits, comprising the anterior insular and cingulate gyri. These areas are also part of the Salience Network, which switches between the Central Executive Network for external tasks and the Default Mode Network for self-referential mind wandering. Exploring the possibility that estrogen deficiency since early development interrupts GABA shift, causing sensory processing atypicality, it helps to evaluate the co-occurrence of ASC with attention deficit hyperactivity disorder, dyslexia, and schizophrenia based on phenotypic and physiological bases. It also provides clues for understanding the common underpinnings of these neurodevelopmental disorders and gifted populations.
Collapse
Affiliation(s)
- Kikue Sakaguchi
- Research Department, National Institution for Academic Degrees and Quality Enhancement of Higher Education (NIAD-QE), Kodaira-shi, Tokyo, Japan
| | - Shintaro Tawata
- Graduate School of Human Sciences, Sophia University, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
9
|
O'Connell CJ, Reeder EL, Hymore JA, Brown RS, Notorgiacomo GA, Collins SM, Gudelsky GA, Robson MJ. Transcriptomic dynamics governing serotonergic dysregulation in the dorsal raphe nucleus following mild traumatic brain injury. Exp Neurol 2024; 374:114695. [PMID: 38246304 DOI: 10.1016/j.expneurol.2024.114695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/15/2023] [Accepted: 01/18/2024] [Indexed: 01/23/2024]
Abstract
Mild traumatic brain injury (mTBI) is a leading cause of disability in the United States, with neuropsychiatric disturbances such as depression, anxiety, PTSD, and social disturbances being common comorbidities following injury. The molecular mechanisms driving neuropsychiatric complications following neurotrauma are not well understood and current FDA-approved pharmacotherapies employed to ameliorate these comorbidities lack desired efficacy. Concerted efforts to understand the molecular mechanisms of and identify novel drug candidates for treating neurotrauma-elicited neuropsychiatric sequelae are clearly needed. Serotonin (5-HT) is linked to the etiology of neuropsychiatric disorders, however our understanding of how various forms of TBI directly affect 5-HT neurotransmission is limited. 5-HT neurons originate in the raphe nucleus (RN) of the midbrain and project throughout the brain to regulate diverse behavioral phenotypes. We hypothesize that the characterization of the dynamics governing 5-HT neurotransmission after injury will drive the discovery of novel drug targets and lead to a greater understanding of the mechanisms associated with neuropsychiatric disturbances following mild TBI (mTBI). Herein, we provide evidence that closed-head mTBI alters total DRN 5-HT levels, with RNA sequencing of the DRN revealing injury-derived alterations in transcripts required for the development, identity, and functional stability of 5-HT neurons. Further, using gene ontology analyses combined with immunohistological analyses, we have identified a novel mechanism of transcriptomic control within 5-HT neurons that may directly influence 5-HT neuron identity/function post-injury. These studies provide molecular evidence of injury-elicited 5-HT neuron dysregulation, data which may expedite the identification of novel therapeutic targets to attenuate TBI-elicited neuropsychiatric sequelae.
Collapse
Affiliation(s)
- Christopher J O'Connell
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Evan L Reeder
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Jacob A Hymore
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Ryan S Brown
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | | | - Sean M Collins
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA
| | - Gary A Gudelsky
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Matthew J Robson
- University of Cincinnati, James L. Winkle College of Pharmacy, Division of Pharmaceutical Sciences, Cincinnati, OH, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
10
|
Jones Severino Vasconcelos QD, Silva Frederico MJ, Sousa Alves RD, Jesus Pinheiro Gomes Bandeira TD, Amaral de Moraes ME, Aragão GF. Effects of whey protein supplementation on gut microbiota of Wistar rats with valproic acid-induced autism symptoms. Future Microbiol 2024; 19:213-226. [PMID: 37934065 DOI: 10.2217/fmb-2023-0051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023] Open
Abstract
Aim: To evaluate the effects of whey protein (WP) supplementation (1.24 mg/g, 24 days) in rats with autism spectrum disorder (ASD) induced by valproic acid (400 mg/kg, single dose). Materials & methods: Wistar rats (14 days old) were divided into four groups: control, ASD, ASD plus WP and WP. Results: WP increased bacterial diversity and the number of colonies. Bacteria from the Firmicutes phylum were predominantly found in the supplemented groups (p < 0.05). WP also improved the animals' memory in the Y-maze test and decreased the time that male animals spent in the 'solitary chamber' (p < 0.05). Conclusion: WP supplementation positively influenced gut microbiota, along with memory.
