1
|
Yang S, Lan Q, Zhang L, Zhang K, Tang G, Huang H, Liang P, Miao J, Zhang B, Tan R, Yao D, Luo C, Tan Y. Multimodal cross-scale context clusters for classification of mental disorders using functional and structural MRI. Neural Netw 2025; 185:107209. [PMID: 39884177 DOI: 10.1016/j.neunet.2025.107209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 12/26/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
The brain is a complex system with multiple scales and hierarchies, making it challenging to identify abnormalities in individuals with mental disorders. The dynamic segregation and integration of activities across brain regions enable flexible switching between local and global information processing modes. Modeling these scale dynamics within and between brain regions can uncover hidden correlates of brain structure and function in mental disorders. Consequently, we propose a multimodal cross-scale context clusters (MCCocs) model. First, the complementary information in the multimodal image voxels of the brain is integrated and mapped to the original target space to establish a novel voxel-level brain representation. Within each region of interest (ROI), the Voxel Reducer uses a convolution operator to extract local associations among neighboring features and achieves quantitative dimensionality reduction. Among multiple ROIs, the ROI Context Cluster Block performs unsupervised clustering of whole-brain features, capturing nonlinear relationships between ROIs through bidirectional feature aggregation to simulate the effective integration of information across regions. By alternately executing the Voxel Reducer and ROI Context Cluster Block modules multiple times, our model simulates dynamic scale switching within and between ROIs. Experimental results show that MCCocs can recognize potential discriminative biomarkers and achieve state-of-the-art performance in multiple mental disorder classification tasks. The code is available at https://github.com/yangshuqigit/MCCocs.
Collapse
Affiliation(s)
- Shuqi Yang
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Qing Lan
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Lijuan Zhang
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Kuangling Zhang
- College of Computer Science And Technology, Zhejiang University, Zhejiang 310027, China
| | - Guangmin Tang
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Huan Huang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Ping Liang
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Jiaqing Miao
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China
| | - Boxun Zhang
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China; State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China.
| | - Ying Tan
- The Key Laboratory for Computer Systems of State Ethnic Affairs Commission, Southwest Minzu University, Chengdu, Sichuan 610225, China.
| |
Collapse
|
2
|
MacDonald SE, Becker CR, MacNamara A. Amygdala-insula response to neutral stimuli and the prospective prediction of anxiety sensitivity. Prog Neuropsychopharmacol Biol Psychiatry 2025; 139:111384. [PMID: 40300661 DOI: 10.1016/j.pnpbp.2025.111384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/01/2025]
Abstract
BACKGROUND Anxiety sensitivity (AS) - the tendency to perceive benign physiological stimuli as harmful - is a risk factor for anxiety disorders. Cross-sectionally, AS has been linked to increased negative > neutral neural activity in key nodes implicated in threat detection and interoceptive - i.e., the amygdala (AMYG) and insula (INS). Examining the unique contributions of AMYG-INS blood‑oxygen-level-dependent (BOLD) response to neutral and negative stimuli to the prospective prediction of AS could increase understanding of the factors predisposing individuals to worsening AS over time. METHODS Forty-six participants, including 33 patients with mixed internalizing disorders, underwent fMRI scans to assess insula and amygdala activation in response to neutral and negative pictures. AS was measured via self-report at baseline (Time 1) and approximately 1.5 years later (Time 2). We assessed whether BOLD to negative and/or neutral pictures at baseline predicted changes in AS over time. RESULTS Greater insula and amygdala activation in response to neutral pictures at baseline predicted higher AS 1.5 years later, controlling for initial levels of AS and BOLD response to negative pictures. Cross-sectionally, greater insula and amygdala activation in response to negative pictures relative to neutral pictures was associated with higher Time 1 AS. CONCLUSIONS Heightened AMYG-INS BOLD to benign stimuli precedes and may place individuals at risk for increased AS. Once established, heightened AS appears to be characterized by a neural pattern that is more often-observed in the internalizing disorders - i.e., exaggerated response to negative (> neutral) stimuli.
Collapse
Affiliation(s)
- Shannon E MacDonald
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States of America.
