1
|
Van Zandt M, Pittenger C. Sex Differences in Histamine Regulation of Striatal Dopamine. J Neurosci 2025; 45:e2182242025. [PMID: 40355265 PMCID: PMC12160404 DOI: 10.1523/jneurosci.2182-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/05/2025] [Accepted: 04/04/2025] [Indexed: 05/14/2025] Open
Abstract
Dopamine modulation of the basal ganglia differs in males and females and is implicated in numerous neuropsychiatric conditions, including some, like Tourette syndrome (TS) and attention deficit hyperactivity disorder (ADHD), that have marked sex differences in prevalence. Genetic studies in TS and subsequent work in animals suggest that a loss of histamine may contribute to dysregulation of dopamine. Motivated by this, we characterized the modulation of striatal dopamine by histamine, using microdialysis, targeted pharmacology, and shRNA knockdown of histamine receptors. Intracerebroventricular (ICV) histamine reduced striatal dopamine in male mice, replicating previous work. In contrast, and unexpectedly, ICV histamine increased striatal dopamine in females. ICV or targeted infusion of agonists revealed that the effect in males depends on H2R receptors in the substantia nigra pars compacta (SNc). Knockdown of H2R in SNc GABAergic neurons abrogated the effect, identifying these cells as a key locus of histamine's regulation of dopamine in males. In females, however, H2R had no discernible role; instead, H3R agonists in the striatum increased striatal dopamine. Strikingly, the effect of histamine on dopamine in females was modulated by the estrous cycle, appearing only in proestrus, when estrogen levels are high, and estrus. These findings confirm the regulation of striatal dopamine by histamine but identify marked sex differences in and estrous modulation of this effect. These findings may shed light on the mechanistic underpinnings of sex differences in the striatal circuitry and in several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06519
- Yale Child Study Center, Yale University School of Medicine, New Haven, Connecticut 06519
- Department of Psychology, Yale School of Arts and Sciences, New Haven, Connecticut 06519
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, Connecticut 06519
- Wu-Tsai Institute, Yale University, New Haven, Connecticut 06519
| |
Collapse
|
2
|
Rapoport IL, Groenman AP. A Review of Sex and Gender Factors in Stimulant Treatment for ADHD: Knowledge Gaps and Future Directions. J Atten Disord 2025; 29:602-616. [PMID: 39878255 PMCID: PMC12064863 DOI: 10.1177/10870547251315601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
OBJECTIVE Stimulant medications are the primary pharmacological intervention for ADHD, yet our understanding of how sex and gender impact stimulant treatment outcomes remains limited. Clinical guidelines do not differ for female and male individuals despite possible sex and gender-related differences in effectiveness, adverse events, and pharmacokinetics. This theoretical framework identifies five key knowledge gaps relating to sex and gender effects in stimulant treatment. METHOD We investigate the stimulant treatment trajectories of girls and women with ADHD from diagnosis and prescription to daily use and outcomes. We examine the impact of reproductive life transitions and hormonal fluctuations and their interactions with gender socialization and gendered expectations on treatment effectiveness, stigma, and adherence. RESULTS By synthesizing existing literature, proposing testable predictions, and suggesting future research directions, we highlight the urgent need for studies that systematically investigate these factors. CONCLUSION Addressing these gaps could significantly improve treatment outcomes for girls and women with ADHD, particularly during biological and gender role transitions.
Collapse
Affiliation(s)
| | - Annabeth P. Groenman
- University of Amsterdam, The Netherlands
- University of Groningen, The Netherlands
- Accare Child Study Center, Groningen, The Netherlands
| |
Collapse
|
3
|
Ecevitoglu A, Rotolo RA, Edelstein GA, Goldhamer A, Mitola M, Presby RE, Yu A, Pietrorazio D, Zorda E, Correa M, Salamone JD. Effort-related motivational effects of methylphenidate: Reversal of the low-effort bias induced by tetrabenazine and enhancement of progressive ratio responding in male and female rats. Neuropharmacology 2025; 269:110345. [PMID: 39929290 DOI: 10.1016/j.neuropharm.2025.110345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/26/2025] [Accepted: 02/03/2025] [Indexed: 02/19/2025]
Abstract
Dopamine (DA) regulates behavioral activation and effort-related aspects of motivation. Blockade of DA storage by tetrabenazine (TBZ) induces depressive symptoms in humans, including fatigue and apathy. TBZ shifts choice behavior in rodents from high-effort to low-effort options, which can be used to model motivational symptoms observed in psychiatric disorders. The catecholamine transport inhibitor methylphenidate (MPH) reverses the effort-related effects of TBZ in male rats, but this effect needs to be investigated in females. The current study examined the effects of MPH on effort-based choice in male and female rats. Animals were tested on the fixed ratio 5 (FR5)/chow feeding choice task. Because of sex differences in the effects of TBZ, 1.0 mg/kg was used in males, while 2.0 mg/kg was used in females. In both sexes, TBZ shifted choice from lever pressing to chow intake. Co-administration of MPH reversed the effort-related effects of TBZ in males at all doses tested (0.5-4.0 mg/kg IP), whereas only 1.0 and 2.0 mg/kg MPH reversed the effects of TBZ in females. Rats also were tested on a progressive ratio (PROG) schedule and a PROG/chow feeding choice task to assess the effects of MPH administered alone (0.5-4.0 mg/kg IP). MPH increased high-effort PROG responding on both tasks in males, whereas females showed no significant increase in lever pressing across the dose range tested. Investigating sex differences in the pharmacology and neurochemistry of effort-based choice enhances our understanding of sex as a factor in motivational dysfunctions, and may foster the development of treatments for effort-related psychiatric symptoms.