Collapse
Affiliation(s)
| | | | - Renata de Sousa Alves
- Department of Clinical and Toxicological Analysis, Federal University of Ceara, 60430-160, Fortaleza, Brazil
| | | | | | - Gislei Frota Aragão
- Health Science Center, State University of Ceara, 60430-275, Fortaleza, Brazil
| |
Collapse
|
11
|
Rodnyy AY, Kondaurova EM, Tsybko AS, Popova NK, Kudlay DA, Naumenko VS. The brain serotonin system in autism. Rev Neurosci 2024; 35:1-20. [PMID: 37415576 DOI: 10.1515/revneuro-2023-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023]
Abstract
Autism spectrum disorders (ASDs) are among the most common neurodevelopmental diseases. These disorders are characterized by lack of social interaction, by repetitive behavior, and often anxiety and learning disabilities. The brain serotonin (5-HT) system is known to be crucially implicated in a wide range of physiological functions and in the control of different kinds of normal and pathological behavior. A growing number of studies indicate the involvement of the brain 5-HT system in the mechanisms underlying both ASD development and ASD-related behavioral disorders. There are some review papers describing the role of separate key players of the 5-HT system in an ASD and/or autistic-like behavior. In this review, we summarize existing data on the participation of all members of the brain 5-HT system, namely, 5-HT transporter, tryptophan hydroxylase 2, MAOA, and 5-HT receptors, in autism in human and various animal models. Additionally, we describe the most recent studies involving modern techniques for in vivo regulation of gene expression that are aimed at identifying exact roles of 5-HT receptors, MAOA, and 5-HT transporter in the mechanisms underlying autistic-like behavior. Altogether, results of multiple research articles show that the brain 5-HT system intimately partakes in the control of some types of ASD-related behavior, and that specific changes in a function of a certain 5-HT receptor, transporter, and/or enzyme may normalize this aberrant behavior. These data give hope that some of clinically used 5-HT-related drugs have potential for ASD treatment.
Collapse
Affiliation(s)
- Alexander Ya Rodnyy
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Elena M Kondaurova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Anton S Tsybko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Nina K Popova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| | - Dmitry A Kudlay
- NRC Institute of Immunology FMBA of Russia, Kashirskoe Highway 24, Moscow 115522, Russia
- Sechenov's University, 8-2 Trubetskaya Str., Moscow 119991, Russia
| | - Vladimir S Naumenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Akad. Lavrentyeva Ave. 10, Novosibirsk 630090, Russia
| |
Collapse
|
12
|
Wu J, Hu Q, Rao X, Zhao H, Tang H, Wang Y. Gut microbiome and metabolic profiles of mouse model for MeCP2 duplication syndrome. Brain Res Bull 2024; 206:110862. [PMID: 38145758 DOI: 10.1016/j.brainresbull.2023.110862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
The extra copy of the methyl-CpG-binding protein 2 (MeCp2) gene causes MeCP2 duplication syndrome (MDS), a neurodevelopmental disorder characterized by intellectual disability and autistic phenotypes. However, the disturbed microbiome and metabolic profiling underlying the autistic-like behavioral deficits of MDS are rarely investigated. Here we aimed to understand the contributions of microbiome disruption and associated metabolic alterations, especially the disturbed neurotransmitters in MDS employing a transgenic mouse model with MeCP2 overexpression. We analyzed metabolic profiles of plasma, urine, and cecum content and microbiome profiles by both 16 s RNA and shotgun metagenomics sequence technology. We found the decreased levels of Firmicutes and increased levels of Bacteroides in the single MeCP2 gene mutation autism-like mouse model, demonstrating the importance of the host genome in a selection of microbiome, leading to the heterogeneity characteristics of microbiome in MDS. Furthermore, the changed levels of several neurotransmitters (such as dopamine, taurine, and glutamate) implied the excitatory-inhibitory imbalance caused by the single gene mutation. Concurrently, a range of microbial metabolisms of aromatic amino acids (such as tryptophan and phenylalanine) were identified in different biological matrices obtained from MeCP2 transgenic mice. Our investigation revealed the importance of genetic variation in accounting for the differences in microbiomes and confirmed the bidirectional regulatory axis of microbiota-gut-brain in studying the role of microbiome on MDS, which could be useful in deeply understanding the microbiome-based treatment in this autistic-like disease.