| | - Claudia R Becker
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States of America
| | - Annmarie MacNamara
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States of America; Department of Psychiatry and Behavioral Sciences, Texas A&M University, College Station, TX, United States of America; Institute for Neuroscience, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
3
|
Afriyie-Agyemang Y, Bertocci MA, Iyengar S, Stiffler RS, Bonar LK, Aslam HA, Graur S, Bebko G, Skeba AS, Brady TJ, Benjamin O, Wang Y, Chase HW, Phillips ML. Lifetime depression and mania/hypomania risk predicted by neural markers in three independent young adult samples during working memory and emotional regulation. Mol Psychiatry 2025; 30:870-880. [PMID: 39210011 DOI: 10.1038/s41380-024-02702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Objective markers of pathophysiological processes underlying lifetime depression and mania/hypomania risk can provide biologically informed targets for novel interventions to help prevent the onset of affective disorders in individuals with subsyndromal symptoms. Greater activity within and functional connectivity (FC) between the central executive network (CEN), supporting emotional regulation (ER) subcomponent processes such as working memory (WM), the default mode network (DMN), supporting self-related information processing, and the salience network (SN), is thought to interfere with cognitive functioning and predispose to depressive disorders. Using an emotional n-back paradigm designed to examine WM and ER capacity, we examined in young adults: (1) relationships among activity and FC in these networks and lifetime depression and mania/hypomania risk; (2) the extent to which these relationships were specific to lifetime depression risk versus lifetime mania/hypomania risk; (3) whether findings in a first, Discovery sample n = 101, 63 female, age = 23.85 (2.9) could be replicated in a two independent Test samples of young adults: Test sample 1: n = 90, 60 female, age = 21.7 (2.0); Test sample 2: n = 96, 65 female, age = 21.6 (2.1). The Mood Spectrum Self-Report (MOODS-SR-L) assessed lifetime mania/hypomania risk and depression risk. We showed significant clusters of activity to each contrast in similar locations in the anatomic mask in each Test sample as in the Discovery sample, and, using extracted mean BOLD signal from these clusters as IVs, we showed similar patterns of IV-DV relationships in each Test sample as in the Discovery sample. Specifically, in the Discovery sample, greater DMN activity during WM was associated with greater lifetime depression risk. This finding was specific to depression and replicated in both independent samples (all ps<0.05 qFDR). Greater CEN activity during ER was associated with increased lifetime depression risk and lifetime mania/hypomania risk in all three samples (all ps< 0.05 qFDR). These replicated findings provide promising objective, neural markers to better identify, and guide and monitor early interventions for, depression and mania/hypomania risk in young adults.
Collapse
Affiliation(s)
| | - Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh School of Arts and Sciences, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lisa K Bonar
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haris A Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Alexander S Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler J Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Osasumwen Benjamin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yiming Wang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Rozovsky R, Bertocci M, Diwadkar V, Stiffler RS, Bebko G, Skeba AS, Aslam H, Phillips ML. Inter-network Effective Connectivity During An Emotional Working Memory Task in Two Independent Samples of Young Adults. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00028-X. [PMID: 39805554 DOI: 10.1016/j.bpsc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/09/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Effective connectivity (EC) analysis provides valuable insights into the directionality of neural interactions, which are crucial for understanding the mechanisms underlying cognitive and emotional regulation in depressive and anxiety disorders. In this study, we examined EC within key neural networks during working memory (WM) and emotional regulation (ER) tasks in young adults, both healthy individuals and those seeking help from mental health professionals for emotional distress. METHODS Dynamic causal modeling was used to analyze EC in 2 independent samples (n = 97 and n = 94). Participants performed an emotional n-back task to assess EC across the central executive network (CEN), default mode network (DMN), salience network (SN), and face processing network. Group-level parametric empirical Bayes analyses were conducted to examine EC patterns, with subanalyses comparing individuals with and without depression and anxiety. RESULTS Consistent patterns of positive (posterior probability > .95) DMN→CEN and DMN→SN EC were observed in both samples, predominantly in low and high WM conditions without ER. However, individuals without depressive or anxiety disorders exhibited a significantly greater number of preserved connections that were replicated across both samples. CONCLUSIONS This study highlights the different patterns of DMN→CEN EC in conditions with high and low WM loads with and without ER, suggesting that in higher WM loads with ER, the integration of the DMN with the CEN is reduced to facilitate successful cognitive task performance. The findings also suggest that DMN→CEN and DMN→SN EC are significantly reduced in depressive and anxiety disorders, highlighting this pattern of reduced EC as a potential neural marker of these disorders.
Collapse
Affiliation(s)
- Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Richelle S Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alexander S Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Le GH, Wong S, Lu A, Vasudeva S, Gill H, Badulescu S, Portelles DR, Zheng YJ, Teopiz KM, Meshkat S, Kwan ATH, Ho R, Rhee TG, Rosenblat JD, Mansur RB, McIntyre RS. Electroencephalography (EEG) spectral signatures of selective serotonin reuptake inhibitors (SSRIs), selective norepinephrine reuptake inhibitors (SNRIs) and vortioxetine in major depressive disorder: A systematic review. J Affect Disord 2025; 368:798-819. [PMID: 39299586 DOI: 10.1016/j.jad.2024.09.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Converging evidence suggests electroencephalography (EEG) methods may elucidate alterations in global structural and functional connectivity that underlie the pathophysiology of depressive disorders. Extant literature suggests SSRIs and SNRIs may broadly induce alterations to EEG-measured neural activity. Herein, this systematic review comprehensively evaluates changes to EEG spectral signatures associated with vortioxetine and each FDA-approved agent within the SSRI and SNRI class. METHODS We conducted a systematic review of studies investigating changes to EEG spectral signatures associated with SSRI, SNRI, and/or vortioxetine treatment in persons with MDD. Database search occurred from database inception to May 3, 2024. RESULTS Our search yielded 15 studies investigating overall spectral signature changes associated with SSRI- and/or SNRI-treatment. The existing literature presents with mixed findings. Notwithstanding, we did observe a pattern in which the SSRI and SNRI agents reproducibly affect EEG spectral signatures. We observed overlapping yet distinct spectral patterns for each agent within- and between-drug classes of SSRIs and SNRIs. Changes in resting/wake EEG were also observed. LIMITATIONS The findings from our systematic review are mixed. Heterogeneity exists with sample size, composition, dosing of antidepressants, duration of antidepressant exposure, as well as the type of EEG devices used. DISCUSSIONS Our findings provide support to the notion that although SSRIs, SNRIs and vortioxetine block reuptake of the serotonin transporter; they are different in their profile of pharmacology as evidenced by differential EEG signatures. EEG changes associated with SSRIs, SNRIs and vortioxetine are also highly replicated findings across mixed studies and populations.
