1
|
Wang Y, Liu J, Yue S, Chen L, Singh A, Yu T, Calipari ES, Wang ZJ. Prefrontal cortex excitatory neurons show distinct response to heroin-associated cue and social stimulus after prolonged heroin abstinence in mice. Neuropsychopharmacology 2025:10.1038/s41386-025-02102-6. [PMID: 40223131 DOI: 10.1038/s41386-025-02102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Substance use disorder (SUD) has been linked with social impairments. The social cognitive dysfunctions can further increase the risk of the development of SUD or relapse. Therefore, understanding the neural mechanism of substance exposure-associated social impairments is beneficial for the development of novel prevention or treatment strategies for SUD. The prefrontal cortex (PFC) is a key brain region involved in both social cognition and drug addiction. Specifically, the prelimbic part of PFC (PrL) regulates social interaction and heroin-seeking behavior. Therefore, in this study, we explored how PFC excitatory neurons respond to social stimuli after prolonged abstinence from heroin self-administration (SA). Using fiber photometry calcium imaging, we monitored calcium-dependent fluorescent signals in PrL CaMKII-expressing neurons during drug seeking and social interaction tests following 14 days of abstinence from heroin SA. We found that GCaMP6f signals in PrL CaMKII-expressing neurons were increased when heroin-associated cues were presented during drug-seeking tests in both male and female mice after prolonged heroin abstinence, although the baseline neuronal activity in home cage is lower in the heroin group. Conversely, the calcium signals in PrL CaMKII-expressing neurons during social investigation were decreased after heroin abstinence in both sexes, along with reduced total social interaction time. In addition, drug-seeking behavior is partially negatively correlated with social investigation time. These findings provide direct evidence showing that opioid exposure impairs the PFC functional response to social stimuli, which may potentially increase the risk for opioid relapse.
Collapse
Affiliation(s)
- Yunwanbin Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Junting Liu
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Shuwen Yue
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Lu Chen
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Archana Singh
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Tianshi Yu
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Zi-Jun Wang
- Department of Pharmacology & Toxicology, School of Pharmacy, University of Kansas, Lawrence, KS, USA.
- Cofrin Logan Center for Addiction Research and Treatment, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
2
|
Siemsen BM, Franco D, Lobo MK. Corticostriatal contributions to dysregulated motivated behaviors in stress, depression, and substance use disorders. Neurosci Res 2025; 211:37-48. [PMID: 36565858 DOI: 10.1016/j.neures.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Coordinated network activity, particularly in circuits arising from the prefrontal cortex innervating the ventral striatum, is crucial for normal processing of reward-related information which is perturbed in several psychiatric disorders characterized by dysregulated reward-related behaviors. Stress-induced depression and substance use disorders (SUDs) both share this common underlying pathology, manifested as deficits in perceived reward in depression, and increased attribution of positive valence to drug-predictive stimuli and dysfunctional cognition in SUDs. Here we review preclinical and clinical data that support dysregulation of motivated and reward-related behaviors as a core phenotype shared between these two disorders. We posit that altered processing of reward-related stimuli arises from dysregulated control of subcortical circuits by upstream regions implicated in executive control. Although multiple circuits are directly involved in reward processing, here we focus specifically on the role of corticostriatal circuit dysregulation. Moreover, we highlight the growing body of evidence indicating that such abnormalities may be due to heightened neuroimmune signaling by microglia, and that targeting the neuroimmune system may be a viable approach to treating this shared symptom.
Collapse
Affiliation(s)
| | - Daniela Franco
- University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Galiza Soares JA, Sutley-Koury SN, Pomrenze MB, Tucciarone JM. Opioidergic tuning of social attachment: reciprocal relationship between social deprivation and opioid abuse. Front Neuroanat 2025; 18:1521016. [PMID: 39917739 PMCID: PMC11798945 DOI: 10.3389/fnana.2024.1521016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/24/2024] [Indexed: 02/09/2025] Open
Abstract
Individuals misusing opioids often report heightened feelings of loneliness and decreased ability to maintain social connections. This disruption in social functioning further promotes addiction, creating a cycle in which increasing isolation drives drug use. Social factors also appear to impact susceptibility and progression of opioid dependence. In particular, increasing evidence suggests that poor early social bond formation and social environments may increase the risk of opioid abuse later in life. The brain opioid theory of social attachment suggests that endogenous opioids are key to forming and sustaining social bonds. Growing literature describes the opioid system as a powerful modulator of social separation distress and attachment formation in rodents and primates. In this framework, disruptions in opioidergic signaling due to opioid abuse may mediate social reward processing and behavior. While changes in endogenous opioid peptides and receptors have been reported in these early-life adversity models, the underlying mechanisms remain poorly understood. This review addresses the apparent bidirectional causal relationship between social deprivation and opioid addiction susceptibility, investigating the role of opioid transmission in attachment bond formation and prosocial behavior. We propose that early social deprivation disrupts the neurobiological substrates associated with opioid transmission, leading to deficits in social attachment and reinforcing addictive behaviors. By examining the literature, we discuss potential overlapping neural pathways between social isolation and opioid addiction, focusing on major reward-aversion substrates known to respond to opioids.