Collapse
Affiliation(s)
- Alev Ecevitoglu
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Renee A Rotolo
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Gayle A Edelstein
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Alexandra Goldhamer
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Matthew Mitola
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Rose E Presby
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Abigail Yu
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Deanna Pietrorazio
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Emma Zorda
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA
| | - Merce Correa
- Àrea de Psicobiologia, Campus de Riu Sec, Universitat Jaume I, 12071, Castelló, Spain
| | - John D Salamone
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06261-1020, USA.
| |
Collapse
|
4
|
Manza P, Tomasi D, Demiral ŞB, Shokri-Kojori E, Lildharrie C, Lin E, Wang GJ, Volkow ND. Neural basis for individual differences in the attention-enhancing effects of methylphenidate. Proc Natl Acad Sci U S A 2025; 122:e2423785122. [PMID: 40127280 PMCID: PMC12002349 DOI: 10.1073/pnas.2423785122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/13/2025] [Indexed: 03/26/2025] Open
Abstract
Stimulant drugs that boost dopamine, like methylphenidate (MP), enhance attention and are effective treatments for attention-deficit hyperactivity disorder (ADHD). Yet there is large individual variation in attentional capacity and response to MP. It is unclear whether this variation is driven by individual differences in relative density of dopamine receptor subtypes, magnitude of dopamine increases induced by MP, or both. Here, we extensively characterized the brain dopamine system with positron emission tomography (PET) imaging (including striatal dopamine D1 and D2/3 receptor availability and MP-induced dopamine increases) and measured attention task-evoked fMRI brain activity in two separate sessions (placebo and 60 mg oral MP; single-blind, counterbalanced) in 37 healthy adults. A network of lateral frontoparietal and visual cortices was sensitive to increasing attentional (and working memory) load, whose activity positively correlated with performance across individuals (partial r = 0.474, P = 0.008; controlling for age). MP-induced change in activity within this network correlated with MP-induced change in performance (partial r = 0.686, P < 0.001). The ratio of D1-to-D2/3 receptors in dorsomedial caudate positively correlated with baseline attentional network activity and negatively correlated with MP-induced changes in activity (all pFWE < 0.02). MP-induced changes in attentional load network activity mediated the association between D1-to-D2/3 ratio and MP-induced improvements in performance (mediation estimate = 23.20 [95%CI: -153.67 -81.79], P = 0.004). MP attention-boosting effects were not linked to the magnitude of striatal dopamine increases, but rather showed dependence on an individual's baseline receptor density. Individuals with lower D1-to-D2/3 ratios tended to have lower frontoparietal activity during sustained attention and experienced greater improvement in brain function and task performance with MP.
Collapse
Affiliation(s)
- Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
- Department of Psychiatry, Kahlert Institute for Addiction Medicine, University of Maryland School of Medicine, Baltimore, MD21201
| | - Dardo Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Şükrü Barış Demiral
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Ehsan Shokri-Kojori
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Christina Lildharrie
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Esther Lin
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD20892
| |
Collapse
|
5
|
Van Zandt M, Pittenger C. Sexual dimorphism in histamine regulation of striatal dopamine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.20.595049. [PMID: 38826392 PMCID: PMC11142073 DOI: 10.1101/2024.05.20.595049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dopamine modulation of the basal ganglia differs in males and females and is implicated in numerous neuropsychiatric conditions, including some, like Tourette Syndrome (TS) and attention deficit hyperactivity disorder (ADHD), that have marked sex differences in prevalence. Genetic studies in TS and subsequent work in animals suggest that a loss of histamine may contribute to dysregulation of dopamine. Motivated by this, we characterized the modulation of striatal dopamine by histamine, using microdialysis, targeted pharmacology, and shRNA knockdown of histamine receptors. Intracerebroventricular (ICV) histamine reduced striatal dopamine in male mice, replicating previous work. In contrast, and unexpectedly, ICV histamine increased striatal dopamine in females. ICV or targeted infusion of agonists revealed that the effect in males depends on H2R receptors in the substantia nigra pars compacta (SNc). Knockdown of H2R in SNc GABAergic neurons abrogated the effect, identifying these cells as a key locus of histamine's regulation of dopamine in males. In females, however, H2R had no discernible role; instead, H3R agonists in the striatum increased striatal dopamine. Strikingly, the effect of histamine on dopamine in females was modulated by the estrous cycle, appearing only in estrus/proestrus, when estrogen levels are high. These findings confirm the regulation of striatal dopamine by histamine but identify marked sexual dimorphism in and estrous modulation of this effect. These findings may shed light on the mechanistic underpinnings of sex differences in the striatal circuitry, and in several neuropsychiatric conditions.