Collapse
Affiliation(s)
- Gia Han Le
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Sabrina Wong
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada.
| | - Andy Lu
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Psychology, University of Western Ontario, London, Ontario, Canada.
| | - Shreya Vasudeva
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Hartej Gill
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Sebastian Badulescu
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | | | - Yang Jing Zheng
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Kayla M Teopiz
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada.
| | - Shakila Meshkat
- Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada
| | - Angela T H Kwan
- Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Roger Ho
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore; Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Life Science (LIFS), Hong Kong University of Science and Technology (HKUST), Hong Kong.
| | - Taeho Greg Rhee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Public Health Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Joshua D Rosenblat
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Rodrigo B Mansur
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Mood Disorder Psychopharmacology Unit, University Health Network, Toronto, Ontario, Canada.
| | - Roger S McIntyre
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Brain and Cognition Discovery Foundation, Toronto, Ontario, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Raschle NM, Borbás R, Dimanova P, Unternaehrer E, Kohls G, De Brito S, Fairchild G, Freitag CM, Konrad K, Stadler C. Losing Control: Prefrontal Emotion Regulation Is Related to Symptom Severity and Predicts Treatment-Related Symptom Change in Adolescent Girls With Conduct Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:80-93. [PMID: 39182724 DOI: 10.1016/j.bpsc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Emotion regulation skills are linked to corticolimbic brain activity (e.g., dorsolateral prefrontal cortex [dlPFC] and limbic regions) and enable an individual to control their emotional experiences, thus allowing healthy social functioning. Disruptions in emotion regulation skills are reported in neuropsychiatric disorders, including conduct disorder or oppositional defiant disorder (CD/ODD). Clinically recognized means to ameliorate emotion regulation deficits observed in CD/ODD include cognitive or dialectical behavioral skills therapy as implemented in the START NOW program. However, the role of emotion regulation and its neural substrates in symptom severity and prognosis following treatment of adolescent CD/ODD has not been investigated. METHODS Cross-sectional data including functional magnetic resonance imaging responses during emotion regulation (N = 114; average age = 15 years), repeated-measures assessments of symptom severity (pretreatment, posttreatment, long-term follow-up), and functional magnetic resonance imaging data collected prior to and following the START NOW randomized controlled trial (n = 44) for female adolescents with CD/ODD were analyzed using group comparisons and multiple regression. RESULTS First, behavioral and neural correlates of emotion regulation were disrupted in female adolescents with CD/ODD. Second, ODD symptom severity was negatively associated with dlPFC/precentral gyrus activity during regulation. Third, treatment-related symptom changes were predicted by pretreatment ODD symptom severity and regulatory dlPFC/precentral activity. Additionally, pretreatment dlPFC/precentral activity and ODD symptom severity predicted long-term reductions in symptom severity following treatment for participants who received the START NOW treatment. CONCLUSIONS Our findings demonstrate the important role that emotion regulation skills play in the characteristics of CD/ODD and show that regulatory dlPFC/precentral activity is positively associated with treatment response in female adolescents with CD/ODD.
Collapse
Affiliation(s)
- Nora Maria Raschle
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Réka Borbás
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Plamina Dimanova
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Eva Unternaehrer
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Gregor Kohls
- Department of Child and Adolescent Psychiatry, Medical Faculty, TU Dresden, Dresden, Germany
| | - Stephane De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom; School of Psychology, University of Birmingham, Birmingham, United Kingdom; Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Developmental Science, University of Birmingham, Birmingham, United Kingdom; Centre for Neurogenetics, University of Birmingham, Birmingham, United Kingdom
| | - Graeme Fairchild
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen, Aachen, Germany; Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Jülich, Jülich, Germany
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
7
|
Lee S, Cheong Y, Ro J, Bae J, Jung M. Alterations in functional connectivity in the salience network shared by depressive symptoms and smartphone overuse. Sci Rep 2024; 14:28679. [PMID: 39562640 PMCID: PMC11577081 DOI: 10.1038/s41598-024-79951-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/13/2024] [Indexed: 11/21/2024] Open
Abstract
Globally, the age when children start using smartphones has decreased. Concurrently, the increased use of smartphones among children in developmental stages has caused serious effects, such as depression. While neuroimaging studies have predicted a significant overlap between the neurobiological changes caused by depression and smartphone overuse, few have simultaneously examined them. Therefore, we examined resting-state functional connectivity (FC) changes due to smartphone overuse and depressive symptoms in 69 children. We observed that FC in the salience network and regions involved in visual (e.g., the lateral occipital cortex) and motivational processing (e.g., the putamen) increased with smartphone overuse and depressive symptoms. Additionally, FC partially mediated the relationship between depressive symptoms and smartphone overuse, suggesting that changes in FC may be involved in the link between depressive symptoms and smartphone overuse. Our findings indicate that increased depressive symptoms could be associated with alterations in the salience network FC, which may influence visual attention or reward processing of salient stimuli, potentially contributing to smartphone overuse.