Collapse
Affiliation(s)
- Julia A. Galiza Soares
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Samantha N. Sutley-Koury
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Jason M. Tucciarone
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| |
Collapse
|
4
|
Quave CB, Vasquez AM, Aquino-Miranda G, Marín M, Bora EP, Chidomere CL, Zhang XO, Engelke DS, Do-Monte FH. Neural signatures of opioid-induced risk-taking behavior in the prelimbic prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.05.578828. [PMID: 38370807 PMCID: PMC10871263 DOI: 10.1101/2024.02.05.578828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Opioid use disorder occurs alongside impaired risk-related decision-making, but the underlying neural correlates are unclear. We developed an approach-avoidance conflict task using a modified conditioned place preference procedure to study neural signals of risky opioid seeking in the prefrontal cortex, a region implicated in executive decision-making. Following morphine conditioned place preference, rats underwent a conflict test in which fear-inducing cat odor was introduced in the previously drug-paired side of the apparatus. While the saline-exposed control group avoided cat odor, the morphine group included two subsets of rats that either maintained a preference for the paired side despite the presence of cat odor (Risk-Takers) or exhibited increased avoidance (Risk-Avoiders), as revealed by K-means clustering. Single-unit recordings from the prelimbic cortex (PL) demonstrated decreased neuronal activity upon acute morphine exposure in both Risk-Takers and Risk-Avoiders, but this firing rate suppression was absent after repeated morphine administration. Risk-Avoiders also displayed distinct post-morphine excitation in PL which persisted across conditioning. During the preference test, subpopulations of PL neurons in all groups were either excited or inhibited when rats entered the paired side. Interestingly, the inhibition in PL activity was lost during the subsequent conflict test in both saline and Risk-Avoider groups, but persisted in Risk-Takers. Additionally, Risk-Takers showed an increase in the proportion of PL neurons displaying location-specific firing in the drug-paired side from the preference to the conflict test. Together, our results suggest that persistent PL inhibitory signaling in the drug-associated context during motivational conflict may underlie increased risk-taking behavior following opioid exposure.
Collapse
Affiliation(s)
- Cana B. Quave
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Andres M. Vasquez
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Neuroscience, Rice University, Houston, TX 77005, USA
| | - Guillermo Aquino-Miranda
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Milagros Marín
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Esha P. Bora
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Chinenye L. Chidomere
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- Dept. of Biomedical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xu O. Zhang
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Douglas S. Engelke
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Fabricio H. Do-Monte
- Dept. of Neurobiology & Anatomy, The University of Texas Health Science Center, Houston, TX 77030, USA
- McGovern Medical School at UTHealth Houston, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|
5
|
Nippert KE, Rowland CP, Vazey EM, Moorman DE. Alcohol, flexible behavior, and the prefrontal cortex: Functional changes underlying impaired cognitive flexibility. Neuropharmacology 2024; 260:110114. [PMID: 39134298 PMCID: PMC11694314 DOI: 10.1016/j.neuropharm.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/22/2024]
Abstract
Cognitive flexibility enables individuals to alter their behavior in response to changing environmental demands, facilitating optimal behavior in a dynamic world. The inability to do this, called behavioral inflexibility, is a pervasive behavioral phenotype in alcohol use disorder (AUD), driven by disruptions in cognitive flexibility. Research has repeatedly shown that behavioral inflexibility not only results from alcohol exposure across species but can itself be predictive of future drinking. Like many high-level executive functions, flexible behavior requires healthy functioning of the prefrontal cortex (PFC). The scope of this review addresses two primary themes: first, we outline tasks that have been used to investigate flexibility in the context of AUD or AUD models. We characterize these based on the task features and underlying cognitive processes that differentiate them from one another. We highlight the neural basis of flexibility measures, focusing on the PFC, and how acute or chronic alcohol in humans and non-human animal models impacts flexibility. Second, we consolidate findings on the molecular, physiological and functional changes in the PFC elicited by alcohol, that may contribute to cognitive flexibility deficits seen in AUD. Collectively, this approach identifies several key avenues for future research that will facilitate effective treatments to promote flexible behavior in the context of AUD, to reduce the risk of alcohol related harm, and to improve outcomes following AUD. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Kathryn E Nippert
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Courtney P Rowland
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Elena M Vazey
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | - David E Moorman
- Neuroscience and Behavior Graduate Program, University of Massachusetts Amherst, Amherst, MA, 01003, USA; Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
6
|
Cole RH, Moussawi K, Joffe ME. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024; 248:109891. [PMID: 38417545 PMCID: PMC10939756 DOI: 10.1016/j.neuropharm.2024.109891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/01/2024]
Abstract
Several neurochemical systems converge in the prefrontal cortex (PFC) to regulate cognitive and motivated behaviors. A rich network of endogenous opioid peptides and receptors spans multiple PFC cell types and circuits, and this extensive opioid system has emerged as a key substrate underlying reward, motivation, affective behaviors, and adaptations to stress. Here, we review the current evidence for dysregulated cortical opioid signaling in the pathogenesis of psychiatric disorders. We begin by providing an introduction to the basic anatomy and function of the cortical opioid system, followed by a discussion of endogenous and exogenous opioid modulation of PFC function at the behavioral, cellular, and synaptic level. Finally, we highlight the therapeutic potential of endogenous opioid targets in the treatment of psychiatric disorders, synthesizing clinical reports of altered opioid peptide and receptor expression and activity in human patients and summarizing new developments in opioid-based medications. This article is part of the Special Issue on "PFC circuit function in psychiatric disease and relevant models".