Collapse
Affiliation(s)
- Meghan Van Zandt
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
| | - Christopher Pittenger
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA, 06519
- Yale Child Study Center, Yale University School of Medicine, New Haven, CT, USA, 06519
- Department of Psychology, Yale School of Arts and Sciences, New Haven, USA, 06519
- Center for Brain and Mind Health, Yale University School of Medicine, New Haven, USA, 06519
- Wu-Tsai Institute, Yale University, New Haven, CT, USA, 06519
| |
Collapse
|
6
|
Hrelja KM, Kawkab C, Avramidis DK, Ramaiah S, Winstanley CA. Increased risky choice during forced abstinence from fentanyl on the cued rat gambling task. Psychopharmacology (Berl) 2025; 242:173-187. [PMID: 39078498 DOI: 10.1007/s00213-024-06659-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/23/2024] [Indexed: 07/31/2024]
Abstract
RATIONALE The use of illicit opioids has arguably never been more risky; street drug potency can be dangerously high, is often unknown to the consumer, and results in multiple daily fatalities worldwide. Furthermore, substance use disorder (SUD) is associated with increased maladaptive, risky decisions in laboratory-based gambling tasks. Animal studies can help determine whether this decision-making deficit is a cause or consequence of drug use. However, most experiments have only assessed psychostimulant drugs. OBJECTIVES To assess differences in decision-making strategies both before, during, and after self-administration of fentanyl in male and female Long Evans rats. METHODS Male and female Long Evans rats were trained to perform the rat gambling task (rGT), loosely based on the Iowa Gambling Task (IGT) used clinically, and/or self-administer fentanyl. We used the cued version of the rGT, in which sound and light stimuli signal sugar pellet rewards, as cocaine self-administration has the greatest effects on decision making in this task variant. RESULTS After training on the cued rGT, female rats self-administered fentanyl more readily, an effect that was most apparent in optimal decision-makers. Contrary to previous reports using cocaine self-administration, decision-making was unaffected during fentanyl self-administration training in either sex. However, risky decision-making increased throughout forced abstinence from fentanyl in males. CONCLUSIONS These findings complement those from human subjects, in whom preference for uncertain outcomes increased before relapse. These data highlight an abstinence-induced change in cognition that is unique to opiates as compared to psychostimulants, and which may critically contribute to the maintenance of addiction and relapse.
Collapse
Affiliation(s)
- Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| | - Carol Kawkab
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Shrishti Ramaiah
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, 2215 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
7
|
Morales AM, Jones SA, Carlson B, Kliamovich D, Dehoney J, Simpson BL, Dominguez-Savage KA, Hernandez KO, Lopez DA, Baker FC, Clark DB, Goldston DB, Luna B, Nooner KB, Muller-Oehring EM, Tapert SF, Thompson WK, Nagel BJ. Associations between mesolimbic connectivity, and alcohol use from adolescence to adulthood. Dev Cogn Neurosci 2024; 70:101478. [PMID: 39577156 PMCID: PMC11617707 DOI: 10.1016/j.dcn.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/18/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) to limbic regions play a key role in the initiation and maintenance of substance use; however, the relationship between mesolimbic resting-state functional connectivity (RSFC) and alcohol use during development remains unclear. We examined the associations between alcohol use and VTA RSFC to subcortical structures in 796 participants (12-21 years old at baseline, 51 % female) across 9 waves of longitudinal data from the National Consortium on Alcohol and Neurodevelopment in Adolescence. Linear mixed effects models included interactions between age, sex, and alcohol use, and best fitting models were selected using log-likelihood ratio tests. Results demonstrated a positive association between alcohol use and VTA RSFC to the nucleus accumbens. Age was associated with VTA RSFC to the amygdala and hippocampus, and an age-by-alcohol use interaction on VTA-globus pallidus connectivity was driven by a positive association between alcohol and VTA-globus pallidus RSFC in adolescence, but not adulthood. On average, male participants exhibited greater VTA RSFC to the amygdala, nucleus accumbens, caudate, hippocampus, globus pallidus, and thalamus. Differences in VTA RSFC related to age, sex, and alcohol, may inform our understanding of neurobiological risk and resilience for alcohol use and other psychiatric disorders.
Collapse
Affiliation(s)
- Angelica M Morales
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States.
| | - Scott A Jones
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Birgitta Carlson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Dakota Kliamovich
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Joseph Dehoney
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Brooke L Simpson
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | | | - Kristina O Hernandez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Daniel A Lopez
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States
| | - Fiona C Baker
- Center for Health Sciences, SRI International, Menlo Park, CA, United States
| | - Duncan B Clark
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - David B Goldston
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate B Nooner
- Department of Psychology, University of North Carolina Wilmington, Wilmington, NC, United States
| | - Eva M Muller-Oehring
- Center for Health Sciences, SRI International, Menlo Park, CA, United States; Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, United States
| | - Susan F Tapert
- Department of Psychiatry, University of California, San Diego, CA, United States
| | | | - Bonnie J Nagel
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, United States; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
8
|
Parlatini V, Radua J, Robertsson N, Lintas A, Atuk E, dell'Acqua F, Thiebaut de Schotten M, Murphy D. Asymmetry of attentive networks contributes to adult Attention-deficit/hyperactivity disorder (ADHD) pathophysiology. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01927-4. [PMID: 39487888 DOI: 10.1007/s00406-024-01927-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/19/2024] [Indexed: 11/04/2024]
Abstract
Diffusion imaging studies in Attention-deficit/hyperactivity disorder (ADHD) have revealed alterations in anatomical brain connections, such as the fronto-parietal connection known as superior longitudinal fasciculus (SLF). Studies in neurotypical adults have shown that the three SLF branches (SLF I, II, III) support distinct brain functions, such as attention and inhibition; and that their pattern of lateralization is associated with attention performance. However, most studies in ADHD have investigated the SLF as a single bundle and in children; thus, the potential contribution of the lateralization of the SLF branches to adult ADHD pathophysiology remains to be elucidated. We used diffusion-weighted spherical deconvolution tractography to dissect the SLF branches in 60 adults with ADHD (including 26 responders and 34 non-responders to methylphenidate, MPH) and 20 controls. Volume and hindrance modulated orientational anisotropy (HMOA), which respectively reflect white matter macro- and microstructure, were extracted to calculate the corresponding lateralization indices. We tested whether neurotypical controls differed from adults with ADHD, and from treatment response groups in sensitivity analyses; and investigated associations with clinico-neuropsychological profiles. All the three SLF branches were lateralized in adults with ADHD, but not in controls. The lateralization of the SLF I HMOA was associated with performance at the line bisection, not that of the SLF II volume as previously reported in controls. Further, an increased left-lateralization of the SLF I HMOA was associated with higher hyperactivity levels in the ADHD group. Thus, an altered asymmetry of the SLF, perhaps especially of the dorsal branch, may contribute to adult ADHD pathophysiology.