Collapse
Affiliation(s)
- Seonkyoung Lee
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Yongjeon Cheong
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jihyeong Ro
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jihyun Bae
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Minyoung Jung
- Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea.
| |
Collapse
|
8
|
Huang G, Qiu C, Liao M, Gong Q, Liu L, Jiang P. Association of neuroimaging measures with facial emotional processing in healthy adults: a task fMRI study. Soc Cogn Affect Neurosci 2024; 19:nsae076. [PMID: 39420729 PMCID: PMC11570540 DOI: 10.1093/scan/nsae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/02/2024] [Accepted: 10/18/2024] [Indexed: 10/19/2024] Open
Abstract
Investigating the neural processing of emotion-related neural circuits underlying emotional facial processing may help in understanding mental disorders. We used two subscales of the Toronto Alexithymia Scale (TAS) to assess the emotional cognitive of 25 healthy participants. A higher score indicates greater difficulty in emotional perception. In addition, participants completed a n-back task during functional magnetic resonance imaging. Psychophysiological interaction analysis was used to explore the functional connectivity (FC) of neural circuits. Next, we used elastic-net regression analysis for feature selection and conducted correlation analysis between the neuroimaging measures and questionnaire scores. Following a 3-fold cross-validation, five neuroimaging measures emerged as significant features. Results of correlation analysis demonstrated that participants with higher TAS scores exhibited increased FC between the amygdala and occipital face area during facial stimulus processing, but decreased connectivity during emotional processing. These findings suggested that individuals with poor emotional recognition exhibited increased connectivity among face-related brain regions during facial processing. However, during emotional processing, decreasing neural synchronization among neural circuits involved in emotional processing affects facial expression processing. These findings suggest potential neural marker related to subjective emotional perception, which may contribute to the diagnosis and treatment of emotional dysregulation in individuals with psychiatric conditions.
Collapse
Affiliation(s)
- Gantian Huang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Optometry and Visual Science, West China Hospital of Medicine, Sichuan University, Chengdu 610041, China
| | - Chen Qiu
- Student Afairs Department, West China School of Medicine/West China Hospital, Sichuan University, Chengdu 610041, China
- West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Meng Liao
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Optometry and Visual Science, West China Hospital of Medicine, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu 610041, China
- Department of Optometry and Visual Science, West China Hospital of Medicine, Sichuan University, Chengdu 610041, China
| | - Ping Jiang
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Gruzman R, Hempel M, Domke AK, Hartling C, Stippl A, Carstens L, Bajbouj M, Gärtner M, Grimm S. Investigating the impact of rumination and adverse childhood experiences on resting-state neural activity and connectivity in depression. J Affect Disord 2024; 358:283-291. [PMID: 38387672 DOI: 10.1016/j.jad.2024.02.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND Both ruminative thought processes and adverse childhood experiences (ACEs) are well-established risk factors for the emergence and maintenance of depression. However, the neurobiological mechanisms underlying these associations remain poorly understood. METHODS We examined resting-state functional magnetic resonance imaging data (3 T Tim Trio MR scanner; Siemens, Erlangen) of 44 individuals diagnosed with an acute depressive episode. Specifically, we focused on investigating functional brain activity and connectivity within and between three large-scale neural networks associated with processes affected in depression: the default mode network (DMN), the salience network (SN), and the central executive network (CEN). Correlational and regression-based analyses were performed. RESULTS Our regions of interest analyses revealed that region-specific spontaneous neural activity in the anterior DMN was associated with self-reported trait rumination, specifically, the pregenual anterior cingulate cortex (pgACC). Furthermore, using a liberal statistical threshold, we found that spontaneous neural activity of the ventromedial prefrontal cortex and the pgACC were associated with depression symptom severity. Neither spontaneous neural activity in the SN and CEN nor functional connectivity within and across the investigated networks was associated with depression severity or rumination. Furthermore, there was no association between ACEs and brain activity and connectivity. LIMITATIONS Lack of a formal control group or low-risk group for comparison. CONCLUSIONS Overall, our results indicate network-specific changes in spontaneous brain activity, that are linked to both depression severity and rumination. Findings underscore the crucial role of the pgACC in depression and contribute to a dimensional and symptom-based understanding of depression-related network imbalances.