Collapse
Affiliation(s)
- Junfang Wu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430000, China.
| | - Qingyu Hu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xiaoping Rao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430000, China
| | - Hongyang Zhao
- Department of Pediatrics, Central Hospital Affiliated to Shandong First Medical University, Jinan 250013, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Metabonomics and Systems Biology Laboratory at Shanghai International Centre for Molecular Phenomics, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yulan Wang
- Singapore Phenome Center, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
13
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 PMCID: PMC11041805 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
14
|
Zhu H, Guan A, Liu J, Peng L, Zhang Z, Wang S. Noteworthy perspectives on microglia in neuropsychiatric disorders. J Neuroinflammation 2023; 20:223. [PMID: 37794488 PMCID: PMC10548593 DOI: 10.1186/s12974-023-02901-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/22/2023] [Indexed: 10/06/2023] Open
Abstract
Microglia are so versatile that they not only provide immune surveillance for central nervous system, but participate in neural circuitry development, brain blood vessels formation, blood-brain barrier architecture, and intriguingly, the regulation of emotions and behaviors. Microglia have a profound impact on neuronal survival, brain wiring and synaptic plasticity. As professional phagocytic cells in the brain, they remove dead cell debris and neurotoxic agents via an elaborate mechanism. The functional profile of microglia varies considerately depending on age, gender, disease context and other internal or external environmental factors. Numerous studies have demonstrated a pivotal involvement of microglia in neuropsychiatric disorders, including negative affection, social deficit, compulsive behavior, fear memory, pain and other symptoms associated with major depression disorder, anxiety disorder, autism spectrum disorder and schizophrenia. In this review, we summarized the latest discoveries regarding microglial ontogeny, cell subtypes or state spectrum, biological functions and mechanistic underpinnings of emotional and behavioral disorders. Furthermore, we highlight the potential of microglia-targeted therapies of neuropsychiatric disorders, and propose outstanding questions to be addressed in future research of human microglia.
Collapse
Affiliation(s)
- Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Ao Guan
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiayuan Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Zhi Zhang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
15
|
Higuchi Y, Tada T, Nakachi T, Arakawa H. Serotonergic circuit dysregulation underlying autism-related phenotypes in BTBR mouse model of autism. Neuropharmacology 2023:109634. [PMID: 37301467 DOI: 10.1016/j.neuropharm.2023.109634] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
The inbred mouse strain, BTBR T+Itpr3tf/J (BTBR), possesses neuronal and circuit abnormalities that underlie atypical behavioral profiles resembling the major symptoms of human autism spectrum disorder (ASD). Forebrain serotonin (5-HT) transmission has been implicated in ASD-related behavioral alterations. In this study, we assessed 5-HT signals and the functional responsiveness in BTBR mice compared to standard C57BL/6J (B6) control mice to elucidate how 5-HT alterations contribute to behavioral abnormalities in BTBR mice. A lower number of 5-HT neurons in the median raphe, but not in the dorsal raphe, was observed in male and female BTBR mice. Acute systemic injection of buspirone, a 5-HT1A receptor agonist, induced c-Fos in several brain regions in both B6 and BTBR mice; however, blunted c-Fos induction in BTBR mice was documented in the cingulate cortex, basolateral amygdala (BLA), and ventral hippocampus (Hipp). Decreased c-Fos responses in these regions are associated with a lack of buspirone effects on anxiety-like behavior in BTBR mice. Analysis of mRNA expression following acute buspirone injection indicated that 5HTR1a gene downregulation (or upregulation) occurred in the BLA and Hipp of B6 mice, respectively, but not BTBR mice. The mRNA expression of factors associated with neurogenesis or the pro-inflammatory state was not consistently altered by acute buspirone injection. Therefore, 5-HT responsivity via 5-HT1A receptors in the BLA and Hipp are linked to anxiety-like behavior, in which circuits are disrupted in BTBR mice. Other distinct 5-HT circuits from the BLA and Hipp that regulate social behavior are restricted but preserved in BTBR mice.