Collapse
Affiliation(s)
- Valeria Parlatini
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK.
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK.
- Centre for Innovation in Mental Health, School of Psychology, University of Southampton, Southampton, UK.
- Solent NHS Trust, Southampton, UK.
| | - Joaquim Radua
- Imaging of Mood and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Campus Casanova, Casanova, 143, 08036, Barcelona, Spain
| | - Naianna Robertsson
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| | - Alessandra Lintas
- Neuroheuristic Research Group, HEC Lausanne, University of Lausanne, UNIL-Chamberonne, 1015, Lausanne, Quartier, Switzerland
| | - Emel Atuk
- Sussex Partnership NHS Foundation Trust, Dartford, DA1 2EN, UK
| | - Flavio dell'Acqua
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Institute of Psychiatry, NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, London, SE5 8AF, UK
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Sorbonne Universities, Paris, France
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 16 De Crespigny Park, London, SE5 8AF, UK
| |
Collapse
|
9
|
Parlatini V, Bellato A, Roy S, Murphy D, Cortese S. Association Between Single-Dose and Longer Term Clinical Response to Stimulants in Attention-Deficit/Hyperactivity Disorder: A Systematic Review of Randomized Controlled Trials. J Child Adolesc Psychopharmacol 2024; 34:337-345. [PMID: 39027968 DOI: 10.1089/cap.2024.0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Objectives: Stimulants, such as methylphenidate (MPH) and amphetamines, represent the first-line pharmacological option for attention-deficit/hyperactivity disorder (ADHD). Randomized controlled trials (RCTs) have demonstrated beneficial effects at a group level but could not identify characteristics consistently associated with varying individual response. Thus, more individualized approaches are needed. Experimental studies have suggested that the neurobiological response to a single dose is indicative of longer term response. It is unclear whether this also applies to clinical measures. Methods: We carried out a systematic review of RCTs testing the association between the clinical response to a single dose of stimulants and longer term improvement. Potentially suitable single-dose RCTs were identified from the MED-ADHD data set, the European ADHD Guidelines Group RCT Data set (https://med-adhd.org/), as updated on February 1, 2024. Quality assessment was carried out using the Cochrane Risk of Bias (RoB) 2.0 tool. Results: A total of 63 single-dose RCTs (94% testing MPH, 85% in children) were identified. Among these, only a secondary analysis of an RCT tested the association between acute and longer term clinical response. This showed that the clinical improvement after a single dose of MPH was significantly associated with symptom improvement after a 4-week MPH treatment in 46 children (89% males) with ADHD. The risk of bias was rated as moderate. A further RCT used near-infrared spectroscopy, thus did not meet the inclusion criteria, and reported an association between brain changes under a single-dose and longer term clinical response in 22 children (82% males) with ADHD. The remaining RCTs only reported single-dose effects on neuropsychological, neuroimaging, or neurophysiological measures. Conclusion: This systematic review highlighted an important gap in the current knowledge. Investigating how acute and long-term response may be related can foster our understanding of stimulant mechanism of action and help develop stratification approaches for more tailored treatment strategies. Future studies need to investigate potential age- and sex-related differences.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Solent NHS Trust, Southampton, United Kingdom
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Psychology, University of Nottingham, Semenyih, Malaysia
- Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia
| | - Sulagna Roy
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom
- Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom
- Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- Solent NHS Trust, Southampton, United Kingdom
- Faculty of Medicine, Clinical and Experimental Sciences (CNS and Psychiatry), University of Southampton, Southampton, United Kingdom
- Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, New York, USA
| |
Collapse
|
10
|
Sardari M, Mohammadpourmir F, Hosseinzadeh Sahafi O, Rezayof A. Neuronal biomarkers as potential therapeutic targets for drug addiction related to sex differences in the brain: Opportunities for personalized treatment approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111068. [PMID: 38944334 DOI: 10.1016/j.pnpbp.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Biological sex disparities manifest at various stages of drug addiction, including craving, substance abuse, abstinence, and relapse. These discrepancies are underpinned by notable distinctions in neurobiological substrates, encompassing brain structures, functions, and neurotransmitter systems implicated in drug addiction. Neuronal biomarkers, such as neurotransmitters, signaling proteins, and genes may be associated with the diagnosis, prognosis, and treatment outcomes in both biological sexes afflicted by drug abuse. Sex differences in the neural reward system, mainly through dopaminergic transmission during drug abuse, can be attributed to modifications in neurotransmitter systems and signaling pathways. This results in distinct patterns of neural activation and responsiveness to addictive substances in males and females. Sex hormones, the estrus/menstrual cycle, and cerebral neurochemistry contribute to the progression of psychological and physiological dependence in both male and female individuals grappling with addiction. Moreover, the alteration of sex hormone balance and neurotransmitter release plays a pivotal role in substance use disorders, subsequently modulating cognitive functions pertinent to reward, including memory formation, decision-making, and locomotor activity. Comparative investigations reveal distinctions in brain region volume, gene expression, neuronal firing, and circuitry in substance use disorders affecting individuals of both biological sexes. This review examines prevalent substance use disorders to elucidate the impact of sex hormones as therapeutic biomarkers on the mesocorticolimbic neurotransmitter systems via diverse mechanisms within the addicted brain. We underscore the imperative necessity of considering these variations to gain a deeper comprehension of addiction mechanisms and potentially discern sex-specific neuronal biomarkers for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farina Mohammadpourmir