Collapse
Affiliation(s)
- Rebecca Gruzman
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany.
| | - Moritz Hempel
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany
| | - Ann-Kathrin Domke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Corinna Hartling
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Anna Stippl
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Luisa Carstens
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany
| | - Malek Bajbouj
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Matti Gärtner
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Simone Grimm
- Department of Psychology, MSB Medical School Berlin, Rüdesheimer Straße 50, 14197 Berlin, Germany; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin, Berlin Institute of Health, Campus Benjamin Franklin, Hindenburgdamm 30, 12203 Berlin, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland
| |
Collapse
|
10
|
Yu J, Xu Q, Ma L, Huang Y, Zhu W, Liang Y, Wang Y, Tang W, Zhu C, Jiang X. Convergent functional change of frontoparietal network in obsessive-compulsive disorder: a voxel-based meta-analysis. Front Psychiatry 2024; 15:1401623. [PMID: 39041046 PMCID: PMC11260709 DOI: 10.3389/fpsyt.2024.1401623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/11/2024] [Indexed: 07/24/2024] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is a chronic psychiatric illness with complex clinical manifestations. Cognitive dysfunction may underlie OC symptoms. The frontoparietal network (FPN) is a key region involved in cognitive control. However, the findings of impaired FPN regions have been inconsistent. We employed meta-analysis to identify the fMRI-specific abnormalities of the FPN in OCD. Methods PubMed, Web of Science, Scopus, and EBSCOhost were searched to screen resting-state functional magnetic resonance imaging (rs-fMRI) studies exploring dysfunction in the FPN of OCD patients using three indicators: the amplitude of low-frequency fluctuation/fractional amplitude of low-frequency fluctuation (ALFF/fALFF), regional homogeneity (ReHo) and functional connectivity (FC). We compared all patients with OCD and control group in a primary analysis, and divided the studies by medication in secondary meta-analyses with the activation likelihood estimation (ALE) algorithm. Results A total of 31 eligible studies with 1359 OCD patients (756 men) and 1360 healthy controls (733 men) were included in the primary meta-analysis. We concluded specific changes in brain regions of FPN, mainly in the left dorsolateral prefrontal cortex (DLPFC, BA9), left inferior frontal gyrus (IFG, BA47), left superior temporal gyrus (STG, BA38), right posterior cingulate cortex (PCC, BA29), right inferior parietal lobule (IPL, BA40) and bilateral caudate. Additionally, altered connectivity within- and between-FPN were observed in the bilateral DLPFC, right cingulate gyrus and right thalamus. The secondary analyses showed improved convergence relative to the primary analysis. Conclusion OCD patients showed dysfunction FPN, including impaired local important nodal brain regions and hypoconnectivity within the FPN (mainly in the bilateral DLPFC), during the resting state. Moreover, FPN appears to interact with the salience network (SN) and default mode network (DMN) through pivotal brain regions. Consistent with the hypothesis of fronto-striatal circuit dysfunction, especially in the dorsal cognitive circuit, these findings provide strong evidence for integrating two pathophysiological models of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qianwen Xu
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Lisha Ma
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yueqi Huang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenjing Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan Liang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yunzhan Wang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wenxin Tang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhu
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaoying Jiang
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
11
|
Kim W, Kim MJ. Adaptive-to-maladaptive gradient of emotion regulation tendencies are embedded in the functional-structural hybrid connectome. Psychol Med 2024; 54:2299-2311. [PMID: 38533787 DOI: 10.1017/s0033291724000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
BACKGROUND Emotion regulation tendencies are well-known transdiagnostic markers of psychopathology, but their neurobiological foundations have mostly been examined within the theoretical framework of cortical-subcortical interactions. METHODS We explored the connectome-wide neural correlates of emotion regulation tendencies using functional and diffusion magnetic resonance images of healthy young adults (N = 99; age 20-30; 28 females). We first tested the importance of considering both the functional and structural connectome through intersubject representational similarity analyses. Then, we employed a canonical correlation analysis between the functional-structural hybrid connectome and 23 emotion regulation strategies. Lastly, we sought to externally validate the results on a transdiagnostic adolescent sample (N = 93; age 11-19; 34 females). RESULTS First, interindividual similarity of emotion regulation profiles was significantly correlated with interindividual similarity of the functional-structural hybrid connectome, more so than either the functional or structural connectome. Canonical correlation analysis revealed that an adaptive-to-maladaptive gradient of emotion regulation tendencies mapped onto a specific configuration of covariance within the functional-structural hybrid connectome, which primarily involved functional connections in the motor network and the visual networks as well as structural connections in the default mode network and the subcortical-cerebellar network. In the transdiagnostic adolescent dataset, stronger functional signatures of the found network were associated with higher general positive affect through more frequent use of adaptive coping strategies. CONCLUSIONS Taken together, our study illustrates a gradient of emotion regulation tendencies that is best captured when simultaneously considering the functional and structural connections across the whole brain.