Collapse
Affiliation(s)
- Rebecca H Cole
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA
| | - Max E Joffe
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15219, USA; Translational Neuroscience Program, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Pickens CL, Hougham A, Kim J, Wang C, Leder J, Line C, McDaniel K, Micek L, Miller J, Powell K, Waren O, Brenneman E, Erdley B. Impairments in expression of devaluation in a Pavlovian goal-tracking task, but not a free operant devaluation task, after fentanyl exposure in female rats. Behav Brain Res 2024; 458:114761. [PMID: 37977341 PMCID: PMC10842184 DOI: 10.1016/j.bbr.2023.114761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
In laboratory animals, there are numerous demonstrations that past exposure to drugs of abuse can lead to devaluation impairments weeks after the final drug exposure, with the majority of these demonstrations examining effects of exposure to psychostimulants. There has been minimal investigation into whether prior exposure to opiates can lead to devaluation impairments. Here, we first trained female rats that two separate cuelights predicted two different foods and measured Pavlovian goal-tracking responses (Experiment 1) or trained female rats to press two levers to earn two different foods and measured this operant response (Experiment 2). In both experiments, we subsequently gave the rats injections of fentanyl twice daily for 6 days, and then tested rats for conditioned responses after satiation on one of the foods 48-h after the final injection. We found that rats were impaired in the expression of devaluation in the Pavlovian task after fentanyl exposure, but were unimpaired in the expression of devaluation in the operant task. The pattern of results is most consistent with an impairment in lateral orbitofrontal cortex function, but additional research is needed to determine the neurobiological cause of this pattern of results.
Collapse
Affiliation(s)
- Charles L Pickens
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA.
| | - Alyssa Hougham
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Jihyeon Kim
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Chuhan Wang
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Jendaya Leder
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Chelsea Line
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Kathleen McDaniel
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Lydia Micek
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Jadyn Miller
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Kendall Powell
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Olivia Waren
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Ellie Brenneman
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| | - Brooke Erdley
- Department of Psychological Sciences, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
8
|
Wheeler AR, Truckenbrod LM, Cooper EM, Betzhold SM, Setlow B, Orsini CA. Effects of fentanyl self-administration on risk-taking behavior in male rats. Psychopharmacology (Berl) 2023; 240:2529-2544. [PMID: 37612455 PMCID: PMC10878692 DOI: 10.1007/s00213-023-06447-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023]
Abstract
RATIONALE Individuals with opioid use disorder (OUD) exhibit impaired decision making and elevated risk-taking behavior. In contrast to the effects of natural and semi-synthetic opioids, however, the impact of synthetic opioids on decision making is still unknown. OBJECTIVES The objective of the current study was to determine how chronic exposure to the synthetic opioid fentanyl alters risk-based decision making in adult male rats. METHODS Male rats underwent 14 days of intravenous fentanyl or oral sucrose self-administration. After 3 weeks of abstinence, rats were tested in a decision-making task in which they chose between a small, safe food reward and a large food reward accompanied by variable risk of footshock punishment. Following testing in the decision-making task, rats were tested in control assays that assessed willingness to work for food and shock reactivity. Lastly, rats were tested on a probabilistic reversal learning task to evaluate enduring effects of fentanyl on behavioral flexibility. RESULTS Relative to rats in the sucrose group, rats in the fentanyl group displayed greater choice of the large, risky reward (risk taking), an effect that was present as long as 7 weeks into abstinence. This increased risk taking was driven by enhanced sensitivity to the large rewards and diminished sensitivity to punishment. The fentanyl-induced elevation in risk taking was not accompanied by alterations in food motivation or shock reactivity or impairments in behavioral flexibility. CONCLUSIONS Results from the current study reveal that the synthetic opioid fentanyl leads to long-lasting increases in risk taking in male rats. Future experiments will extend this work to females and identify neural mechanisms that underlie these drug-induced changes in risk taking.
Collapse
Affiliation(s)
- Alexa-Rae Wheeler
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Leah M Truckenbrod
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Emily M Cooper
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | - Sara M Betzhold
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
| | - Barry Setlow
- Department of Psychiatry, University of Florida, Gainesville, FL, USA
- Center for Addiction Research and Education, University of Florida, Gainesville, FL, USA
| | - Caitlin A Orsini
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA.