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Parkkinen S, Radua J, Andrews DS, Murphy D, Dell'Acqua F, Parlatini V. Cerebellar network alterations in adult attention-deficit/hyperactivity disorder. J Psychiatry Neurosci 2024; 49:E233-E241. [PMID: 38960626 PMCID: PMC11230668 DOI: 10.1503/jpn.230146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/07/2024] [Accepted: 05/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental condition that often persists into adulthood. Underlying alterations in brain connectivity have been identified but some relevant connections, such as the middle, superior, and inferior cerebellar peduncles (MCP, SCP, and ICP, respectively), have remained largely unexplored; thus, we sought to investigate whether the cerebellar peduncles contribute to ADHD pathophysiology among adults. METHODS We applied diffusion-weighted spherical deconvolution tractography to dissect the cerebellar peduncles of male adults with ADHD (including those who did or did not respond to methylphenidate, based on at least 30% symptom improvement at 2 months) and controls. We investigated differences in tract metrics between controls and the whole ADHD sample and between controls and treatment-response groups using sensitivity analyses. Finally, we analyzed the association between the tract metrics and cliniconeuropsychological profiles. RESULTS We included 60 participants with ADHD (including 42 treatment responders and 18 nonresponders) and 20 control participants. In the whole ADHD sample, MCP fractional anisotropy (FA; t 78 = 3.24, p = 0.002) and hindrance modulated orientational anisotropy (HMOA; t 78 = 3.01, p = 0.004) were reduced, and radial diffusivity (RD) in the right ICP was increased (t 78 = -2.84, p = 0.006), compared with controls. Although case-control differences in MCP FA and HMOA, which reflect white-matter microstructural organization, were driven by both treatment response groups, only responders significantly differed from controls in right ICP RD, which relates to myelination (t 60 = 3.14, p = 0.003). Hindrance modulated orientational anisotropy of the MCP was significantly positively associated with hyperactivity measures. LIMITATIONS This study included only male adults with ADHD. Further research needs to investigate potential sex- and development-related differences. CONCLUSION These results support the role of the cerebellar networks, especially of the MCP, in adult ADHD pathophysiology and should encourage further investigation. CLINICAL TRIAL REGISTRATION NCT03709940.
Collapse
Affiliation(s)
- Salla Parkkinen
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Joaquim Radua
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Derek S Andrews
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Declan Murphy
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Flavio Dell'Acqua
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| | - Valeria Parlatini
- From the Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Andrews, Murphy, Dell'Acqua, Parlatini); the Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Parkkinen, Murphy, Dell'Acqua, Parlatini); the Institut d'Investigacions Biomèdiques August Pi i Sunyer, CIBERSAM, Instituto de Salud Carlos III, University of Barcelona, Barcelona, Spain (Radua); the Department of Psychiatry and Behavioral Sciences, The MIND Institute, University of California, Davis, Sacramento, CA, USA (Andrews); the Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK (Dell'Acqua); the NIHR Biomedical Research Centre for Mental Health at South London and Maudsley NHS Foundation Trust and King's College London, Institute of Psychiatry, Psychology and Neuroscience, London, UK (Dell'Acqua); the School of Psychology, University of Southampton, Southampton, UK (Parlatini); the Solent NHS Trust, Southampton, UK (Parlatini)
| |
Collapse
|
12
|
Kim DH, Loke H, Thompson J, Hill R, Sundram S, Lee J. The dopamine D2-like receptor and the Y-chromosome gene, SRY, are reciprocally regulated in the human male neuroblastoma M17 cell line. Neuropharmacology 2024; 251:109928. [PMID: 38552780 DOI: 10.1016/j.neuropharm.2024.109928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Dong-Hyun Kim
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Hannah Loke
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
| | - James Thompson
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Rachel Hill
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - Suresh Sundram
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia; Mental Health Program, Monash Health, Clayton, Victoria, 3168, Australia
| | - Joohyung Lee
- Department of Psychiatry, School of Clinical Sciences, Monash University, Clayton, Victoria, 3168, Australia; Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia; Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
13
|
Lamoureux L, Beverley J, Steiner H, Marinelli M. Methylphenidate with or without fluoxetine triggers reinstatement of cocaine seeking behavior in rats. Neuropsychopharmacology 2024; 49:953-960. [PMID: 38086900 PMCID: PMC11039773 DOI: 10.1038/s41386-023-01777-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 04/25/2024]
Abstract
Methylphenidate (MP) is commonly prescribed to treat attention-deficit hyperactivity disorder (ADHD). MP is also taken for non-medical purposes as a recreational drug or "cognitive enhancer". Combined exposure to MP and selective serotonin reuptake inhibitors such as fluoxetine (FLX) can also occur, such as in the treatment of ADHD with depression comorbidity or when patients taking FLX use MP for non-medical purposes. It is unclear if such exposure could subsequently increase the risk for relapse in former cocaine users. We investigated if an acute challenge with MP, FLX, or the combination of MP + FLX could trigger reinstatement of cocaine seeking behavior in a model for relapse in rats. Juvenile rats self-administered cocaine (600 µg/kg/infusion, 1-2 h/day, 7-8 days) and then underwent extinction and withdrawal during late adolescence-early adulthood. Reinstatement was tested at a low dose of MP (2 mg/kg, I.P., comparable to doses used therapeutically) or a high dose of MP (5 mg/kg, comparable to doses used recreationally or as a cognitive enhancer), with or without FLX (2.5-5 mg/kg, I.P.). An acute challenge with the high dose of MP (5 mg/kg), with or without FLX, reinstated cocaine seeking behavior to levels comparable to those seen after an acute challenge with cocaine (15 mg/kg, I.P.). The low dose of MP (2 mg/kg) with or without FLX did not reinstate cocaine seeking behavior. Our results suggest that acute exposure to a high dose of MP, with or without FLX, may increase the risk for relapse in individuals who used cocaine during the juvenile period.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL, USA
| | - Joel Beverley
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Heinz Steiner
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Michela Marinelli
- Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
- Department of Neuroscience and the Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, Department of Psychiatry and Behavioral Science, and the Mulva Clinic for the Neurosciences, Dell Medical School, University of Texas at Austin, Austin, TX, USA.