Collapse
Affiliation(s)
- Wonyoung Kim
- Department of Psychology, Emory University, Atlanta, GA, USA
- Department of Psychology, Sungkyunkwan University, Seoul, South Korea
| | - M Justin Kim
- Department of Psychology, Sungkyunkwan University, Seoul, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
| |
Collapse
|
12
|
Schumer MC, Bertocci MA, Aslam HA, Graur S, Bebko G, Stiffler RS, Skeba AS, Brady TJ, Benjamin OE, Wang Y, Chase HW, Phillips ML. Patterns of Neural Network Functional Connectivity Associated With Mania/Hypomania and Depression Risk in 3 Independent Young Adult Samples. JAMA Psychiatry 2024; 81:167-177. [PMID: 37910117 PMCID: PMC10620679 DOI: 10.1001/jamapsychiatry.2023.4150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 11/03/2023]
Abstract
Importance Mania/hypomania is the pathognomonic feature of bipolar disorder (BD). Established, reliable neural markers denoting mania/hypomania risk to help with early risk detection and diagnosis and guide the targeting of pathophysiologically informed interventions are lacking. Objective To identify patterns of neural responses associated with lifetime mania/hypomania risk, the specificity of such neural responses to mania/hypomania risk vs depression risk, and the extent of replication of findings in 2 independent test samples. Design, Setting, and Participants This cross-sectional study included 3 independent samples of young adults aged 18 to 30 years without BD or active substance use disorder within the past 3 months who were recruited from the community through advertising. Of 603 approached, 299 were ultimately included and underwent functional magnetic resonance imaging at the University of Pittsburgh, Pittsburgh, Pennsylvania, from July 2014 to May 2023. Main Outcomes and Measures Activity and functional connectivity to approach-related emotions were examined using a region-of-interest mask supporting emotion processing and emotional regulation. The Mood Spectrum Self-Report assessed lifetime mania/hypomania risk and depression risk. In the discovery sample, elastic net regression models identified neural variables associated with mania/hypomania and depression risk; multivariable regression models identified the extent to which selected variables were significantly associated with each risk measure. Multivariable regression models then determined whether associations in the discovery sample replicated in both test samples. Results A total of 299 participants were included. The discovery sample included 114 individuals (mean [SD] age, 21.60 [1.91] years; 80 female and 34 male); test sample 1, 103 individuals (mean [SD] age, 21.57 [2.09] years; 30 male and 73 female); and test sample 2, 82 individuals (mean [SD] age, 23.43 [2.86] years; 48 female, 29 male, and 5 nonbinary). Associations between neuroimaging variables and Mood Spectrum Self-Report measures were consistent across all 3 samples. Bilateral amygdala-left amygdala functional connectivity and bilateral ventrolateral prefrontal cortex-right dorsolateral prefrontal cortex functional connectivity were positively associated with mania/hypomania risk: discovery omnibus χ2 = 1671.7 (P < .001); test sample 1 omnibus χ2 = 1790.6 (P < .001); test sample 2 omnibus χ2 = 632.7 (P < .001). Bilateral amygdala-left amygdala functional connectivity and right caudate activity were positively associated and negatively associated with depression risk, respectively: discovery omnibus χ2 = 2566.2 (P < .001); test sample 1 omnibus χ2 = 2935.9 (P < .001); test sample 2 omnibus χ2 = 1004.5 (P < .001). Conclusions and Relevance In this study of young adults, greater interamygdala functional connectivity was associated with greater risk of both mania/hypomania and depression. By contrast, greater functional connectivity between ventral attention or salience and central executive networks and greater caudate deactivation were reliably associated with greater risk of mania/hypomania and depression, respectively. These replicated findings indicate promising neural markers distinguishing mania/hypomania-specific risk from depression-specific risk and may provide neural targets to guide and monitor interventions for mania/hypomania and depression in at-risk individuals.
Collapse
Affiliation(s)
- Maya C. Schumer
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Michele A. Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haris A. Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Richelle S. Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alexander S. Skeba
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tyler J. Brady
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Osasumwen E. Benjamin
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yiming Wang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Henry W. Chase
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary L. Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Smith PJ, Whitson HE, Merwin RM, O’Hayer CV, Strauman TJ. Engineering Virtuous health habits using Emotion and Neurocognition: Flexibility for Lifestyle Optimization and Weight management (EVEN FLOW). Front Aging Neurosci 2023; 15:1256430. [PMID: 38076541 PMCID: PMC10702760 DOI: 10.3389/fnagi.2023.1256430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/20/2023] [Indexed: 02/12/2024] Open
Abstract