- Department of Psychology, University of Texas at Austin, Austin, TX, USA.
- Department of Neurology, University of Texas at Austin, Austin, TX, USA.
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, USA.
- Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1601B Trinity Street, Austin, TX, 78712, USA.
| |
Collapse
|
9
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
10
|
Kokane SS, Cole RD, Bordieanu B, Ray CM, Haque IA, Otis JM, McGinty JF. Increased Excitability and Synaptic Plasticity of Drd1- and Drd2-Expressing Prelimbic Neurons Projecting to Nucleus Accumbens after Heroin Abstinence Are Reversed by Cue-Induced Relapse and Protein Kinase A Inhibition. J Neurosci 2023; 43:4019-4032. [PMID: 37094933 PMCID: PMC10255008 DOI: 10.1523/jneurosci.0108-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/26/2023] Open
Abstract
Dysregulation of the input from the prefrontal cortex (PFC) to the nucleus accumbens (NAc) contributes to cue-induced opioid seeking but the heterogeneity in, and regulation of, prelimbic (PL)-PFC to NAc (PL->NAc) neurons that are altered has not been comprehensively explored. Recently, baseline and opiate withdrawal-induced differences in intrinsic excitability of Drd1+ (D1+) versus Drd2+ (D2+) PFC neurons have been demonstrated. Thus, here we investigated physiological adaptations of PL->NAc D1+ versus D2+ neurons after heroin abstinence and cue-induced relapse. Drd1-Cre+ and Drd2-Cre+ transgenic male Long-Evans rats with virally labeled PL->NAc neurons were trained to self-administer heroin followed by 1 week of forced abstinence. Heroin abstinence significantly increased intrinsic excitability in D1+ and D2+ PL->NAc neurons and increased postsynaptic strength selectively in D1+ neurons. These changes were normalized by cue-induced relapse to heroin seeking. Based on protein kinase A (PKA)-dependent changes in the phosphorylation of plasticity-related proteins in the PL cortex during abstinence and cue-induced relapse to cocaine seeking, we assessed whether the electrophysiological changes in D1+ and D2+ PL->NAc neurons during heroin abstinence were regulated by PKA. In heroin-abstinent PL slices, application of the PKA antagonist (R)-adenosine, cyclic 3',5'-(hydrogenphosphorothioate) triethylammonium (RP-cAMPs) reversed intrinsic excitability in both D1+ and D2+ neurons and postsynaptic strength in only D1+ neurons. Additionally, in vivo bilateral intra-PL infusion of RP-cAMPs after abstinence from heroin inhibited cue-induced relapse to heroin seeking. These data reveal that PKA activity in D1+ and D2+ PL->NAc neurons is not only required for abstinence-induced physiological adaptations but is also required for cue-induced relapse to heroin seeking.SIGNIFICANCE STATEMENT Neuronal plasticity in the medial prefrontal cortex is thought to underlie relapse to drug seeking, yet the subpopulation of neurons that express this plasticity to functionally guide relapse is unclear. Here we show cell type-specific adaptations in Drd1-expressing versus Drd2-expressing prelimbic pyramidal neurons with efferent projections to nucleus accumbens. These adaptations are bidirectionally regulated during abstinence versus relapse and involve protein kinase A (PKA) activation. Furthermore, we show that disruption of the abstinence-associated adaptations via site-specific PKA inhibition abolishes relapse. These data reveal the promising therapeutic potential of PKA inhibition for preventing relapse to heroin seeking and suggest that cell type-specific pharmacologies that target subpopulations of prefrontal neurons would be ideal for future therapeutic developments.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Robert D Cole
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Chevin M Ray
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Ishraq A Haque
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - James M Otis
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
11
|
Wakhlu A, Engelhardt A, Anderson EM, Grafelman E, Ouimet A, Hearing MC. Adolescent morphine exposure impairs cognitive flexibility in female but not male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.09.536177. [PMID: 37090510 PMCID: PMC10120710 DOI: 10.1101/2023.04.09.536177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Use of prescription opioids continues to rise, especially in adolescent individuals. As adolescence is a critical development window for higher order cognitive functions, thus opioid exposure during this period may have significant long-lasting effects on cognitive function and predisposition individuals to be at greater risk of developing opioid use later in life. Here, we examine previously explored effects of opioid exposure during adolescence on affect-related behavior, motivation, and cognitive flexibility. We find that a two-week exposure to non-contingent morphine during adolescence (i.e., post-weaning) does not alter performance in an elevated plus maze, forced swim test, or motivation for appetitive reward in male or female mice when tested during adolescence or adulthood. Examination of how adolescent morphine impacts cognition revealed impairments in visual-based discriminative learning and cognitive flexibility in female but not male mice, as assessed using an operant-based attentional set-shifting task. Unexpectedly, deficits in discriminative learning are observed when testing occurred during adolescence but not adulthood, whereas impaired performance in the extradimensional shift remained impaired into adulthood. The data indicate that opioid exposure during adolescence has a greater impact on cognitive function in female mice and that these deficits may be more widespread during acute withdrawal periods, while deficits in flexibility more enduring.