- Division of Pharmacology and Toxicology, College of Pharmacy, the University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
14
|
Kember J, Stepien L, Panda E, Tekok-Kilic A. Resting-state EEG dynamics help explain differences in response control in ADHD: Insight into electrophysiological mechanisms and sex differences. PLoS One 2023; 18:e0277382. [PMID: 37796795 PMCID: PMC10553225 DOI: 10.1371/journal.pone.0277382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/12/2023] [Indexed: 10/07/2023] Open
Abstract
Reductions in response control (greater reaction time variability and commission error rate) are consistently observed in those diagnosed with attention-deficit/hyperactivity disorder (ADHD). Previous research suggests these reductions arise from a dysregulation of large-scale cortical networks. Here, we extended our understanding of this cortical-network/response-control pathway important to the neurobiology of ADHD. First, we assessed how dynamic changes in three resting-state EEG network properties thought to be relevant to ADHD (phase-synchronization, modularity, oscillatory power) related with response control during a simple perceptual decision-making task in 112 children/adolescents (aged 8-16) with and without ADHD. Second, we tested whether these associations differed in males and females who were matched in age, ADHD-status and ADHD- subtype. We found that changes in oscillatory power (as opposed to phase-synchrony and modularity) are most related with response control, and that this relationship is stronger in ADHD compared to controls. Specifically, a tendency to dwell in an electrophysiological state characterized by high alpha/beta power (8-12/13-30Hz) and low delta/theta power (1-3/4-7Hz) supported response control, particularly in those with ADHD. Time in this state might reflect an increased initiation of alpha-suppression mechanisms, recruited by those with ADHD to suppress processing unfavourable to response control. We also found marginally significant evidence that this relationship is stronger in males compared to females, suggesting a distinct etiology for response control in the female presentation of ADHD.
Collapse
Affiliation(s)
- Jonah Kember
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Lauren Stepien
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Erin Panda
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Ayda Tekok-Kilic
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| |
Collapse
|
15
|
Crane NA, Molla H, de Wit H. Methamphetamine alters nucleus accumbens neural activation to monetary loss in healthy young adults. Psychopharmacology (Berl) 2023; 240:1891-1900. [PMID: 37530883 PMCID: PMC10572040 DOI: 10.1007/s00213-023-06398-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 05/31/2023] [Indexed: 08/03/2023]
Abstract
RATIONALE Stimulant drugs like methamphetamine (MA) activate brain reward circuitry, which is linked to the development of problematic drug use. It is not clear how drugs like MA alter neural response to a non-drug reward. OBJECTIVES We examined how acute MA impacts neural response to receipt of a monetary reward relative to a loss in healthy adults. We hypothesized that MA (vs. placebo) would increase mesolimbic neural activation to reward, relative to loss. METHODS In a within-subject, randomized, cross-over, double-blind, placebo-controlled design, 41 healthy adults completed the Doors monetary reward task during fMRI after ingestion of placebo or 20 mg MA. We examined drug effects on neural response to reward receipt (Win vs. Loss) using a priori anatomical striatal regions of interest (nucleus accumbens (NAcc), caudate, putamen). RESULTS MA decreased NAcc BOLD activation to reward vs loss compared to placebo (p=.007) without altering caudate or putamen BOLD activation. Similar effects for reward vs. loss were obtained using whole brain analysis. Additional exploratory ROI analysis comparing reward and loss activation relative to a neutral "fixation" period indicated that MA increased NAcc BOLD activation during loss trials, without decreasing activation during win trials. CONCLUSIONS This preliminary evidence suggests that MA increases NAcc neural response to the receipt of monetary loss. Additional studies are needed to replicate our findings and clarify the mechanisms contributing to altered mesolimbic neural response to reward and loss receipt during stimulant intoxication.
Collapse
Affiliation(s)
- Natania A Crane
- Department of Psychiatry, University of Illinois, 1601 W Taylor St (M/C 912), Chicago, IL, 60612, USA.
| | - Hanna Molla
- Department of Psychiatry and Behavioral Neuroscience, University of Illinois, Chicago, USA
| | - Harriet de Wit
- Department of Psychiatry and Behavioral Neuroscience, University of Illinois, Chicago, USA
| |
Collapse
|
16
|
Taylor CM, Furman DJ, Berry AS, White RL, Jagust WJ, D’Esposito M, Jacobs EG. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb Cortex 2023; 33:8485-8495. [PMID: 37160338 PMCID: PMC10321119 DOI: 10.1093/cercor/bhad134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/24/2023] [Accepted: 03/26/2023] [Indexed: 05/11/2023] Open
Abstract
In rodents and nonhuman primates, sex hormones are powerful modulators of dopamine (DA) neurotransmission. Yet less is known about hormonal regulation of the DA system in the human brain. Using positron emission tomography (PET), we address this gap by comparing hormonal contraceptive users and nonusers across multiple aspects of DA function: DA synthesis capacity via the PET radioligand 6-[18F]fluoro-m-tyrosine ([18F]FMT), baseline D2/3 receptor binding potential using [11C]raclopride, and DA release using methylphenidate-paired [11C]raclopride. Participants consisted of 36 healthy women (n = 15 hormonal contraceptive users; n = 21 naturally cycling/non users of hormonal contraception), and men (n = 20) as a comparison group. A behavioral index of cognitive flexibility was assessed prior to PET imaging. Hormonal contraceptive users exhibited greater DA synthesis capacity than NC participants, particularly in dorsal caudate, and greater cognitive flexibility. Furthermore, across individuals, the magnitude of striatal DA synthesis capacity was associated with cognitive flexibility. No group differences were observed in D2/3 receptor binding or DA release. Analyses by sex alone may obscure underlying differences in DA synthesis tied to women's hormone status. Hormonal contraception (in the form of pill, shot, implant, ring, or intrauterine device) is used by ~400 million women worldwide, yet few studies have examined whether chronic hormonal manipulations impact basic properties of the DA system. Findings from this study begin to address this critical gap in women's health.