Interventions to preserve functional independence in older adults are critically needed to optimize 'successful aging' among the large and increasing population of older adults in the United States. For most aging adults, the management of chronic diseases is the most common and impactful risk factor for loss of functional independence. Chronic disease management inherently involves the learning and adaptation of new behaviors, such as adopting or modifying physical activity habits and managing weight. Despite the importance of chronic disease management in older adults, vanishingly few individuals optimally manage their health behavior in the service of chronic disease stabilization to preserve functional independence. Contemporary conceptual models of chronic disease management and health habit theory suggest that this lack of optimal management may result from an underappreciated distinction within the health behavior literature: the behavioral domains critical for initiation of new behaviors (Initiation Phase) are largely distinct from those that facilitate their maintenance (Maintenance Phase). Psychological factors, particularly experiential acceptance and trait levels of openness are critical to engagement with new health behaviors, willingness to make difficult lifestyle changes, and the ability to tolerate aversive affective responses in the process. Cognitive factors, particularly executive function, are critical to learning new skills, using them effectively across different areas of life and contextual demands, and updating of skills to facilitate behavioral maintenance. Emerging data therefore suggests that individuals with greater executive function are better able to sustain behavior changes, which in turn protects against cognitive decline. In addition, social and structural supports of behavior change serve a critical buffering role across phases of behavior change. The present review attempts to address these gaps by proposing a novel biobehavioral intervention framework that incorporates both individual-level and social support system-level variables for the purpose of treatment tailoring. Our intervention framework triangulates on the central importance of self-regulatory functioning, proposing that both cognitive and psychological mechanisms ultimately influence an individuals' ability to engage in different aspects of self-management (individual level) in the service of maintaining independence. Importantly, the proposed linkages of cognitive and affective functioning align with emerging individual difference frameworks, suggesting that lower levels of cognitive and/or psychological flexibility represent an intermediate phenotype of risk. Individuals exhibiting self-regulatory lapses either due to the inability to regulate their emotional responses or due to the presence of executive functioning impairments are therefore the most likely to require assistance to preserve functional independence. In addition, these vulnerabilities will be more easily observable for individuals requiring greater complexity of self-management behavioral demands (e.g. complexity of medication regimen) and/or with lesser social support. Our proposed framework also intuits several distinct intervention pathways based on the profile of self-regulatory behaviors: we propose that individuals with intact affect regulation and impaired executive function will preferentially respond to 'top-down' training approaches (e.g., strategy and process work). Individuals with intact executive function and impaired affect regulation will respond to 'bottom-up' approaches (e.g., graded exposure). And individuals with impairments in both may require treatments targeting caregiving or structural supports, particularly in the context of elevated behavioral demands.
Collapse
Affiliation(s)
- Patrick J. Smith
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Heather E. Whitson
- Department of Medicine, Duke University Medical Center, Durham, NC, United States
- Department of Medicine, Durham Veterans Affairs Medical Center, Durham, NC, United States
| | - Rhonda M. Merwin
- Department of Psychiatry, Duke University Medical Center, Durham, NC, United States
| | - C. Virginia O’Hayer
- Department of Psychiatry and Human Behavior, Thomas Jefferson University, Philadelphia, PA, United States
| | - Timothy J. Strauman
- Department of Psychiatry, Duke University Medical Center, Durham, NC, United States
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
14
|
Banihashemi L, Schmithorst VJ, Bertocci MA, Samolyk A, Zhang Y, Lima Santos JP, Versace A, Taylor M, English G, Northrup JB, Lee VK, Stiffler R, Aslam H, Panigrahy A, Hipwell AE, Phillips ML. Neural Network Functional Interactions Mediate or Suppress White Matter-Emotional Behavior Relationships in Infants. Biol Psychiatry 2023; 94:57-67. [PMID: 36918062 PMCID: PMC10365319 DOI: 10.1016/j.biopsych.2023.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Elucidating the neural basis of infant positive emotionality and negative emotionality can identify biomarkers of pathophysiological risk. Our goal was to determine how functional interactions among large-scale networks supporting emotional regulation influence white matter (WM) microstructural-emotional behavior relationships in 3-month-old infants. We hypothesized that microstructural-emotional behavior relationships would be differentially mediated or suppressed by underlying resting-state functional connectivity (rsFC), particularly between default mode network and central executive network structures. METHODS The analytic sample comprised primary caregiver-infant dyads (52 infants [42% female, mean age at scan = 15.10 weeks]), with infant neuroimaging and emotional behavior assessments conducted at 3 months. Infant WM and rsFC were assessed by diffusion-weighted imaging/tractography and resting-state magnetic resonance imaging during natural, nonsedated sleep. The Infant Behavior Questionnaire-Revised provided measures of infant positive emotionality and negative emotionality. RESULTS After significant WM-emotional behavior relationships were observed, multimodal analyses were performed using whole-brain voxelwise mediation. Results revealed that greater cingulum bundle volume was significantly associated with lower infant positive emotionality (β = -0.263, p = .031); however, a pattern of lower rsFC between central executive network and default mode network structures suppressed this otherwise negative relationship. Greater uncinate fasciculus volume was significantly associated with lower infant negative emotionality (β = -0.296, p = .022); however, lower orbitofrontal cortex-amygdala rsFC suppressed this otherwise negative relationship, while greater orbitofrontal cortex-central executive network rsFC mediated this relationship. CONCLUSIONS Functional interactions among neural networks have an important influence on WM microstructural-emotional behavior relationships in infancy. These relationships can elucidate neural mechanisms that contribute to future behavioral and emotional problems in childhood.