Collapse
Affiliation(s)
- Yuki Higuchi
- Dept. Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Japan
| | - Tomoaki Tada
- Dept. Systems Physiology, Faculty of Medicine, University of the Ryukyus, Japan
| | - Taiga Nakachi
- Dept. Systems Physiology, Faculty of Medicine, University of the Ryukyus, Japan
| | - Hiroyuki Arakawa
- Dept. Systems Physiology, Graduate School of Medicine, University of the Ryukyus, Japan.
| |
Collapse
|
16
|
Sharghi S, Flunkert S, Daurer M, Rabl R, Chagnaud BP, Leopoldo M, Lacivita E, Hutter-Paier B, Prokesch M. Evaluating the effect of R-Baclofen and LP-211 on autistic behavior of the BTBR and Fmr1-KO mouse models. Front Neurosci 2023; 17:1087788. [PMID: 37065917 PMCID: PMC10097904 DOI: 10.3389/fnins.2023.1087788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionAutism spectrum disorder (ASD) is a persistent neurodevelopmental condition characterized by two core behavioral symptoms: impaired social communication and interaction, as well as stereotypic, repetitive behavior. No distinct cause of ASD is known so far; however, excitatory/inhibitory imbalance and a disturbed serotoninergic transmission have been identified as prominent candidates responsible for ASD etiology.MethodsThe GABAB receptor agonist R-Baclofen and the selective agonist for the 5HT7 serotonin receptor LP-211 have been reported to correct social deficits and repetitive behaviors in mouse models of ASD. To evaluate the efficacy of these compounds in more details, we treated BTBR T+ Itpr3tf/J and B6.129P2-Fmr1tm1Cgr/J mice acutely with R-Baclofen or LP-211 and evaluated the behavior of animals in a series of tests.ResultsBTBR mice showed motor deficits, elevated anxiety, and highly repetitive behavior of self-grooming. Fmr1-KO mice exhibited decreased anxiety and hyperactivity. Additionally, Fmr1-KO mice’s ultrasonic vocalizations were impaired suggesting a reduced social interest and communication of this strain. Acute LP-211 administration did not affect the behavioral abnormalities observed in BTBR mice but improved repetitive behavior in Fmr1-KO mice and showed a trend to change anxiety of this strain. Acute R-Baclofen treatment improved repetitive behavior only in Fmr1-KO mice.ConclusionOur results add value to the current available data on these mouse models and the respective compounds. Yet, additional studies are needed to further test R-Baclofen and LP-211 as potential treatments for ASD therapy.
Collapse
Affiliation(s)
- Shirin Sharghi
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
- Institute for Biology, Karl-Franzens-Universität Graz, Graz, Austria
- *Correspondence: Shirin Sharghi,
| | - Stefanie Flunkert
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | - Magdalena Daurer
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | - Roland Rabl
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| | | | - Marcello Leopoldo
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Enza Lacivita
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | - Manuela Prokesch
- Department of Neuropharmacology, QPS Austria GmbH, Grambach, Austria
| |
Collapse
|
17
|
Boksha IS, Prokhorova TA, Tereshkina EB, Savushkina OK, Burbaeva GS. Differentiated Approach to Pharmacotherapy of Autism Spectrum Disorders: Biochemical Aspects. BIOCHEMISTRY (MOSCOW) 2023; 88:303-318. [PMID: 37076279 DOI: 10.1134/s0006297923030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Autism Spectrum Disorders (ASD) are highly heterogeneous neurodevelopmental disorders caused by a complex interaction of numerous genetic and environmental factors and leading to deviations in the nervous system formation at the very early developmental stages. Currently, there are no accepted pharmacological treatments for the so-called core symptoms of ASD, such as social communication disorders and restricted and repetitive behavior patterns. Lack of knowledge about biological basis of ASD, absence of the clinically significant biochemical parameters reflecting abnormalities in the signaling cascades controlling the nervous system development and functioning, and lack of methods for selection of clinically and biologically homogeneous subgroups are considered as causes for the failure of clinical trials of ASD pharmacotherapy. This review considers the possibilities of applying differentiated clinical and biological approaches to the targeted search for ASD pharmacotherapy with emphasis on biochemical markers associated with ASD and attempts to stratify patients by biochemical parameters. The use of such approach as "the target-oriented therapy and assessment of the target status before and during the treatment to identify patients with a positive response to treatment" is discussed using the published results of clinical trials as examples. It is concluded that identification of biochemical parameters for selection of the distinct subgroups among the ASD patients requires research on large samples reflecting clinical and biological diversity of the patients with ASD, and use of unified approaches for such studies. An integrated approach, including clinical observation, clinical-psychological assessment of the patient behavior, study of medical history and description of individual molecular profiles should become a new strategy for stratifying patients with ASD for clinical pharmacotherapeutic trials, as well as for evaluating their efficiency.