Collapse
Affiliation(s)
- Caitlin M Taylor
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
| | - Daniella J Furman
- Department of Neurology, University of California San Francisco, San Francisco, CA 94143, United States
| | - Anne S Berry
- Department of Psychology, Brandeis University, Waltham, MA 02453, United States
| | - Robert L White
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63112, United States
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720, United States
- Department of Psychology, University of California Berkeley, Berkeley, CA 94720, United States
| | - Emily G Jacobs
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, CA 93106, United States
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, United States
| |
Collapse
|
17
|
Carnell S, Steele KE, Thapaliya G, Kuwubara H, Aghababian A, Papantoni A, Nandi A, Brašić JR, Moran TH, Wong DF. Milkshake Acutely Stimulates Dopamine Release in Ventral and Dorsal Striatum in Healthy-Weight Individuals and Patients with Severe Obesity Undergoing Bariatric Surgery: A Pilot Study. Nutrients 2023; 15:2671. [PMID: 37375579 PMCID: PMC10302648 DOI: 10.3390/nu15122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
The overconsumption of palatable energy-dense foods drives obesity, but few human studies have investigated dopamine (DA) release in response to the consumption of a palatable meal, a putative mediator of excess intake in obesity. We imaged [11C]raclopride in the brain with positron emission tomography (PET) to assess striatal dopamine (DA) receptor binding pre- and post-consumption of a highly palatable milkshake (250 mL, 420 kcal) in 11 females, 6 of whom had severe obesity, and 5 of whom had healthy-weight. Those with severe obesity underwent assessments pre- and 3 months post-vertical sleeve gastrectomy (VSG). Our results demonstrated decreased post- vs. pre-meal DA receptor binding in the ventral striatum (p = 0.032), posterior putamen (p = 0.012), and anterior caudate (p = 0.018), consistent with meal-stimulated DA release. Analysis of each group separately suggested that results in the caudate and putamen were disproportionately driven by meal-associated changes in the healthy-weight group. Baseline (pre-meal) DA receptor binding was lower in severe obesity than in the healthy-weight group. Baseline DA receptor binding and DA release did not change from pre- to post-surgery. The results of this small pilot study suggest that milkshake acutely stimulates DA release in the ventral and dorsal striatum. This phenomenon likely contributes to the overconsumption of highly palatable foods in the modern environment.
Collapse
Affiliation(s)
- Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Kimberley E. Steele
- Johns Hopkins Center for Bariatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | - Gita Thapaliya
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Hiroto Kuwubara
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.K.); (A.N.); (J.R.B.)
| | - Anahys Aghababian
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Afroditi Papantoni
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (G.T.); (A.A.); (A.P.)
| | - Ayon Nandi
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.K.); (A.N.); (J.R.B.)
| | - James R. Brašić
- Section of High Resolution Brain Positron Emission Tomography Imaging, Division of Nuclear Medicine and Molecular Imaging, The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (H.K.); (A.N.); (J.R.B.)
| | - Timothy H. Moran
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Dean F. Wong
- Mallinckrodt Institute of Radiology, Departments of Radiology, Psychiatry, Neurology, Neuroscience, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
18
|
Senior D, Ahmed R, Arnavut E, Carvalho A, Lee WX, Blum K, Komatsu DE, Hadjiargyrou M, Badgaiyan RD, Thanos PK. Behavioral, Neurochemical and Developmental Effects of Chronic Oral Methylphenidate: A Review. J Pers Med 2023; 13:jpm13040574. [PMID: 37108960 PMCID: PMC10144804 DOI: 10.3390/jpm13040574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
The majority of animal studies on methylphenidate (MP) use intraperitoneal (IP) injections, subcutaneous (SC) injections, or the oral gavage route of administration. While all these methods allow for delivery of MP, it is the oral route that is clinically relevant. IP injections commonly deliver an immediate and maximum dose of MP due to their quick absorption. This quick-localized effect can give timely results but will only display a small window of the psychostimulant's effects on the animal model. On the opposite side of the spectrum, a SC injection does not accurately represent the pathophysiology of an oral exposure because the metabolic rate of the drug would be much slower. The oral-gavage method, while providing an oral route, possesses some adverse effects such as potential animal injury and can be stressful to the animal compared to voluntary drinking. It is thus important to allow the animal to have free consumption of MP, and drinking it to more accurately mirror human treatment. The use of a two-bottle drinking method allows for this. Rodents typically have a faster metabolism than humans, which means this needs to be considered when administering MP orally while reaching target pharmacokinetic levels in plasma. With this oral two-bottle approach, the pathophysiological effects of MP on development, behavior, neurochemistry and brain function can be studied. The present review summarizes these effects of oral MP which have important implications in medicine.