Collapse
Affiliation(s)
- Aditii Wakhlu
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233
| | - Annabel Engelhardt
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233
| | - Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233
| | - Elaine Grafelman
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233
| | - Abbigail Ouimet
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53233
| |
Collapse
|
12
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|
13
|
Chang VN, Peters J. Neural circuits controlling choice behavior in opioid addiction. Neuropharmacology 2023; 226:109407. [PMID: 36592884 PMCID: PMC9898219 DOI: 10.1016/j.neuropharm.2022.109407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
As the opioid epidemic presents an ever-expanding public health threat, there is a growing need to identify effective new treatments for opioid use disorder (OUD). OUD is characterized by a behavioral misallocation in choice behavior between opioids and other rewards, as opioid use leads to negative consequences, such as job loss, family neglect, and potential overdose. Preclinical models of addiction that incorporate choice behavior, as opposed to self-administration of a single drug reward, are needed to understand the neural circuits governing opioid choice. These choice models recapitulate scenarios that humans suffering from OUD encounter in their daily lives. Indeed, patients with substance use disorders (SUDs) exhibit a propensity to choose drug under certain conditions. While most preclinical addiction models have focused on relapse as the outcome measure, our data suggest that choice is an independent metric of addiction severity, perhaps relating to loss of cognitive control over choice, as opposed to excessive motivational drive to seek drugs during relapse. In this review, we examine both preclinical and clinical literature on choice behavior for drugs, with a focus on opioids, and the neural circuits that mediate drug choice versus relapse. We argue that preclinical models of opioid choice are needed to identify promising new avenues for OUD therapy that are translationally relevant. Both forward and reverse translation will be necessary to identify novel treatment interventions. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Victoria N Chang
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jamie Peters
- Department of Anesthesiology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA; Department of Pharmacology, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
14
|
Xing Y, Zan C, Liu L. Recent advances in understanding neuronal diversity and neural circuit complexity across different brain regions using single-cell sequencing. Front Neural Circuits 2023; 17:1007755. [PMID: 37063385 PMCID: PMC10097998 DOI: 10.3389/fncir.2023.1007755] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/16/2023] [Indexed: 04/18/2023] Open
Abstract
Neural circuits are characterized as interconnecting neuron networks connected by synapses. Some kinds of gene expression and/or functional changes of neurons and synaptic connections may result in aberrant neural circuits, which has been recognized as one crucial pathological mechanism for the onset of many neurological diseases. Gradual advances in single-cell sequencing approaches with strong technological advantages, as exemplified by high throughput and increased resolution for live cells, have enabled it to assist us in understanding neuronal diversity across diverse brain regions and further transformed our knowledge of cellular building blocks of neural circuits through revealing numerous molecular signatures. Currently published transcriptomic studies have elucidated various neuronal subpopulations as well as their distribution across prefrontal cortex, hippocampus, hypothalamus, and dorsal root ganglion, etc. Better characterization of brain region-specific circuits may shed light on new pathological mechanisms involved and assist in selecting potential targets for the prevention and treatment of specific neurological disorders based on their established roles. Given diverse neuronal populations across different brain regions, we aim to give a brief sketch of current progress in understanding neuronal diversity and neural circuit complexity according to their locations. With the special focus on the application of single-cell sequencing, we thereby summarize relevant region-specific findings. Considering the importance of spatial context and connectivity in neural circuits, we also discuss a few published results obtained by spatial transcriptomics. Taken together, these single-cell sequencing data may lay a mechanistic basis for functional identification of brain circuit components, which links their molecular signatures to anatomical regions, connectivity, morphology, and physiology. Furthermore, the comprehensive characterization of neuron subtypes, their distributions, and connectivity patterns via single-cell sequencing is critical for understanding neural circuit properties and how they generate region-dependent interactions in different context.