Collapse
|
18
|
Yang G, Geng H, Hu C. Targeting 5-HT as a Potential Treatment for Social Deficits in Autism. Neurosci Bull 2022; 38:1263-1266. [PMID: 35536504 PMCID: PMC9554180 DOI: 10.1007/s12264-022-00876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Guangyi Yang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Hongyan Geng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, 510631, China
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, South China Normal University, Guangzhou, 510631, China.
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
19
|
Fabio MC, Servin-Bernal IJC, Degano AL, Pautassi RM. Serotonin disruption at gestation alters expression of genes associated with serotonin synthesis and reuptake at weaning. Psychopharmacology (Berl) 2022; 239:3355-3366. [PMID: 36063206 DOI: 10.1007/s00213-022-06228-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/27/2022] [Indexed: 12/28/2022]
Abstract
RATIONALE Serotonin (5-HT) is a monoamine neuromodulator that plays a key role in the organization of the central nervous system. 5-HT alterations may be associated to the emergence of social deficits and psychiatric disorders, including anxiety, depression, and substance abuse disorders. Notably, disruption of the 5-HT system during sensitive periods of development seems to exert long-term consequences, including altered anxiety responses and problematic use of alcohol. OBJECTIVE We analyzed, in mice, the effects of transient 5-HT depletion at gestation (a developmental stage when medial prefrontal cortex (mPFC) 5-HT levels depend exclusively on placental 5-HT availability) on 5-HT central synthesis and reuptake at weaning. We also explored if 5-HT disruption at the embryonic stage influences behavioral outcomes that may serve as a proxy for autistic- or anxiety-like phenotypes. METHODS C57/BL6 male and female mice, born from dams treated with a 5-HT synthesis inhibitor (PCPA; 4-Chloro-DL-phenylalanine methyl ester hydrochloride) at gestational days (G)13.5-16.5, were subjected to a behavioral battery that assesses social preference and novelty, compulsive behavior, stereotypies, and ethanol's anti-anxiety effects, at postnatal days (P) 21-28. Afterwards, expression of the genes that encode for 5-HT synthesis (Tph2) and SERT (5-HT transporter) were analyzed in mPFC via real-time RT-PCR. Dopamine 2 receptor (D2R) expression was also analyzed via RT-PCR to further explore possible effects of PCPA on dopaminergic transmission. RESULTS Transient 5-HT disruption at G13.5-16.5 reduced Tph2 expression of both male and female mice in mPFC at P23. Notably, female mice also exhibited higher SERT expression and reduced D2R expression in mPFC. Mice derived from 5-HT depleted dams displayed heightened compulsive behavior at P21, when compared to control mice. Alcohol anti-anxiety effects at early adolescence (P28) were exhibited by mice derived from 5-HT depleted dams, but not by control counterparts. No social deficits or stereotyped behaviors were observed. CONCLUSION Transient 5-HT inhibition at gestation resulted in altered expression of genes involved in 5-HT synthesis and reuptake in mPFC at weaning, a period in which the 5-HT system is still developing. These alterations may exert lingering effects, which translate to significant compulsivity and heightened sensitivity to the anxiolytic effects of alcohol at early adolescence.
Collapse
Affiliation(s)
- M C Fabio
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Cordoba, Argentina. .,Facultad de Psicología, Universidad Nacional de Córdoba, Cordoba, Argentina.
