1
|
Zhao B, Nepovimova E, Wu Q. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development. Cell Commun Signal 2025; 23:30. [PMID: 39825442 PMCID: PMC11740368 DOI: 10.1186/s12964-025-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates. PERs in innate immune cells modulate the temporal patterns of NF-κB and TNF-α activities, as well as the response to LPS-induced toxic shock, initiating inflammatory responses that escalate into chronic inflammatory conditions. Crucially, PERs modulate cancer cell behaviors including proliferation, apoptosis, and migration by influencing the levels of cell cycle proteins and stimulating the expression of oncogenes c-Myc and MDM2. PER2/3, as antagonists in cancer stem cell biology, play important roles in differentiating cancer stem cells and in maintaining their stemness. Importantly, the expression of Pers serve as a significant factor for early cancer diagnosis and prognosis. This review delves into the link between circadian rhythm regulator PERs, disruptions in circadian rhythm, and oncogenesis. We examine the evidence that highlights how dysfunctions in PERs activities initiate cancer development, aid tumor growth, and modify cancer cell metabolism through pathways involved in oxidative stress and immune system. Comprehending these connections opens new pathways for the development of circadian rhythm-based therapeutic strategies, with the aims of boosting immune responses and enhancing cancer treatments.
Collapse
Affiliation(s)
- Baimei Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové , 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
2
|
Pettersson C, Wu R, Demirel I. Estrogen-stimulated uropathogenic E. coli mediate enhanced neutrophil responses. Sci Rep 2024; 14:23030. [PMID: 39362931 PMCID: PMC11449900 DOI: 10.1038/s41598-024-74863-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024] Open
Abstract
Urinary tract infection (UTI) is one of the most common bacterial infections worldwide and the most common cause is uropathogenic Escherichia coli (UPEC). Current research is mostly focused on how UPEC affects host factors, whereas the effect of host factors on UPEC is less studied. Our previous studies have shown that estrogen alters UPEC virulence. However, the effect of this altered UPEC virulence on neutrophils is unknown. The aim of the present study was to investigate how the altered UPEC virulence mediated by estrogen modulates neutrophil responses. We found that estradiol-stimulated CFT073 increased neutrophil phagocytosis, NETs formation and intracellular ROS production. We observed that the total ROS production from neutrophils was reduced by estradiol-stimulated CFT073. We also found that estradiol-stimulated CFT073 induced less cytotoxicity in neutrophils. Additionally, we found that several cytokines and chemokines like IL-8, IL-1β, CXCL6, MCP-1 and MCP-4 were increased upon estradiol-stimulated CFT073 infection. In conclusion, this study demonstrates that the estrogen-mediated alterations to UPEC virulence modulates neutrophil responses, most likely in a host-beneficial manner.
Collapse
Affiliation(s)
- Carolina Pettersson
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Rongrong Wu
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden
| | - Isak Demirel
- School of Medical Sciences, Örebro University, Campus USÖ, Örebro, 701 82, Sweden.
| |
Collapse
|
3
|
Naskar M, Choi HW. A Dynamic Interplay of Innate Immune Responses During Urinary Tract Infection. Immune Netw 2024; 24:e31. [PMID: 39246616 PMCID: PMC11377947 DOI: 10.4110/in.2024.24.e31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 09/10/2024] Open
Abstract
Urinary tract infections (UTIs) represent one of the most prevalent bacterial infections globally, manifesting in diverse clinical phenotypes with varying degrees of severity and complications. The mechanisms underlying UTIs are gradually being elucidated, leading to an enhanced understanding of the immune responses involved. Innate immune cells play a crucial defensive role against uropathogenic bacteria through various mechanisms. Despite their significant contributions to host defense, these cells often fail to achieve complete clearance of uropathogens, necessitating the frequent prescription of antibiotics for UTI patients. However, the persistence of infections and related pathological symptoms in the absence of innate immune cells in animal models underscore the importance of innate immunity in UTIs. Therefore, the host protective functions of innate immune cells, including neutrophils, macrophages, mast cells, NK cells, innate lymphoid cells, and γδ T cells, are delicately coordinated and timely regulated by a variety of cytokines to ensure successful pathogen clearance.
Collapse
Affiliation(s)
- Manisha Naskar
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| | - Hae Woong Choi
- Division of Life Sciences, Korea University, Seoul 02841, Korea
| |
Collapse
|
4
|
Quiros-Roldan E, Sottini A, Natali PG, Imberti L. The Impact of Immune System Aging on Infectious Diseases. Microorganisms 2024; 12:775. [PMID: 38674719 PMCID: PMC11051847 DOI: 10.3390/microorganisms12040775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Immune system aging is becoming a field of increasing public health interest because of prolonged life expectancy, which is not paralleled by an increase in health expectancy. As age progresses, innate and adaptive immune systems undergo changes, which are defined, respectively, as inflammaging and immune senescence. A wealth of available data demonstrates that these two conditions are closely linked, leading to a greater vulnerability of elderly subjects to viral, bacterial, and opportunistic infections as well as lower post-vaccination protection. To face this novel scenario, an in-depth assessment of the immune players involved in this changing epidemiology is demanded regarding the individual and concerted involvement of immune cells and mediators within endogenous and exogenous factors and co-morbidities. This review provides an overall updated description of the changes affecting the aging immune system, which may be of help in understanding the underlying mechanisms associated with the main age-associated infectious diseases.