Collapse
Affiliation(s)
- Yu Xing
- Department of Neurology, Beidahuang Industry Group General Hospital, Harbin, China
| | - Chunfang Zan
- Institute for Stroke and Dementia Research (ISD), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
| | - Lu Liu
- Munich Medical Research School (MMRS), LMU Klinikum, Ludwig-Maximilian-University (LMU), Munich, Germany
- *Correspondence: Lu Liu, ,
| |
Collapse
|
15
|
Niedringhaus M, West EA. Prelimbic cortex neural encoding dynamically tracks expected outcome value. Physiol Behav 2022; 256:113938. [PMID: 35944659 PMCID: PMC11247951 DOI: 10.1016/j.physbeh.2022.113938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/24/2022]
Abstract
Animals must modify their behavior based on updated expected outcomes in a changing environment. Prelimbic cortex (PrL) neural encoding during learning predicts, and is necessary for, appropriately altering behavior based on a new expected outcome value following devaluation. We aimed to determine how PrL neural activity encodes reward predictive cues after the expected outcome value of those cues is decreased following conditioned taste aversion. In one post-devaluation session, rats were tested under extinction to determine their ability to alter their behavior to the expected outcome values (i.e., extinction test). In a second post-devaluation session, rats were tested with the newly devalued outcome delivered so that the rats experienced the updated outcome value within the session (i.e., re-exposure test). We found that PrL neural encoding of the cue associated with the devalued reward predicted the ability of rats to suppress behavior in the extinction test session, but not in the re-exposure test session. While all rats were able to successfully devalue the outcome during conditioned taste aversion, a subset of rats continued to consume the devalued outcome in the re-exposure test session. We found differential patterns of PrL neural encoding in the population of rats that did not avoid the devalued outcome during the re-exposure test compared to the rats that successfully avoided the devalued outcome. Our findings suggest that PrL neural encoding dynamically tracks expected outcome values, and differential neural encoding in the PrL to reward predictive cues following expected outcome value changes may contribute to distinct behavioral phenotypes.
Collapse
Affiliation(s)
- Mark Niedringhaus
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084
| | - Elizabeth A West
- Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084; Graduate School of Biomedical Sciences, Rowan University School of Osteopathic Medicine, Stratford, NJ, 08084.
| |
Collapse
|
16
|
McKendrick G, McDevitt DS, Shafeek P, Cottrill A, Graziane NM. Anterior cingulate cortex and its projections to the ventral tegmental area regulate opioid withdrawal, the formation of opioid context associations and context-induced drug seeking. Front Neurosci 2022; 16:972658. [PMID: 35992922 PMCID: PMC9388764 DOI: 10.3389/fnins.2022.972658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Clinical evidence suggests that there are correlations between activity within the anterior cingulate cortex (ACC) following re-exposure to drug-associated contexts and drug craving. However, there are limited data contributing to our understanding of ACC function at the cellular level during re-exposure to drug-context associations as well as whether the ACC is directly related to context-induced drug seeking. Here, we addressed this issue by employing our novel behavioral procedure capable of measuring the formation of drug-context associations as well as context-induced drug-seeking behavior in male mice (8-12 weeks of age) that orally self-administered oxycodone. We found that mice escalated oxycodone intake during the long-access training sessions and that conditioning with oxycodone was sufficient to evoke conditioned place preference (CPP) and drug-seeking behaviors. Additionally, we found that thick-tufted, but not thin-tufted pyramidal neurons (PyNs) in the ACC as well as ventral tegmental area (VTA)-projecting ACC neurons had increased intrinsic membrane excitability in mice that self-administered oxycodone compared to controls. Moreover, we found that global inhibition of the ACC or inhibition of VTA-projecting ACC neurons was sufficient to significantly reduce oxycodone-induced CPP, drug seeking, and spontaneous opioid withdrawal. These results demonstrate a direct role of ACC activity in mediating context-induced opioid seeking among other behaviors, including withdrawal, that are associated with the DSM-V criteria of opioid use disorder.
Collapse
Affiliation(s)
- Greer McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Dillon S. McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Peter Shafeek
- Medicine Program, Penn State College of Medicine, Hershey, PA, United States
| | - Adam Cottrill
- Neuroscience Program, Penn State College of Medicine, Hershey, PA, United States
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States
| | - Nicholas M. Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
17
|
Insulin-like growth factor 1 regulates excitatory synaptic transmission in pyramidal neurons from adult prefrontal cortex. Neuropharmacology 2022; 217:109204. [PMID: 35931212 DOI: 10.1016/j.neuropharm.2022.109204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/07/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022]
Abstract
Insulin-like growth factor 1 (IGF1) influences synaptic function in addition to its role in brain development and aging. Although the expression levels of IGF1 and IGF1 receptor (IGF1R) peak during development and decline with age, the adult brain has abundant IGF1 or IGF1R expression. Studies reveal that IGF1 regulates the synaptic transmission in neurons from young animals. However, the action of IGF1 on neurons in the adult brain is still unclear. Here, we used prefrontal cortical (PFC) slices from adult mice (∼8 weeks old) to characterize the role of IGF1 on excitatory synaptic transmission in pyramidal neurons and the underlying molecular mechanisms. We first validated IGF1R expression in pyramidal neurons using translating ribosomal affinity purification assay. Then, using whole-cell patch-clamp recording, we found that IGF1 attenuated the amplitude of evoked excitatory postsynaptic current (EPSC) without affecting the frequency and amplitude of miniature EPSC. Furthermore, this decrease in excitatory neurotransmission was blocked by pharmacological inhibition of IGF1R or conditionally knockdown of IGF1R in PFC pyramidal neurons. In addition, we determined that IGF1-induced decrease of EPSC amplitude was due to postsynaptic effect (internalization of a-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid receptors [AMPAR]) rather than presynaptic glutamate release. Finally, we found that inhibition of metabotropic glutamate receptor subtype-1 (mGluR1) abolished IGF1-induced attenuation of evoked EPSC amplitude and decrease of AMPAR expression at synaptic membrane, suggesting mGluR1-mediated endocytosis of AMPAR was involved. Taken together, these data provide the first evidence that IGF1 regulates excitatory synaptic transmission in adult PFC via the interaction between IGF1R-dependent signaling pathway and mGluR1-mediated AMPAR endocytosis.