| | - I J C Servin-Bernal
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Cordoba, Argentina
| | - A L Degano
- Departamento de Química Biológica Ranwel CaputtoFacultad de Ciencias Químicas, Universidad Nacional de Córdoba, Cordoba, Argentina.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), CONICET, Universidad Nacional de Córdoba, Cordoba, Argentina
| | - R M Pautassi
- Instituto de Investigaciones Médicas Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Cordoba, Argentina.,Facultad de Psicología, Universidad Nacional de Córdoba, Cordoba, Argentina
| |
Collapse
|
20
|
Wong NM, Dipasquale O, Turkheimer F, Findon JL, Wichers RH, Dimitrov M, Murphy CM, Stoencheva V, Robertson DM, Murphy DG, Daly E, McAlonan GM. Differences in social brain function in autism spectrum disorder are linked to the serotonin transporter: A randomised placebo-controlled single-dose crossover trial. J Psychopharmacol 2022; 36:723-731. [PMID: 35491679 DOI: 10.1177/02698811221092509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Alterations in the serotonergic control of brain pathways responsible for facial emotion processing in people with autism spectrum disorder (ASD) may be a target for intervention. However, the molecular underpinnings of autistic-neurotypical serotonergic differences are challenging to access in vivo. Receptor-Enriched Analysis of functional Connectivity by Targets (REACT) has helped define molecular-enriched functional magnetic resonance imaging (fMRI) brain networks based on a priori information about the spatial distribution of neurochemical systems from available PET templates. METHODS We used REACT to estimate the dominant fMRI signal related to the serotonin (5-HT) transporter (SERT) distribution during processing of aversive facial emotion in adults with and without ASD. We first predicted a group difference in baseline (placebo) functioning of this system. We next used a single 20 mg oral dose of citalopram, a serotonin reuptake inhibitor, to test the hypothesis that network activity in people with and without ASD would respond differently to inhibition of SERT. To confirm the specificity of our findings, we also repeated the analysis with 5-HT1A, 5-HT1B, 5-HT2A and 5-HT4 receptor maps. RESULTS Using REACT with the SERT map, we found a baseline group difference in the SERT-enriched response to faces in the ventromedial prefrontal cortex. A single oral dose of citalopram 'shifted' the response in the ASD group towards the neurotypical baseline but did not alter response in the control group. Similar differences in SERT-enriched response were observed after controlling for other 5-HT maps. CONCLUSIONS Our findings suggest that the SERT-enriched functional network is dynamically different in ASD during processing of socially relevant stimuli. Whether this acute neurobiological response to citalopram in ASD translates to a clinical target will be an important next step.
Collapse
Affiliation(s)
- Nichol Ml Wong
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology & Neuroscience, South London and Maudsley NHS Foundation Trust, UK.,Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - James L Findon
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Department of Psychology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Robert H Wichers
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Mihail Dimitrov
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Clodagh M Murphy
- Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Vladimira Stoencheva
- Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Dene M Robertson
- Behavioural Genetics Clinic, Adult Autism and ADHD Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley NHS Foundation Trust, London, UK
| | - Declan G Murphy
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology & Neuroscience, South London and Maudsley NHS Foundation Trust, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grainne M McAlonan
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,Biomedical Research Centre for Mental Health, Institute of Psychiatry, Psychology & Neuroscience, South London and Maudsley NHS Foundation Trust, UK.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
21
|
Multivariate Analysis of Metabolomic and Nutritional Profiles among Children with Autism Spectrum Disorder. J Pers Med 2022; 12:jpm12060923. [PMID: 35743708 PMCID: PMC9224818 DOI: 10.3390/jpm12060923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 12/02/2022] Open
Abstract
There have been promising results regarding the capability of statistical and machine-learning techniques to offer insight into unique metabolomic patterns observed in ASD. This work re-examines a comparative study contrasting metabolomic and nutrient measurements of children with ASD (n = 55) against their typically developing (TD) peers (n = 44) through a multivariate statistical lens. Hypothesis testing, receiver characteristic curve assessment, and correlation analysis were consistent with prior work and served to underscore prominent areas where metabolomic and nutritional profiles between the groups diverged. Improved univariate analysis revealed 46 nutritional/metabolic differences that were significantly different between ASD and TD groups, with individual areas under the receiver operator curve (AUROC) scores of 0.6–0.9. Many of the significant measurements had correlations with many others, forming two integrated networks of interrelated metabolic differences in ASD. The TD group had 189 significant correlation pairs between metabolites, vs. only 106 for the ASD group, calling attention to underlying differences in metabolic processes. Furthermore, multivariate techniques identified potential biomarker panels with up to six metabolites that were able to attain a predictive accuracy of up to 98% for discriminating between ASD and TD, following cross-validation. Assessing all optimized multivariate models demonstrated concordance with prior physiological pathways identified in the literature, with some of the most important metabolites for discriminating ASD and TD being sulfate, the transsulfuration pathway, uridine (methylation biomarker), and beta-amino isobutyrate (regulator of carbohydrate and lipid metabolism).