Collapse
Affiliation(s)
- Daniela Senior
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rania Ahmed
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Eliz Arnavut
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Alexandra Carvalho
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Wen Xuan Lee
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine & Primary Care (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, New York, NY 11794, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY 11568, USA
| | | | - Panayotis K Thanos
- Behavioral Neuropharmacology & Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
19
|
Towers EB, Williams IL, Qillawala EI, Rissman EF, Lynch WJ. Sex/Gender Differences in the Time-Course for the Development of Substance Use Disorder: A Focus on the Telescoping Effect. Pharmacol Rev 2023; 75:217-249. [PMID: 36781217 PMCID: PMC9969523 DOI: 10.1124/pharmrev.121.000361] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Sex/gender effects have been demonstrated for multiple aspects of addiction, with one of the most commonly cited examples being the "telescoping effect" where women meet criteria and/or seek treatment of substance use disorder (SUD) after fewer years of drug use as compared with men. This phenomenon has been reported for multiple drug classes including opioids, psychostimulants, alcohol, and cannabis, as well as nonpharmacological addictions, such as gambling. However, there are some inconsistent reports that show either no difference between men and women or opposite effects and a faster course to addiction in men than women. Thus, the goals of this review are to evaluate evidence for and against the telescoping effect in women and to determine the conditions/populations for which the telescoping effect is most relevant. We also discuss evidence from preclinical studies, which strongly support the validity of the telescoping effect and show that female animals develop addiction-like features (e.g., compulsive drug use, an enhanced motivation for the drug, and enhanced drug-craving/vulnerability to relapse) more readily than male animals. We also discuss biologic factors that may contribute to the telescoping effect, such as ovarian hormones, and its neurobiological basis focusing on the mesolimbic dopamine reward pathway and the corticomesolimbic glutamatergic pathway considering the critical roles these pathways play in the rewarding/reinforcing effects of addictive drugs and SUD. We conclude with future research directions, including intervention strategies to prevent the development of SUD in women. SIGNIFICANCE STATEMENT: One of the most widely cited gender/sex differences in substance use disorder (SUD) is the "telescoping effect," which reflects an accelerated course in women versus men for the development and/or seeking treatment for SUD. This review evaluates evidence for and against a telescoping effect drawing upon data from both clinical and preclinical studies. We also discuss the contribution of biological factors and underlying neurobiological mechanisms and highlight potential targets to prevent the development of SUD in women.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Ivy L Williams
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emaan I Qillawala
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emilie F Rissman
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Wendy J Lynch
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| |
Collapse
|
20
|
Pulido LN, Pochapski JA, Sugi A, Esaki JY, Stresser JL, Sanchez WN, Baltazar G, Levcik D, Fuentes R, Da Cunha C. Pre-clinical evidence that methylphenidate increases motivation and/or reward preference to search for high value rewards. Behav Brain Res 2023; 437:114065. [PMID: 36037842 DOI: 10.1016/j.bbr.2022.114065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/04/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022]
Abstract
Methylphenidate is a stimulant used to treat attention deficit and hyperactivity disorder (ADHD). In the last decade, illicit use of methylphenidate has increased among healthy young adults, who consume the drug under the assumption that it will improve cognitive performance. However, the studies that aimed to assess the methylphenidate effects on memory are not consistent. Here, we tested whether the effect of methylphenidate on a spatial memory task can be explained as a motivational and/or a reward effect. We tested the effects of acute and chronic i.p. administration of 0.3, 1 or 3 mg/kg of methylphenidate on motivation, learning and memory by using the 8-arm radial maze task. Adult male Wistar rats learned that 3 of the 8 arms of the maze were consistently baited with 1, 3, or 6 sucrose pellets, and the number of entries and reentries into reinforced and non-reinforced arms of the maze were scored. Neither acute nor chronic (20 days) methylphenidate treatment affected the number of entries in the non-baited arms. However, chronic, but not acute, 1-3 mg/kg methylphenidate increased the number of reentries in the higher reward arms, which suggests a motivational/rewarding effect rather than a working memory deficit. In agreement with this hypothesis, the methylphenidate treatment also decreased the approach latency to the higher reward arms, increased the approach latency to the low reward arm, and increased the time spent in the high, but not low, reward arm. These findings suggest that methylphenidate may act more as a motivational enhancer rather than a cognitive enhancer in healthy people.
Collapse
Affiliation(s)
- Laura N Pulido
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil
| | - Jose A Pochapski
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil
| | - Adam Sugi
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil
| | - Julie Y Esaki
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil
| | - Joao L Stresser
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil
| | - William N Sanchez
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil; Integrative Neurobiology Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Gabriel Baltazar
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil
| | - David Levcik
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Romulo Fuentes
- Departamento de Neurociencias, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Claudio Da Cunha
- Laboratorio de Fisiologia e Farmacologia do Sistema Nervoso Central, Department of Pharmacology, Universidade Federal do Parana, Curitiba, Brazil; Department of Biochemistry, Universidade Federal do Parana, Curitiba, Brazil.
| |
Collapse
|
21
|
Shen Z, Li W, Chang W, Yue N, Yu J. Sex differences in chronic pain-induced mental disorders: Mechanisms of cerebral circuitry. Front Mol Neurosci 2023; 16:1102808. [PMID: 36891517 PMCID: PMC9986270 DOI: 10.3389/fnmol.2023.1102808] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 02/22/2023] Open
Abstract
Mental disorders such as anxiety and depression induced by chronic pain are common in clinical practice, and there are significant sex differences in their epidemiology. However, the circuit mechanism of this difference has not been fully studied, as preclinical studies have traditionally excluded female rodents. Recently, this oversight has begun to be resolved and studies including male and female rodents are revealing sex differences in the neurobiological processes behind mental disorder features. This paper reviews the structural functions involved in the injury perception circuit and advanced emotional cortex circuit. In addition, we also summarize the latest breakthroughs and insights into sex differences in neuromodulation through endogenous dopamine, 5-hydroxytryptamine, GABAergic inhibition, norepinephrine, and peptide pathways like oxytocin, as well as their receptors. By comparing sex differences, we hope to identify new therapeutic targets to offer safer and more effective treatments.
Collapse
Affiliation(s)
- Zuqi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weiqi Chang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Yue
- Weifang Maternal and Child Health Hospital, Weifang, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| |
Collapse
|