Collapse
|
18
|
Luo H, Marron Fernandez de Velasco E, Wickman K. Neuronal G protein-gated K + channels. Am J Physiol Cell Physiol 2022; 323:C439-C460. [PMID: 35704701 PMCID: PMC9362898 DOI: 10.1152/ajpcell.00102.2022] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels exert a critical inhibitory influence on neurons. Neuronal GIRK channels mediate the G protein-dependent, direct/postsynaptic inhibitory effect of many neurotransmitters including γ-aminobutyric acid (GABA), serotonin, dopamine, adenosine, somatostatin, and enkephalin. In addition to their complex regulation by G proteins, neuronal GIRK channel activity is sensitive to PIP2, phosphorylation, regulator of G protein signaling (RGS) proteins, intracellular Na+ and Ca2+, and cholesterol. The application of genetic and viral manipulations in rodent models, together with recent progress in the development of GIRK channel modulators, has increased our understanding of the physiological and behavioral impact of neuronal GIRK channels. Work in rodent models has also revealed that neuronal GIRK channel activity is modified, transiently or persistently, by various stimuli including exposure drugs of abuse, changes in neuronal activity patterns, and aversive experience. A growing body of preclinical and clinical evidence suggests that dysregulation of GIRK channel activity contributes to neurological diseases and disorders. The primary goals of this review are to highlight fundamental principles of neuronal GIRK channel biology, mechanisms of GIRK channel regulation and plasticity, the nascent landscape of GIRK channel pharmacology, and the potential relevance of GIRK channels to the pathophysiology and treatment of neurological diseases and disorders.
Collapse
Affiliation(s)
- Haichang Luo
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | | | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
19
|
Han Y, Cao L, Yuan K, Shi J, Yan W, Lu L. Unique Pharmacology, Brain Dysfunction, and Therapeutic Advancements for Fentanyl Misuse and Abuse. Neurosci Bull 2022; 38:1365-1382. [PMID: 35570233 PMCID: PMC9107910 DOI: 10.1007/s12264-022-00872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/13/2022] [Indexed: 11/20/2022] Open
Abstract
Fentanyl is a fully synthetic opioid with analgesic and anesthetic properties. It has become a primary driver of the deadliest opioid crisis in the United States and elsewhere, consequently imposing devastating social, economic, and health burdens worldwide. However, the neural mechanisms that underlie the behavioral effects of fentanyl and its analogs are largely unknown, and approaches to prevent fentanyl abuse and fentanyl-related overdose deaths are scarce. This review presents the abuse potential and unique pharmacology of fentanyl and elucidates its potential mechanisms of action, including neural circuit dysfunction and neuroinflammation. We discuss recent progress in the development of pharmacological interventions, anti-fentanyl vaccines, anti-fentanyl/heroin conjugate vaccines, and monoclonal antibodies to attenuate fentanyl-seeking and prevent fentanyl-induced respiratory depression. However, translational studies and clinical trials are still lacking. Considering the present opioid crisis, the development of effective pharmacological and immunological strategies to prevent fentanyl abuse and overdose are urgently needed.
Collapse
|
20
|
Franco D, Wulff AB, Lobo MK, Fox ME. Chronic Physical and Vicarious Psychosocial Stress Alter Fentanyl Consumption and Nucleus Accumbens Rho GTPases in Male and Female C57BL/6 Mice. Front Behav Neurosci 2022; 16:821080. [PMID: 35221946 PMCID: PMC8867005 DOI: 10.3389/fnbeh.2022.821080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/16/2022] Open
Abstract
Chronic stress can increase the risk of developing a substance use disorder in vulnerable individuals. Numerous models have been developed to probe the underlying neurobiological mechanisms, however, most prior work has been restricted to male rodents, conducted only in rats, or introduces physical injury that can complicate opioid studies. Here we sought to establish how chronic psychosocial stress influences fentanyl consumption in male and female C57BL/6 mice. We used chronic social defeat stress (CSDS), or the modified vicarious chronic witness defeat stress (CWDS), and used social interaction to stratify mice as stress-susceptible or resilient. We then subjected mice to a 15 days fentanyl drinking paradigm in the home cage that consisted of alternating forced and choice periods with increasing fentanyl concentrations. Male mice susceptible to either CWDS or CSDS consumed more fentanyl relative to unstressed mice. CWDS-susceptible female mice did not differ from unstressed mice during the forced periods, but showed increased preference for fentanyl over time. We also found decreased expression of nucleus accumbens Rho GTPases in male, but not female mice following stress and fentanyl drinking. We also compare fentanyl drinking behavior in mice that had free access to plain water throughout. Our results indicate that stress-sensitized fentanyl consumption is dependent on both sex and behavioral outcomes to stress.