Collapse
|
22
|
Tan Z, Wei H, Song X, Mai W, Yan J, Ye W, Ling X, Hou L, Zhang S, Yan S, Xu H, Wang L. Positron Emission Tomography in the Neuroimaging of Autism Spectrum Disorder: A Review. Front Neurosci 2022; 16:806876. [PMID: 35495051 PMCID: PMC9043810 DOI: 10.3389/fnins.2022.806876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/14/2022] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is a basket term for neurodevelopmental disorders characterized by marked impairments in social interactions, repetitive and stereotypical behaviors, and restricted interests and activities. Subtypes include (A) disorders with known genetic abnormalities including fragile X syndrome, Rett syndrome, and tuberous sclerosis and (B) idiopathic ASD, conditions with unknown etiologies. Positron emission tomography (PET) is a molecular imaging technology that can be utilized in vivo for dynamic and quantitative research, and is a valuable tool for exploring pathophysiological mechanisms, evaluating therapeutic efficacy, and accelerating drug development in ASD. Recently, several imaging studies on ASD have been published and physiological changes during ASD progression was disclosed by PET. This paper reviews the specific radioligands for PET imaging of critical biomarkers in ASD, and summarizes and discusses the similar and different discoveries in outcomes of previous studies. It is of great importance to identify general physiological changes in cerebral glucose metabolism, cerebral blood flow perfusion, abnormalities in neurotransmitter systems, and inflammation in the central nervous system in ASD, which may provide excellent points for further ASD research.
Collapse
Affiliation(s)
- Zhiqiang Tan
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Huiyi Wei
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xiubao Song
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Wangxiang Mai
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jiajian Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Weijian Ye
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xueying Ling
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Lu Hou
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaojuan Zhang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Sen Yan
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, China
| | - Hao Xu
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Hao Xu,
| | - Lu Wang
- Center of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, Guangzhou, China
- Lu Wang,
| |
Collapse
|
23
|
Ali MT, ElNakieb Y, Elnakib A, Shalaby A, Mahmoud A, Ghazal M, Yousaf J, Abu Khalifeh H, Casanova M, Barnes G, El-Baz A. The Role of Structure MRI in Diagnosing Autism. Diagnostics (Basel) 2022; 12:165. [PMID: 35054330 PMCID: PMC8774643 DOI: 10.3390/diagnostics12010165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 12/30/2022] Open
Abstract
This study proposes a Computer-Aided Diagnostic (CAD) system to diagnose subjects with autism spectrum disorder (ASD). The CAD system identifies morphological anomalies within the brain regions of ASD subjects. Cortical features are scored according to their contribution in diagnosing a subject to be ASD or typically developed (TD) based on a trained machine-learning (ML) model. This approach opens the hope for developing a new CAD system for early personalized diagnosis of ASD. We propose a framework to extract the cerebral cortex from structural MRI as well as identifying the altered areas in the cerebral cortex. This framework consists of the following five main steps: (i) extraction of cerebral cortex from structural MRI; (ii) cortical parcellation to a standard atlas; (iii) identifying ASD associated cortical markers; (iv) adjusting feature values according to sex and age; (v) building tailored neuro-atlases to identify ASD; and (vi) artificial neural networks (NN) are trained to classify ASD. The system is tested on the Autism Brain Imaging Data Exchange (ABIDE I) sites achieving an average balanced accuracy score of 97±2%. This paper demonstrates the ability to develop an objective CAD system using structure MRI and tailored neuro-atlases describing specific developmental patterns of the brain in autism.
Collapse
Affiliation(s)
- Mohamed T. Ali
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Yaser ElNakieb
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Ahmed Shalaby
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| | - Mohammed Ghazal
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (J.Y.); (H.A.K.)
| | - Jawad Yousaf
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (J.Y.); (H.A.K.)
| | - Hadil Abu Khalifeh
- Department of Electrical and Computer Engineering, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (M.G.); (J.Y.); (H.A.K.)
| | - Manuel Casanova
- Department of Biomedical Sciences, School of Medicine Greenville, University of South Carolina, Greenville, SC 29425, USA;
| | - Gregory Barnes
- Department of Neurology, Norton Children’s Autism Center, University of Louisville, Louisville, KY 40208, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40208, USA; (M.T.A.); (Y.E.); (A.E.); (A.S.); (A.M.)