Collapse
Affiliation(s)
- Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| | - Vanessa J Schmithorst
- Department of Pediatric Radiology, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alyssa Samolyk
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Yicheng Zhang
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - João Paulo Lima Santos
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Megan Taylor
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Gabrielle English
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jessie B Northrup
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Vincent K Lee
- Department of Pediatric Radiology, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Haris Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ashok Panigrahy
- Department of Pediatric Radiology, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Alison E Hipwell
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
15
|
Bertocci MA, Afriyie-Agyemang Y, Rozovsky R, Iyengar S, Stiffler R, Aslam HA, Bebko G, Phillips ML. Altered patterns of central executive, default mode and salience network activity and connectivity are associated with current and future depression risk in two independent young adult samples. Mol Psychiatry 2023; 28:1046-1056. [PMID: 36481935 PMCID: PMC10530634 DOI: 10.1038/s41380-022-01899-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022]
Abstract
Neural markers of pathophysiological processes underlying the dimension of subsyndromal-syndromal-level depression severity can provide objective, biologically informed targets for novel interventions to help prevent the onset of depressive and other affective disorders in individuals with subsyndromal symptoms, and prevent worsening symptom severity in those with these disorders. Greater functional connectivity (FC) among the central executive network (CEN), supporting emotional regulation (ER) subcomponent processes such as working memory (WM), the default mode network (DMN), supporting self-related information processing, and the salience network (SN), is thought to interfere with cognitive functioning and predispose to depressive disorders. We examined in young adults (1) relationships among activity and FC in these networks and current depression severity, using a paradigm designed to examine WM and ER capacity in n = 90, age = 21.7 (2.0); (2) the extent to which these relationships were specific to depression versus mania/hypomania; (3) whether findings in a first, "discovery" sample could be replicated in a second, independent, "test" sample of young adults n = 96, age = 21.6 (2.1); and (4) whether such relationships also predicted depression at up to 12 months post scan and/or mania/hypomania severity in (n = 61, including participants from both samples, age = 21.6 (2.1)). We also examined the extent to which there were common depression- and anxiety-related findings, given that depression and anxiety are highly comorbid. In the discovery sample, current depression severity was robustly predicted by greater activity and greater positive functional connectivity among the CEN, DMN, and SN during working memory and emotional regulation tasks (all ps < 0.05 qFDR). These findings were specific to depression, replicated in the independent sample, and predicted future depression severity. Similar neural marker-anxiety relationships were shown, with robust DMN-SN FC relationships. These data help provide objective, neural marker targets to better guide and monitor early interventions in young adults at risk for, or those with established, depressive and other affective disorders.
Collapse
Affiliation(s)
- Michele A Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | | | - Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satish Iyengar
- Department of Statistics, University of Pittsburgh School of Arts and Sciences, Pittsburgh, PA, USA
| | - Richelle Stiffler
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haris A Aslam
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Yu J, Zhou P, Yuan S, Wu Y, Wang C, Zhang N, Li CSR, Liu N. Symptom provocation in obsessive-compulsive disorder: A voxel-based meta-analysis and meta-analytic connectivity modeling. J Psychiatr Res 2022; 146:125-134. [PMID: 34971910 DOI: 10.1016/j.jpsychires.2021.12.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 11/04/2021] [Accepted: 12/11/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a heterogeneous psychiatric illness with a complex array of symptoms and potentially distinct neural underpinnings. We employed meta-analysis and connectivity modeling of symptom dimensions to delineate the circuit mechanisms of OCD. METHODS With the activation likelihood estimation (ALE) algorithm we performed meta-analysis of whole-brain functional magnetic resonance imaging (fMRI) studies of symptom provocation. We contrasted all OCD patients and controls in a primary analysis and divided the studies according to clinical symptoms in secondary meta-analyses. Finally, we employed meta-analytic connectivity modeling analyses (MACMs) to examine co-activation patterns of the brain regions revealed in the primary meta-analysis. RESULTS A total of 14 experiments from 12 eligible studies with a total of 238 OCD patients (124 men) and 219 healthy controls (120 men) were included in the primary analysis. OCD patients showed higher activation in the right caudate body/putamen/insula and lower activation in the left orbitofrontal cortex (OFC), left inferior frontal gyrus (IFG), left caudate body/middle cingulate cortex (MCC), right middle temporal gyrus (MTG), middle occipital gyrus (MOG) and right lateral occipital gyrus (LOG). MACMs revealed significant co-activation between left IFG and left caudate body/MCC, left MOG and right LOG, right LOG and MTG. In the secondary meta-analyses, the washing subgroup showed higher activation in the right OFC, bilateral ACC, left MOG and right caudate body. CONCLUSION OCD patients showed elevated dorsal striatal activation during symptom provocation. In contrast, the washing subgroup engaged higher activation in frontal, temporal and posterior cortical structures as well as right caudate body. Broadly consistent with the proposition of cortico-striatal-thalamic-cortical circuit dysfunction, these findings highlight potentially distinct neural circuits that may underlie the symptoms and potentially etiological subtypes of OCD.
Collapse
Affiliation(s)
- Jianping Yu
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ping Zhou
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Shiting Yuan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Yun Wu
- Functional Brain Imaging Institute of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chun Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Ning Zhang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| | - Chiang-Shan R Li
- Department of Psychiatry, Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Na Liu
- Department of Medical Psychology, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|