Collapse
Affiliation(s)
- Daniela Franco
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andreas B. Wulff
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Megan E. Fox
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States,Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, PA, United States,*Correspondence: Megan E. Fox,
| |
Collapse
|
21
|
Anderson EM, Demis S, Wrucke B, Engelhardt A, Hearing MC. Infralimbic cortex pyramidal neuron GIRK signaling contributes to regulation of cognitive flexibility but not affect-related behavior in male mice. Physiol Behav 2021; 242:113597. [PMID: 34536435 DOI: 10.1016/j.physbeh.2021.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Dysfunction of the infralimbic cortical (ILC) region of the medial prefrontal cortex (mPFC) is thought to be an underlying factor in both affect- and cognition-related behavioral deficits that co-occur across neuropsychiatric disorders. Increasing evidence highlights pathological imbalances in prefrontal pyramidal neuron excitability and associated aberrant firing as an underlying factor in this dysfunction. G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate excitability of mPFC pyramidal neurons, however the functional role of these channels in ILC-dependent regulation of behavior and pyramidal neuron excitation is unknown. The present study used a viral-cre approach in male mice harboring a 'floxed' version of the kcnj3 (Girk1) gene, to disrupt GIRK1-containing channel expression in pyramidal neurons within the ILC. Loss of GIRK1-dependent signaling increased excitability and spike firing of pyramidal neurons but did not alter affective behavior measured in an elevated plus maze, forced swim test, or progressive ratio test of motivation. Alternatively, ablation of GIRK1 impaired performance in an operant-based attentional set-shifting task designed to assess cognitive flexibility. These data highlight a unique role for GIRK1 signaling in ILC pyramidal neurons in the regulation of strategy shifting but not affect and suggest that these channels may represent a therapeutic target for treatment of cognitive deficits in neuropsychiatric disease.
Collapse
|
22
|
Anderson EM, Loke S, Wrucke B, Engelhardt A, Demis S, O'Reilly K, Hess E, Wickman K, Hearing MC. Suppression of pyramidal neuron G protein-gated inwardly rectifying K+ channel signaling impairs prelimbic cortical function and underlies stress-induced deficits in cognitive flexibility in male, but not female, mice. Neuropsychopharmacology 2021; 46:2158-2169. [PMID: 34158613 PMCID: PMC8505646 DOI: 10.1038/s41386-021-01063-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/25/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022]
Abstract
Imbalance in prefrontal cortical (PFC) pyramidal neuron excitation:inhibition is thought to underlie symptomologies shared across stress-related disorders and neuropsychiatric disease, including dysregulation of emotion and cognitive function. G protein-gated inwardly rectifying K+ (GIRK/Kir3) channels mediate excitability of medial PFC pyramidal neurons, however, the functional role of these channels in mPFC-dependent regulation of affect, cognition, and cortical dynamics is unknown. We used a viral-cre approach in male and female mice harboring a "floxed" version of the kcnj3 (Girk1) gene, to disrupt GIRK1-containing channel expression in pyramidal neurons within the prelimbic cortex (PrL). In males, loss of pyramidal GIRK1-dependent signaling differentially impacted measures of affect and impaired working memory and cognitive flexibility. Unexpectedly, ablation of PrL GIRK1-dependent signaling did not impact affect or cognition in female mice. Additional studies used a model of chronic unpredictable stress (CUS) to determine the impact on PrL GIRK-dependent signaling and cognitive function. CUS exposure in male mice produced deficits in cognition that paralleled a reduction in PrL pyramidal GIRK-dependent signaling akin to viral approaches whereas CUS exposure in female mice did not alter cognitive flexibility performance. Stress-induced behavioral deficits in male mice were rescued by systemic injection of a novel, GIRK1-selective agonist, ML297. In conclusion, GIRK1-dependent signaling in male mice, but not females, is critical for maintaining optimal PrL function and behavioral control. Disruption of this inhibition may underlie stress-related dysfunction of the PrL and represent a therapeutic target for treating stress-induced deficits in affect regulation and impaired cognition that reduce quality of life.
Collapse
Affiliation(s)
- Eden M Anderson
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Steven Loke
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Benjamin Wrucke
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Annabel Engelhardt
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Skyler Demis
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Kevin O'Reilly
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Evan Hess
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - Kevin Wickman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
| | - Matthew C Hearing
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA.
| |
Collapse
|
23
|
A dubious distinction for females: rapid achievement of prefrontal cortical hypoactivity and cognitive deficit upon remifentanil self-administration. Neuropsychopharmacology 2021; 46:1707-1708. [PMID: 34127798 PMCID: PMC8357787 DOI: 10.1038/s41386-021-01053-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/08/2022]
|