| |
Collapse
|
24
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
25
|
McPartland JC, Lerner MD, Bhat A, Clarkson T, Jack A, Koohsari S, Matuskey D, McQuaid GA, Su WC, Trevisan DA. Looking Back at the Next 40 Years of ASD Neuroscience Research. J Autism Dev Disord 2021; 51:4333-4353. [PMID: 34043128 PMCID: PMC8542594 DOI: 10.1007/s10803-021-05095-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2021] [Indexed: 12/18/2022]
Abstract
During the last 40 years, neuroscience has become one of the most central and most productive approaches to investigating autism. In this commentary, we assemble a group of established investigators and trainees to review key advances and anticipated developments in neuroscience research across five modalities most commonly employed in autism research: magnetic resonance imaging, functional near infrared spectroscopy, positron emission tomography, electroencephalography, and transcranial magnetic stimulation. Broadly, neuroscience research has provided important insights into brain systems involved in autism but not yet mechanistic understanding. Methodological advancements are expected to proffer deeper understanding of neural circuitry associated with function and dysfunction during the next 40 years.
Collapse
Affiliation(s)
| | - Matthew D Lerner
- Department of Psychology, Stony Brook University, Stony Brook, NY, USA
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | - Tessa Clarkson
- Department of Psychology, Temple University, Philadelphia, PA, USA
| | - Allison Jack
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Sheida Koohsari
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - David Matuskey
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Goldie A McQuaid
- Department of Psychology, George Mason University, Fairfax, VA, USA
| | - Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, USA
| | | |
Collapse
|
26
|
Seif A, Shea C, Schmid S, Stevenson RA. A Systematic Review of Brainstem Contributions to Autism Spectrum Disorder. Front Integr Neurosci 2021; 15:760116. [PMID: 34790102 PMCID: PMC8591260 DOI: 10.3389/fnint.2021.760116] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/30/2021] [Indexed: 02/05/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects one in 66 children in Canada. The contributions of changes in the cortex and cerebellum to autism have been studied for decades. However, our understanding of brainstem contributions has only started to emerge more recently. Disruptions of sensory processing, startle response, sensory filtering, sensorimotor gating, multisensory integration and sleep are all features of ASD and are processes in which the brainstem is involved. In addition, preliminary research into brainstem contribution emphasizes the importance of the developmental timeline rather than just the mature brainstem. Therefore, the purpose of this systematic review is to compile histological, behavioral, neuroimaging, and electrophysiological evidence from human and animal studies about brainstem contributions and their functional implications in autism. Moreover, due to the developmental nature of autism, the review pays attention to the atypical brainstem development and compares findings based on age. Overall, there is evidence of an important role of brainstem disruptions in ASD, but there is still the need to examine the brainstem across the life span, from infancy to adulthood which could lead the way for early diagnosis and possibly treatment of ASD.
Collapse
Affiliation(s)
- Ala Seif
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Carly Shea
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Susanne Schmid
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| | - Ryan A Stevenson
- Brain and Mind Institute, University of Western Ontario, London, ON, Canada.,Department of Psychology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
27
|
Wang D, Tan J, Zhu H, Mei Y, Liu X. Biomedical Implants with Charge-Transfer Monitoring and Regulating Abilities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004393. [PMID: 34166584 PMCID: PMC8373130 DOI: 10.1002/advs.202004393] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 05/12/2021] [Indexed: 05/06/2023]
Abstract
Transmembrane charge (ion/electron) transfer is essential for maintaining cellular homeostasis and is involved in many biological processes, from protein synthesis to embryonic development in organisms. Designing implant devices that can detect or regulate cellular transmembrane charge transfer is expected to sense and modulate the behaviors of host cells and tissues. Thus, charge transfer can be regarded as a bridge connecting living systems and human-made implantable devices. This review describes the mode and mechanism of charge transfer between organisms and nonliving materials, and summarizes the strategies to endow implants with charge-transfer regulating or monitoring abilities. Furthermore, three major charge-transfer controlling systems, including wired, self-activated, and stimuli-responsive biomedical implants, as well as the design principles and pivotal materials are systematically elaborated. The clinical challenges and the prospects for future development of these implant devices are also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Materials Science and EngineeringHebei University of TechnologyTianjin300130China
| | - Ji Tan
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Yongfeng Mei
- Department of Materials ScienceFudan UniversityShanghai200433China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine MicrostructureShanghai Institutes of CeramicsChinese Academy of SciencesShanghai200050China
- School of Chemistry and Materials ScienceHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhou310024China
| |
Collapse
|
28
|
Advances in autism research, 2021: continuing to decipher the secrets of autism. Mol Psychiatry 2021; 26:1426-1428. [PMID: 34045682 DOI: 10.1038/s41380-021-01168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022]
|