Collapse
Affiliation(s)
- Eugenia Quiros-Roldan
- Department of Infectious and Tropical Diseases, ASST- Spedali Civili and DSCS- University of Brescia, 25123 Brescia, Italy;
| | - Alessandra Sottini
- Clinical Chemistry Laboratory, Services Department, ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Pier Giorgio Natali
- Mediterranean Task Force for Cancer Control (MTCC), Via Pizzo Bernina, 14, 00141 Rome, Italy;
| | - Luisa Imberti
- Section of Microbiology, University of Brescia, P. le Spedali Civili, 1, 25123 Brescia, Italy
| |
Collapse
|
5
|
Nguyen TTH, Starkey MR. Shining the spotlight on urinary tract immunology. Mucosal Immunol 2023; 16:563-566. [PMID: 37597761 DOI: 10.1016/j.mucimm.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023]
Affiliation(s)
- Theresa T H Nguyen
- Bladder and Kidney Health Discovery Program, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia
| | - Malcolm R Starkey
- Bladder and Kidney Health Discovery Program, Department of Immunology, Central Clinical School, Monash University, Melbourne, Australia.
| |
Collapse
|
6
|
Lin JB, Mora A, Wang TJ, Santeford A, Usmani D, Ligon MM, Mysorekar IU, Apte RS. Loss of stearoyl-CoA desaturase 2 disrupts inflammatory response in macrophages. mBio 2023; 14:e0092523. [PMID: 37417745 PMCID: PMC10470784 DOI: 10.1128/mbio.00925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/15/2023] [Indexed: 07/08/2023] Open
Abstract
Macrophages are innate immune cells that patrol tissues and are the first responders to detect infection. They orchestrate the host immune response in eliminating invading pathogens and the subsequent transition from inflammation to tissue repair. Macrophage dysfunction contributes to age-related pathologies, including low-grade inflammation in advanced age that is termed "inflammaging." Our laboratory has previously identified that macrophage expression of a fatty acid desaturase, stearoyl-CoA desaturase 2 (SCD2), declines with age. Herein, we delineate the precise cellular effects of SCD2 deficiency in murine macrophages. We found that deletion of Scd2 from macrophages dysregulated basal and bacterial lipopolysaccharide (LPS)-stimulated transcription of numerous inflammation-associated genes. Specifically, deletion of Scd2 from macrophages decreased basal and LPS-induced expression of Il1b transcript that corresponded to decreased production of precursor IL1B protein and release of mature IL1B. Furthermore, we identified disruptions in autophagy and depletion of unsaturated cardiolipins in SCD2-deficient macrophages. To assess the functional relevance of SCD2 in the macrophage response to infection, we challenged SCD2-deficient macrophages with uropathogenic Escherichia coli and found that there was impaired clearance of intracellular bacteria. This increased burden of intracellular bacteria was accompanied by increased release of pro-inflammatory cytokines IL6 and TNF but decreased IL1B. Taken together, these results indicate that macrophage expression of Scd2 is necessary for maintaining the macrophage response to inflammatory stimuli. This link between fatty acid metabolism and fundamental macrophage effector functions may potentially be relevant to diverse age-related pathologies. IMPORTANCE Macrophages are immune cells that respond to infection, but their dysfunction is implicated in many age-related diseases. Recent evidence showed that macrophage expression of a fatty acid enzyme, stearoyl-CoA desaturase 2, declines in aged organisms. In this work, we characterize the effects when stearoyl-CoA desaturase 2 is deficient in macrophages. We identify aspects of the macrophage inflammatory response to infection that may be affected when expression of a key fatty acid enzyme is decreased, and these findings may provide cellular insight into how macrophages contribute to age-related diseases.
Collapse
Affiliation(s)
- Joseph B. Lin
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amy Mora
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tzu Jui Wang
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrea Santeford
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Darksha Usmani
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Marianne M. Ligon
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Indira U. Mysorekar
- Department of Obstetrics & Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Section of Infectious Diseases, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Rajendra S. Apte
- John F. Hardesty, MD Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Ma X, Chen X, Duan Z, Wu Y, Shu J, Wu P, Zhao Y, Wang X, Wang Y. Circadian rhythm disruption exacerbates the progression of macrophage dysfunction and alveolar bone loss in periodontitis. Int Immunopharmacol 2023; 116:109796. [PMID: 36731157 DOI: 10.1016/j.intimp.2023.109796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023]
Abstract
Macrophages are highly implicated in the progression of periodontitis, while circadian rhythm disruption (CRD) promotes the inflammatory response of macrophages in many diseases. However, the effects of CRD on periodontitis and the role of macrophages in this process remain unclear. Histone lysinedemethylase6a (Kdm6a), a histone demethylase, has recently been identified as a key regulator of macrophage-induced inflammation. Here, we established an experimental periodontitis model by injecting lipopolysaccharide (LPS) derived from Porphyromonas gingivalis with or without periodontal ligation in mice exposed to an 8-h time shift jet-lag schedule every 3 days. By histomorphometry, tartrate acid phosphatase (TRAP) staining, RT-qPCR, ELISA, immunohistochemistry and immunofluorescence analysis, we found that CRD promoted the inflammatory response, alveolar bone resorption, macrophage infiltration and Kdm6a expression in macrophages. Macrophage-specific Kdm6a knockout mice were further used to elucidate the effects of Kdm6a deficiency on periodontitis. Kdm6a deletion in macrophages rescued periodontal tissue inflammation, osteoclastogenesis, and alveolar bone loss in a mouse model of periodontitis. These findings suggest that CRD may intensify periodontitis by increasing the infiltration and activation of macrophages. Kdm6a promotes the inflammatory response in macrophages, which may participate in aggravated periodontitis via CRD.
Collapse
Affiliation(s)
- Xueying Ma
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Xin Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhonghua Duan
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Yuqiong Wu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Jiaen Shu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Pei Wu
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuhua Wang
- Department of Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Tissue Engineering, Shanghai 200011, China.
| |
Collapse
|